Statistics 120
 Plots Based on Quantiles II

An Example - Rats and Ozone

A group of young rats was randomly split into two groups. One group was used as a control and the other raised in an ozone enriched environment
The following weight gains were observed:

Control	41.0	38.4	24.4	25.9	21.9
	18.3	13.1	27.3	28.5	-16.9
	26.0	17.4	21.8	15.4	27.4
	19.2	22.4	17.7	26.0	29.4
	21.4	26.6	22.7		
Ozone	10.1	6.1	20.4	7.3	14.3
	15.5	-9.9	6.8	28.2	17.9
	-9.0	-12.9	14.0	6.6	12.1
	15.7	39.9	-15.9	54.6	-14.7
	44.1	-9.0			

A 'Standard" Analysis

- A standard analysis would use a two-sample t-test to see whether ozone exposure has a significant effect on weight gain.
- The mean weight gains were:

$$
\begin{array}{rr}
\text { Control } & 22.4 \\
\text { Ozone } & 11.0
\end{array}
$$

- The p-value for a two-sided test is 0.02 .
- This is weak evidence that ozone exposure decreases the growth rates of juvenile rats.

A "Graphical" Analysis

- A t-test showed a difference in average weight gain, but there is rather more going on here.
- We can see this by comparing the full distribution of the values, rather than just the means.
- We have several ways of doing this:
- Stem-and-Leaf plots
- Histograms
- Density Plots
- Quantile-Quantile Plots

Comparison Using Densities

> ctrl = c(41.0, 38.4, 24.4, 25.9, 21.9, 18.3, 13.1, 27.3, 28.5.-16.9, 26.0, 17.4, 21.8, 15.4, 27.4, 19.2, 22.4, 17.7, 26.0, 29.4, 21.4, 26.6, 22.7)
> ozone = c(10.1, 6.1, 20.4, 7.3, 14.3, 15.5, -9.9, 6.8, 28.2, 17.9, -9.0,-12.9, 14.0, 6.6, 12.1, 15.7, 39.9,-15.9, 54.6,-14.7, 44.1, -9.0)
> dens = dtrace(list(Control = ctrl, Ozone = ozone))
> plot(dens, main = "Ozone Effect", xlab = "Weight Gain (gm)")

Ozone Effect

What the Plot Shows

- The distributions of weight gains for the two groups are very different.
- The peak of the "ozone" group is shifted to the left relative to the control group.
- The ozone group is more spread out than the control.
- There is an isolated small peak in the control group to the left of zero.

Using Equal Bandwidths

- The default bandwidths used in producing the densities in the plot were quite different.
- A value of close to 10 was use for the control group and a value of close to 28 for the ozone group.
- As a compromise we can try using 20 for both groups to make the results directly comparable.

$$
\begin{gathered}
>\text { dens }=\text { dtrace(list (Control }=\text { ctrl, } \\
\text { Ozone }=\text { ozone }), \\
\mathrm{bw}=20)
\end{gathered}
$$

Ozone Effect

What the Plot Shows

- The control group forms a single group (with a single outlier).
- There is some evidence that the ozone group consists of three clusters of rats.
- Some rats in the top cluster of the ozone group appear to have greater weight gains than any of the control group rats.

Comparison Using Quantile Quantile Plots

- Because the relationship between the two set of weight gains is complex, it is useful to produce a Q-Q plot to get more detail on how the groups line up.
- Producing the plot is easy.

```
> qqplot(ctrl, ozone,
    main = "Rat Weight Gains",
    xlab = "Control Group Quantiles",
    ylab = "Ozone Group Quantiles")
> abline(0, 1, lty="dotted")
```

Rat Weight Gains

What the Plot Shows

- In the lower tails of the weight-gain distributions, the gains for the ozone group tend to be lower than those of the control group.
- The lowest weight gain values are negative.
- In the centre of the weight-gain distributions the weight gains for the ozone group are positive, but not as big as those of the control group.
- In the top tails of the weight-gain distributions, the gains for the ozone group are greater than those for the control group.

