Statistics 120
 Displaying Time Series Data

Time Series

- A time series is a set of observations made at equally spaced points in time.
- Time series observations are usually numerical measurements, but occasionally categorical time series are encountered.
- Time series observations are typically not (statistically) independent.
- This means that the time order the observations is crucial to their analysis.

Average Monthly Rainfall in Auckland

Average Monthly Temperature in Auckland

Average Monthly Rainfall in Auckland

Average Monthly Temperature in Auckland

The NZ Dollar in Australian Dollars

Time Series in \mathbf{R}

- The function ts can be used to turn an ordinary vector into a special time series object.
- It does this by specifying parameters which describe when the observations were made.
- The parameter frequency describes how many observations are made per unit time.
- The parameter start describes when sampling started.

Example - Creating the Rain Series

- Suppose that the Auckland rainfall values have been read into a vector called rainvalues.
- The values are monthly values with the first value sampled in January 1949.

$$
\begin{gathered}
>\text { rain }=\text { ts (rainvalues, frequency }=12, \\
\text { start }=c(1949,1))
\end{gathered}
$$

- R interprets the value 1949 as "the start of 1949 " so we could use the simpler form.

$$
\begin{gathered}
>\text { rain }=\text { ts (rainvalues, frequency }=12 \text {, } \\
\text { start }=1949)
\end{gathered}
$$

Simple Operations on Time Series

- Arithmetic operations can be carried out on time series just as you might expect.
> lograin $=\log ($ rain $)$
- Subsetting is done by focusing on the values of a time series which fall within a given time window.

$$
\begin{aligned}
>\operatorname{rain} 2000=\text { window }(\text { rain, } & \\
\text { start } & =c(2000,1), \\
\text { end } & =c(2000,12))
\end{aligned}
$$

Printing Time Series

- Time series are printed in a special way.

	```in, start = c(1999, 1), end = c(2000, 12))```					
	Jan	Feb	Mar	Apr	May	Jun
1999	103.8	57.7	72.9	165.7	55.2	110.2
2000	86.2	9.2	51.2	128.4	118.1	203.4
	Jul	Aug	Sep	Oct	Nov	Dec
1999	130.7	113.2	69.6	96.6	172.5	42.8
000	173.2	84.2	72.2	65.5	74	

- The frequency values 12 and 4 are recognised as special and taken to correspond to monthly and quarterly observations.


## Time Series Plots

- The plot function recognises time series and plots them in an appropriate way.
- The default plotting method is to "join up the dots," but this and other aspects of the plot can be customised.

```
> recent = window(rain, start = c(1995, 1),
 end = c(2000, 12))
> plot(recent)
> plot(recent, type = "h")
> plot(recent, type = "o", pch=20)
```

The Default Time Series Plot



$$
\text { type = "o", pch = } 20
$$



## Time Series Plots

- We saw earlier in the course that it is easy to produce filled time series plots using polygon.
> plot.new()
> plot.window(c(1995, 2001), xaxs = "i", $c(0,400)$, yaxs $=" i ")$
$>x=c(1995$, time(recent), 2001)
$>y=c(0, r e c e n t, 0)$
> polygon(x, y, col = "lightblue")
> axis(1); axis(2); box()




## A Horizon Effect?

- There appears to be a difference between these two plots.
- My conjecture is that there is wiring in the brain which means that we notice peaks rather than troughs in plots.
- This is especially true for plots which are divided horizontally by a colour horizon.
- Because of this effect, my recommendation is that you avoid this kind of plot.


## Example: Stock Prices

- In this example we will look at the closing price for IBM stock, daily from Jan 1, 1980 to Oct. 8, 1992.
- This is a typical pattern for any stock.
> plot(ibm)



## Stock Prices and Efficient Markets

- Theory says that in an efficient market stock prices should behave as random walks.
- This means that on any given day the price of a stock will go up or down with equal probability.
- There are a variety of reasons why the New Zealand market cannot be considered efficient.
- We can check the theory with the IBM stock by examining the first differences in the series - i.e. each day's value minus the day before.
> plot(diff(ibm))



## Time Series Decomposition

- It can useful to regard many real world series as being composed of several independent components.
- A particularly useful model is the trend plus seasonal plus irregular component model.

$$
x_{t}=T_{t}+S_{t}+I_{t}
$$

where
$T_{t}=$ a slowly varying trend model
$S_{t}=$ a periodic seasonal component
$I_{t}=$ a set of random irregular "shocks"

## Example - U.S. Housing Starts

- The number of housing starts in any given month is an important leading economic indicator.
- Houses are only built when there are clearly economic "good times" ahead.
- This example shows the United States housing start series from 1966 to 1974.

Monthly U.S. Housing Starts 1966-1974


## Interpretation

- The series clearly shows:
- a regular seasonal variation with a peak in housing starts in summer and a trough in winter.
- a long term (cyclical) trend.
- short term irregularities which are not explained by the other two components.
- This is typical of monthly or quarterly economic series.


## Seasonal Decomposition

- There are statistical techniques which can be used to decompose a time series into trend plus seasonal plus irregular components.
- We will use a technique called STL which uses the lowess smoother as follows.
- A long term trend is estimated using a lowess smooth and then subtracted from the series.
- Each month (or quarter) is smoothed separately and this seasonal effect is subtracted.
- The remainder of the series is taken to be the irregular component.


## Seasonal Decomposition in R

- Assuming that we have the housing start series stored in hstart, here is how we carry out a seasonal decomposition and display the result graphically.

```
> library(ts)
> sd = stl(hstart, s.window=10, t.window=10)
> plot(sd)
```

- The STL procedure can be tuned in a variety of ways.
- The values of $s$.window and $t$. window determine the amount of smoothing used to determine the seasonal pattern and the trend (larger values produce more smoothing).



## Interpretation

- The procedure has done a god job of decomposing the original series into interpretable subseries.
- The seasonal subseries is remarkably stable over time.
- The irregular component is far from being a "random" series.


## Seasonal Adjustment

- Seasonal effects ten to obscure the trends and short term variation present in a time series.
- A technique called seasonal adjustment is used to remove seasonal variation from a time series.
- A seasonally adjusted series can be obtained from the results produced by stl, by adding the trend and irregular components.

```
> plot(sd$time.series[,2]+sd$time.series[,3]
 main="Seasonally Adjusted Housing Starts",
 ylab="Housing Starts (Thousands)")
```

> monthplot(sd\$time.series[,1],
ylab="Seasonal Effect")

## Seasonally Adjusted Housing Starts




