
•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Statistics 120
Plots Based on Quantiles II
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An Example – Rats and Ozone

A group of young rats was randomly split into two groups.
One group was used as a control and the other raised in an
ozone enriched environment
The following weight gains were observed:

Control 41.0 38.4 24.4 25.9 21.9
18.3 13.1 27.3 28.5 −16.9
26.0 17.4 21.8 15.4 27.4
19.2 22.4 17.7 26.0 29.4
21.4 26.6 22.7

Ozone 10.1 6.1 20.4 7.3 14.3
15.5 −9.9 6.8 28.2 17.9
−9.0 −12.9 14.0 6.6 12.1
15.7 39.9 −15.9 54.6 −14.7
44.1 −9.0
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A “Standard” Analysis

• A standard analysis would use a two-samplet-test to
see whether ozone exposure has a significant effect on
weight gain.

• The mean weight gains were:

Control 22.4
Ozone 11.0

• The p-value for a two-sided test is0.02.

• This is weak evidence that ozone exposure decreases
the growth rates of juvenile rats.
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A “Graphical” Analysis

• A t-test showed a difference in average weight gain, but
there is rather more going on here.

• We can see this by comparing the full distribution of the
values, rather than just the means.

• We have several ways of doing this:

– Stem-and-Leaf plots

– Histograms

– Density Plots

– Quantile-Quantile Plots
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Comparison Using Densities

> ctrl = c(41.0, 38.4, 24.4, 25.9, 21.9, 18.3,
13.1, 27.3, 28.5,-16.9, 26.0, 17.4,
21.8, 15.4, 27.4, 19.2, 22.4, 17.7,
26.0, 29.4, 21.4, 26.6, 22.7)

> ozone = c(10.1, 6.1, 20.4, 7.3, 14.3, 15.5,
-9.9, 6.8, 28.2, 17.9, -9.0,-12.9,
14.0, 6.6, 12.1, 15.7, 39.9,-15.9,
54.6,-14.7, 44.1, -9.0)

> dens = dtrace(list(Control = ctrl, Ozone = ozone))

> plot(dens, main = "Ozone Effect",
xlab = "Weight Gain (gm)")
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What the Plot Shows

• The distributions of weight gains for the two groups are
very different.

• The peak of the “ozone” group is shifted to the left
relative to the control group.

• The ozone group is more spread out than the control.

• There is an isolated small peak in the control group to
the left of zero.
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Using Equal Bandwidths

• The default bandwidths used in producing the densities
in the plot were quite different.

• A value of close to 10 was use for the control group and
a value of close to 28 for the ozone group.

• As a compromise we can try using 20 for both groups to
make the results directly comparable.

> dens = dtrace(list(Control = ctrl,
Ozone = ozone),

bw = 20)
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What the Plot Shows

• The control group forms a single group (with a single
outlier).

• There is some evidence that the ozone group consists of
three clusters of rats.

• Some rats in the top cluster of the ozone group appear
to have greater weight gains than any of the control
group rats.
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Comparison Using Quantile Quantile Plots

• Because the relationship between the two set of weight
gains is complex, it is useful to produce a Q-Q plot to
get more detail on how the groups line up.

• Producing the plot is easy.

> qqplot(ctrl, ozone,
main = "Rat Weight Gains",
xlab = "Control Group Quantiles",
ylab = "Ozone Group Quantiles")

> abline(0, 1, lty="dotted")
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What the Plot Shows

• In the lower tails of the weight-gain distributions, the
gains for the ozone group tend to be lower than those of
the control group.

• The lowest weight gain values are negative.

• In the centre of the weight-gain distributions the weight
gains for the ozone group are positive, but not as big as
those of the control group.

• In the top tails of the weight-gain distributions, the
gains for the ozone group are greater than those for the
control group.
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Interpretation

• The results seem to suggest that most rats are harmed
by ozone exposure and that some benefit.

• The effect is probably a result of the way the
experiment was run.

