
Statistics 120 Examining Three-Dimensional Data

Examining Two Variables

- The most important tool is the scatter plot.
- Scatter plots do two things well
 - They display relationships between variables.
 (Smoothing can help with this).
 - They make it easy to detect similar observations and to see clusters of observations.

1. Relationship

2. Clustering

Three Variables

• Three dimensional data sets:

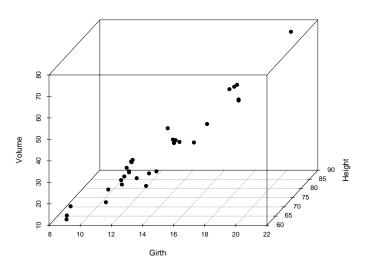
	Var 1	Var 2	Var 3
Case 1	x_1	<i>y</i> ₁	z_1
Case 2	x_2	<i>y</i> 2	z_2
Case 3	x_3	У3	<i>Z</i> 3
	:	•	÷
Case <i>n</i>	x_n	y_n	z_n

• Here there are 3 variables and *n* cases.

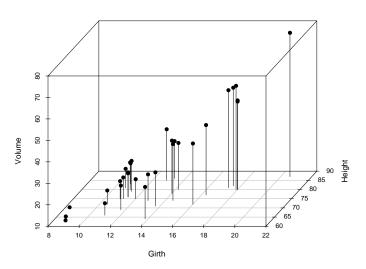
Geometry

- Each case (x_i, y_i, z_i) can be regarded as a point in three dimensional space.
- The entire set of points (x_i, y_i, z_i) (i = 1, ..., n) can be viewed as a "point cloud" in three dimensions.
- How can such a point-cloud be represented?

1. Physical Models


- Construct a three dimensional model (using straws and clay balls).
- It is time consuming to produce this kind of plot, especially if there are several thousand points to be plotted.
- Experimental use of this kind of graph is nearly impossible.

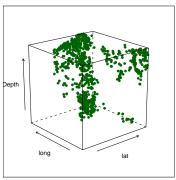
2. Two Dimensional Pictures

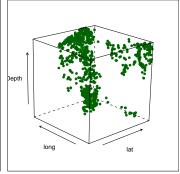

- Draw a two dimensional picture of a three dimensional graph.
- Such graphs invariably have a "flat" appearance, but can have their 3-d character enhanced.
- The Trellis function cloud can be used to draw point-clouds.
- There is also and R library called scatterplot3d which has some 3d capabilities.

Cherry Tree Height, Girth and Volume Volume Height Girth

Cherry Tree Height, Girth and Volume

Cherry Tree Height, Girth and Volume


3. Stereoscopic Viewing


- By presenting a suitable image to each eye separately it is possible to have the brain synthesise a fully 3d image.
- There are two "hardware-less" techniques for "fusing" separate images.
 - Defocussing the eyes and looking through the two images (the technique used for the "Magic Eye" books.
 - Crossing the eyes and looking at the left image with the right eye and the right image with the left eye.
- A switch between the two techniques requires a left-right switch of the two images being examined.

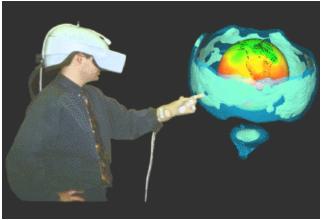
An Example: Earthquake Locations

- The next figure shows an eyes-crossed stereogram of the Tonga Trench earthquake locations.
- You will find a large version of this attached to the back of the lecture handouts.
- Hold the image at a comfortable reading distance and cross your eyes slightly.
- When your eyes are correctly positioned you should be aware of three copies of the image in front of you – the middle image should appear three dimensional.

An Eyes-Crossed Stereogram of The Tonga Trench Earthquake Locations

Specialist Stereographic Tools

- There are a number of specialist tools which help the stereoscopic experience.
- These range from inexpensive and low-tech to very expensive and high tech.
 - A stereopticon
 - Red/blue, left/right glasses.
 - Polarising glasses
 - A virtual reality helmet.


A Stereopticon

Polarising Glasses

A Virtual Reality Helmet

4. Motion Graphics

- Making a point-cloud rotate on screen produces a convincing illusion of depth.
- This is happens because of the way we process motion parallax (things seem to move more slowly when they are further away).
- This is related to perspective.

Motion Graphics Systems

- Most statistical software systems offer some sort of motion graphics system.
- A good system will offer more than just the ability to rotate a point cloud.
- One of the best motion graphics facilities is provided by the XGobi system.
- This system is a research prototype which was developed under the Unix operating system,
- A Windows version of this system is under development is under development, but is not fully mature yet.

XGobi Demonstration

- The data for the demonstration consists of the surface location and relative time position of the volcanoes in the Auckland Volcanic field.
- A map showing the location of the Auckland volcanoes is shown at the back of the lecture notes.
- Conventional seismological wisdom says that there is no structure to the space-time pattern of the volcanoes.