
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Statistics 120
Graphics

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Computer Graphics

• Drawing graphics in a window on the screen of a
computer is very similar to drawing by hand on a sheet
of paper.

• We begin a drawing by getting out a clean piece of
paper and then deciding what scale to use in the
drawing.

• With those basic decisions made, we can then start
putting pen to paper.

• The steps in R are very similar.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Starting a New Plot

We begin a plot by first telling the graphics system that we are
about to start a new plot.

> plot.new()

This indicates that we are about to start a new plot and must
happen before any graphics takes place.

The call to plot.new chooses a default rectangular region for
the plot to appear in. This choice can be overridden using the
par function.

The plotting region is surrounded by four margins.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Plot Region

Margin 1

M
ar

gi
n 

2

Margin 3

M
ar

gi
n 

4

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Controlling The Margins

There are a variety of ways of setting the sizes of the plot
margins using par.

1. Set the margin sizes in inches.

> par(mai = c(2, 2, 1, 1))

2. Set the margin sizes in lines of text.

> par(mar = c(4, 4, 2, 2))

3. Set the plot width and height in inches.

> par(pin = c(5, 4))

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Setting the Axis Scales

Next we set the scales on along the sides of the plot. This
determines how coordinates get mapped onto the page.

plot.window(xlim = xlimits, ylim = ylimits)

The graphics system arranges for the specified region to
appear on the page.

xlimits and xlimits are vectors which contain the lower
and upper limits to appear on the x and y axes.

For example,

xlim = c(-pi, pi), ylim = c(-1, 1),

might be suitable for plotting sine and cosine functions.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Setting the Axis Scales

There is also an optional argument to the function
plot.window() which allows a user to specify a particular
aspect ratio.

> plot.window(xlim = xlimits, ylim = ylimits,

asp = 1)

The use of asp=1 means that unit steps in the x and y
directions produce equal distances in the x and y directions on
the page.

This is important if circles are to appear as circles rather than
ellipses.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Drawing

With the plot setup done, we can now draw on the page.
There are a number of R functions which can be used to draw.
The simplest of these are:

points draw “points” on a plot
lines draw connected line segments
segments draw disconnected line segments
rect draw rectangles
polygon draw filled polygons
text draw text on a plot
box draw a box around a plot



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Square with Diagonals Example

These commands draw a square with a cross drawn across its
diagonals.

> plot.new()

> plot.window(xlim = c(0, 1),

ylim = c(0, 1), asp = 1)

> rect(xleft = .1, ybottom = .1,

xright = .9, ytop = .9)

> segments(0, 0, 1, 1)

> segments(0, 1, 1, 0)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Square with Diagonals

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Nested Squares Example

This example shows how to draw a set of nested squares.
Note that all 21 squares are produced by a single call to rect.

> plot.new()

> plot.window(xlim = c(0, 1), ylim = c(0,

1), asp = 1)

> p = seq(0, 0.5, length = 21)

> rect(p, p, 1 - p, 1 - p)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Drawing a Circle

There is no simple R function for drawing a circle. Here is
how it can be done by approximating the circle with a regular
polygon.

> plot.new()

> plot.window(xlim = c(-1.1, 1.1), ylim = c(-1.1,

1.1), asp = 1)

> theta = seq(0, 2 * pi, length = 72)

> x = cos(theta)

> y = sin(theta)

> lines(x, y)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Change of angle = 5°

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Approximating Smooth Curves

• Suppose that a series of connected line segments is to
be used to approximate a smooth curve.

• Provided that the lines change direction by no more
than 5◦, then they will appear to the eye to make up a
smooth curve.

• This is why 72 line segments were used in the previous
example — 360 equals 72 times 5!

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Change of angle = 15°



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Another Curve Example

Here is another example which shows how the eye can
perceive a sequence of straight lines as a curve.

> x1 = seq(0, 1, length = 20)

> y1 = rep(0, 20)

> x2 = rep(0, 20)

> y2 = seq(0.75, 0, length = 20)

> plot.new()

> plot.window(xlim = c(0, 1), ylim = c(0,

0.75), asp = 1)

> segments(x1, y1, x2, y2)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Rosettes

A rosette is a figure which is created by taking a series of
equally spaced points around the circumference of a circle
and joining each of these points to all the other points.

> n = 17

> theta = seq(0, 2 * pi, length = n + 1)[1:n]

> x = sin(theta)

> y = cos(theta)

> v1 = rep(1:n, n)

> v2 = rep(1:n, rep(n, n))

> plot.new()

> plot.window(xlim = c(-1, 1), ylim = c(-1,

1), asp = 1)

> segments(x[v1], y[v1], x[v2], y[v2])

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Rosette with 17 Vertices

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Drawing a Spiral

• A spiral is created by drawing around the outside of a
circle whose radius is increasing:

xt = Rt cosθt

yt = Rt sinθt

• The radius is an increasing function of t.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Drawing a Spiral

These commands draw a spiral, centred on (0,0). The spiral
does 30 revolutions:

> theta = seq(0, 30 * 2 * pi, by = 2 * pi/72)

> x = cos(theta)

> y = sin(theta)

> R = theta/max(theta)

> plot.new()

> plot.window(xlim = c(-1, 1), ylim = c(-1,

1), asp = 1)

> lines(x * R, y * R)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Linear Spiral

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Spiral Squares

> plot.new()

> plot.window(xlim = c(-1, 1), ylim = c(-1,

1), asp = 1)

> square = seq(0, 2 * pi, length = 5)[1:4]

> n = 51

> r = rep(1.12, n)

> r = cumprod(r)

> r = r/r[n]

> theta = seq(0, 2 * pi, length = n)

> for (i in n:1) {

x = r[i] * cos(theta[i] + square)

y = r[i] * sin(theta[i] + square)

polygon(x, y, col = "gray")

}



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Drawing a Scatter Plot

• With the tools we have at hand, we are now in a
position to built a new tool for producing scatter plots.

• There are a number of tasks which must be solved:

– Determining the x and y ranges.

– Setting up the plot window.

– Plotting the points.

– Adding the plot axes and frame.

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Scatter Plot Code

Here are the steps required to produce a scatter plot.

• Determine the x and y ranges.

> xlim = range(x)

> ylim = range(y)

• Set up the plot window.

> plot.new()

> plot.window(xlim = xlim, ylim = ylim)

• Plot the points.

> points(x, y)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Scatter Plot Function

By “wrapping” the steps in a function definition we can
produce a simple scatter plot function.

> scat = function(x, y) {

xlim = range(x)

ylim = range(y)

plot.new()

plot.window(xlim = xlim, ylim = ylim)

points(x, y)

axis(1)

axis(2)

box()

}

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Scatter Plot Function

We can use this function just like any other R function to
produce scatter plots.

> xv = 1:100

> yv = rnorm(100)

> scat(xv, yv)

> title(main = "My Very Own Scatter Plot")

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

0 20 40 60 80 100

−2

−1

0

1

2

3

My Very Own Scatter Plot