• The rats in each group were housed together.

• The ozone probably had a detrimental effect on all the
rats, but those most effected were put off their food
(hence the weight loss).

• This left a surplus of food for the least affected rats and
so they were able to put on a lot of weight.
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Theoretical Quantile Quantile Plots

• Quantile-quantile plots can be used to compare the
distributions of two sets of numbers.

• They can also be used to compare the distributions of
one set of values with some theoretical distribution.

• Most commonly, the yardstick distribution is the
standard normal distribution:

P[X ≤ x] =
1√
2π

∫ x

−∞
e−t2/2dt

• If the values being plotted resemble a sample from a
normal distribution, they will lie on a straight line with
intercept equal to the mean of the values and slope
equal to the standard deviation.
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R Functions

• The functionqqnorm produces a basic Q-Q plot
comparing a set of values with the normal distribution.

• The functionqqline adds a straight line to the plot.
The line passes through the point defined by the lower
quartiles and the point defined by the upper quartiles.

> qqnorm(rain.nyc,
main = "New York Precipitation")

> qqline(rain.nyc)
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Deviations From Normality

• The NYC rainfall plot shows a systematic deviation
from normality.

• Detecting such deviations is important because many
statistical techniques depend on the data they are
applied to having an approximately normal distribution.

• Note: The importance of normality is often overstated
in elementary statistics courses. The NYC rainfall
would be fine to use for most normally based statistical
techniques.
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Some Departures from Normality

(a) Normally Distributed (b) Heavy Tails (c) Light Tails

(d) Skewed to the Left (e) Skewed to the Right (f) Separate Clusters
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Distribution Symmetry

• Suppose we have a collection of valuesx1, . . . ,xn. We
will say that the values are symmetrically distributed if
their quantile function satisfies:

Q(.5)−Q(p) = Q(1− p)−Q(0.5), for 0 < p < .5.

• This says that thepth quantile is the same distance
below the median as the(1− p)th quantile is above it.

• When a set of values is “close” to normally distributed,
a normal Q-Q plot can help to detect departures from
symmetry,
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A Symmetry Plot

• The obvious way to check the symmetry of a set of
numbers is to plot the valuesQ(1− p1), . . . ,Q(1− pn/2)
against the values ofQ(p1), . . . ,Q(pn/2).

• If the plotted points fall on the liney = x, thenx1, . . . ,xn

are symmetrically distributed.

• There is no built-in R function which produces
symmetry plots, but it is very easy to create such a plot.
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R Code

> symplot =
function(x)
{
n = length(x)
n2 = n %/% 2
sx = sort(x)
mx = median(x)
plot(mx - sx[1:n2], rev(sx)[1:n2] - mx,

xlab = "Distance Below Median",
ylab = "Distance Above Median")

abline(a = 0, b = 1, lty = "dotted")
}

> symplot(rain.nyc)
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Transforming to Symmetry

• There appears to be evidence of lack of symmetry in the
symmetry plot.

• The upper quantiles of the distribution are further from
the median than the corresponding lower quartiles.

• This indicates that the distribution of values is skewed
to the right.

• It can sometimes be useful to transform skewed
distributions to more symmetric ones. Transformations
which can be used to do this are:square roots, cube and
other roots, logarithms and reciprocals.
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Transforming to Symmetry

• In the case of the rainfall data, it is hard to find a
transformation which makes the distribution more
symmetric.

• This is because of the internal clustering present in the
values.

• Negative reciprocals do a fairly good job.

> symplot(-1/rain.nyc)
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Sample Size Considerations

• Both normal Q-Q plots and symmetry plots require
large sample sizes to reliably represent the population
being sampled.

• This is especially true for symmetry plots.

• Sample sizes of at least 1000 are desirable, although the
plots do tend to get used on much smaller sample sizes.

• Running the command below repeatedly can show just
how how unstable the plots are with smaller sample
sizes.

> symplot(rnorm(100))
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