Interpretation

- The results seem to suggest that most rats are harmed by ozone exposure and that some benefit.
- The effect is probably a result of the way the experiment was run.
- The rats in each group were housed together.
- The ozone probably had a detrimental effect on all the rats, but those most effected were put off their food (hence the weight loss).
- This left a surplus of food for the least affected rats and so they were able to put on a lot of weight.

Theoretical Quantile Quantile Plots

- Quantile-quantile plots can be used to compare the distributions of two sets of numbers.
- They can also be used to compare the distributions of one set of values with some theoretical distribution.
- Most commonly, the yardstick distribution is the standard normal distribution:

$$
P[X \leq x]=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

- If the values being plotted resemble a sample from a normal distribution, they will lie on a straight line with intercept equal to the mean of the values and slope equal to the standard deviation.

Normal Q-Q Plot

R Functions

- The function qqnorm produces a basic Q-Q plot comparing a set of values with the normal distribution.
- The function qqline adds a straight line to the plot. The line passes through the point defined by the lower quartiles and the point defined by the upper quartiles.

```
> qqnorm(rain.nyc,
    main = "New York Precipitation")
> qqline(rain.nyc)
```


New York Precipitation

Deviations From Normality

- The NYC rainfall plot shows a systematic deviation from normality.
- Detecting such deviations is important because many statistical techniques depend on the data they are applied to having an approximately normal distribution.
- Note: The importance of normality is often overstated in elementary statistics courses. The NYC rainfall would be fine to use for most normally based statistical techniques.

Some Departures from Normality

(d) Skewed to the Left

(b) Heavy Tails

(e) Skewed to the Right

(c) Light Tails

(f) Separate Clusters

New York Precipitation

Distribution Symmetry

- Suppose we have a collection of values x_{1}, \ldots, x_{n}. We will say that the values are symmetrically distributed if their quantile function satisfies:

$$
Q(.5)-Q(p)=Q(1-p)-Q(0.5), \quad \text { for } 0<p<.5
$$

- This says that the p th quantile is the same distance below the median as the $(1-p)$ th quantile is above it.
- When a set of values is "close" to normally distributed, a normal Q-Q plot can help to detect departures from symmetry,

A Symmetry Plot

- The obvious way to check the symmetry of a set of numbers is to plot the values $Q\left(1-p_{1}\right), \ldots, Q\left(1-p_{n / 2}\right)$ against the values of $Q\left(p_{1}\right), \ldots, Q\left(p_{n / 2}\right)$.
- If the plotted points fall on the line $y=x$, then x_{1}, \ldots, x_{n} are symmetrically distributed.
- There is no built-in R function which produces symmetry plots, but it is very easy to create such a plot.

R Code

> symplot =
function(x)
\{
$\mathrm{n}=$ length (x)
$\mathrm{n} 2=\mathrm{n} \% / \% 2$
sx $=$ sort (x)
$m x=m e d i a n(x)$
plot (mx - sx[1:n2], rev(sx)[1:n2] - mx, $x l a b=$ "Distance Below Median", ylab = "Distance Above Median") abline(a $=0, \mathrm{~b}=1$, lty = "dotted") \}
> symplot(rain.nyc)

Transforming to Symmetry

- There appears to be evidence of lack of symmetry in the symmetry plot.
- The upper quantiles of the distribution are further from the median than the corresponding lower quartiles.
- This indicates that the distribution of values is skewed to the right.
- It can sometimes be useful to transform skewed distributions to more symmetric ones. Transformations which can be used to do this are:square roots, cube and other roots, logarithms and reciprocals.

Transforming to Symmetry

- In the case of the rainfall data, it is hard to find a transformation which makes the distribution more symmetric.
- This is because of the internal clustering present in the values.
- Negative reciprocals do a fairly good job.
> symplot(-1/rain.nyc)

Sample Size Considerations

- Both normal Q-Q plots and symmetry plots require large sample sizes to reliably represent the population being sampled.
- This is especially true for symmetry plots.
- Sample sizes of at least 1000 are desirable, although the plots do tend to get used on much smaller sample sizes.
- Running the command below repeatedly can show just how how unstable the plots are with smaller sample sizes.
> symplot(rnorm(100))

