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Computer Graphics

• Drawing graphics in a window on the screen of a
computer is very similar to drawing by hand on a sheet
of paper.

• We begin a drawing by getting out a clean piece of
paper and then deciding what scale to use in the
drawing.

• With those basic decisions made, we can then start
putting pen to paper.

• The steps in R are very similar.
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Starting a New Plot

We begin a plot by first telling the graphics system that we are
about to start a new plot.

> plot.new()

This indicates that we are about to start a new plot and must
happen before any graphics takes place.

The call to plot.new chooses a default rectangular region for
the plot to appear in. This choice can be overridden using the
par function.

The plotting region is surrounded by four margins.
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Controlling The Margins

There are a variety of ways of setting the sizes of the plot
margins using par.

1. Set the margin sizes in inches.

> par(mai = c(2, 2, 1, 1))

2. Set the margin sizes in lines of text.

> par(mar = c(4, 4, 2, 2))

3. Set the plot width and height in inches.

> par(pin = c(5, 4))
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Setting the Axis Scales

Next we set the scales on along the sides of the plot. This
determines how coordinates get mapped onto the page.

plot.window(xlim = xlimits, ylim = ylimits)

The graphics system arranges for the specified region to
appear on the page.

xlimits and xlimits are vectors which contain the lower
and upper limits to appear on the x and y axes.

For example,

xlim = c(-pi, pi), ylim = c(-1, 1),

might be suitable for plotting sine and cosine functions.
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Setting the Axis Scales

There is also an optional argument to the function
plot.window() which allows a user to specify a particular
aspect ratio.

> plot.window(xlim = xlimits, ylim = ylimits,

asp = 1)

The use of asp=1 means that unit steps in the x and y
directions produce equal distances in the x and y directions on
the page.

This is important if circles are to appear as circles rather than
ellipses.
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Drawing

With the plot setup done, we can now draw on the page.
There are a number of R functions which can be used to draw.
The simplest of these are:

points draw “points” on a plot
lines draw connected line segments
segments draw disconnected line segments
rect draw rectangles
polygon draw filled polygons
text draw text on a plot
box draw a box around a plot
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Square with Diagonals Example

These commands draw a square with a cross drawn across its
diagonals.

> plot.new()

> plot.window(xlim = c(0, 1),

ylim = c(0, 1), asp = 1)

> rect(xleft = .1, ybottom = .1,

xright = .9, ytop = .9)

> segments(0, 0, 1, 1)

> segments(0, 1, 1, 0)
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A Square with Diagonals
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Nested Squares Example

This example shows how to draw a set of nested squares.
Note that all 21 squares are produced by a single call to rect.

> plot.new()

> plot.window(xlim = c(0, 1), ylim = c(0,

1), asp = 1)

> p = seq(0, 0.5, length = 21)

> rect(p, p, 1 - p, 1 - p)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Drawing a Circle

There is no simple R function for drawing a circle. Here is
how it can be done by approximating the circle with a regular
polygon.

> plot.new()

> plot.window(xlim = c(-1.1, 1.1), ylim = c(-1.1,

1.1), asp = 1)

> theta = seq(0, 2 * pi, length = 72)

> x = cos(theta)

> y = sin(theta)

> lines(x, y)
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Change of angle = 5°
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Approximating Smooth Curves

• Suppose that a series of connected line segments is to
be used to approximate a smooth curve.

• Provided that the lines change direction by no more
than 5◦, then they will appear to the eye to make up a
smooth curve.

• This is why 72 line segments were used in the previous
example — 360 equals 72 times 5!
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Change of angle = 15°
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Another Curve Example

Here is another example which shows how the eye can
perceive a sequence of straight lines as a curve.

> x1 = seq(0, 1, length = 20)

> y1 = rep(0, 20)

> x2 = rep(0, 20)

> y2 = seq(0.75, 0, length = 20)

> plot.new()

> plot.window(xlim = c(0, 1), ylim = c(0,

0.75), asp = 1)

> segments(x1, y1, x2, y2)
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Rosettes

A rosette is a figure which is created by taking a series of
equally spaced points around the circumference of a circle
and joining each of these points to all the other points.

> n = 17

> theta = seq(0, 2 * pi, length = n + 1)[1:n]

> x = sin(theta)

> y = cos(theta)

> v1 = rep(1:n, n)

> v2 = rep(1:n, rep(n, n))

> plot.new()

> plot.window(xlim = c(-1, 1), ylim = c(-1,

1), asp = 1)

> segments(x[v1], y[v1], x[v2], y[v2])
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A Rosette with 17 Vertices
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Drawing a Spiral

• A spiral is created by drawing around the outside of a
circle whose radius is increasing:

xt = Rt cosθt

yt = Rt sinθt

• The radius is an increasing function of t.
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Drawing a Spiral

These commands draw a spiral, centred on (0,0). The spiral
does 30 revolutions:

> theta = seq(0, 30 * 2 * pi, by = 2 * pi/72)

> x = cos(theta)

> y = sin(theta)

> R = theta/max(theta)

> plot.new()

> plot.window(xlim = c(-1, 1), ylim = c(-1,

1), asp = 1)

> lines(x * R, y * R)
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A Linear Spiral

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Spiral Squares

> plot.new()

> plot.window(xlim = c(-1, 1), ylim = c(-1,

1), asp = 1)

> square = seq(0, 2 * pi, length = 5)[1:4]

> n = 51

> r = rep(1.12, n)

> r = cumprod(r)

> r = r/r[n]

> theta = seq(0, 2 * pi, length = n)

> for (i in n:1) {

x = r[i] * cos(theta[i] + square)

y = r[i] * sin(theta[i] + square)

polygon(x, y, col = "gray")

}



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Drawing a Scatter Plot

• With the tools we have at hand, we are now in a
position to built a new tool for producing scatter plots.

• There are a number of tasks which must be solved:

– Determining the x and y ranges.

– Setting up the plot window.

– Plotting the points.

– Adding the plot axes and frame.
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Scatter Plot Code

Here are the steps required to produce a scatter plot.

• Determine the x and y ranges.

> xlim = range(x)

> ylim = range(y)

• Set up the plot window.

> plot.new()

> plot.window(xlim = xlim, ylim = ylim)

• Plot the points.

> points(x, y)

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

A Scatter Plot Function

By “wrapping” the steps in a function definition we can
produce a simple scatter plot function.

> scat = function(x, y) {

xlim = range(x)

ylim = range(y)

plot.new()

plot.window(xlim = xlim, ylim = ylim)

points(x, y)

axis(1)

axis(2)

box()

}
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A Scatter Plot Function

We can use this function just like any other R function to
produce scatter plots.

> xv = 1:100

> yv = rnorm(100)

> scat(xv, yv)

> title(main = "My Very Own Scatter Plot")
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