Data Exploration using R Statistics Refresher Workshop

Kai Xiong

k.xiong@auckland.ac.nz Statistical Consulting Service The Department of Statistics The University of Auckland

July 1, 2011

- Checking the data for patterns, relationships, structures, and other features.
- Can be done through graphs and summary statistics.
- We recommend R for generating graphs, much more flexible than Excel, SPSS, SAS.

- Are there any errors or outliers?
- Are there any patterns in the data?
 - Symmetric, Skewed, Bimodal, Clusters?
- In the second second
 - Linear (increasing, decreasing), polynomial, exponential...
- What sort of model might be appropriate?

Types of variable

Quantitative

- Continuous:
 - e.g. gene expression, Body length of mussels
- Discrete:

e.g. number of photophores in lantern fish

- Qualitative
 - Categorical
 - e.g. SNPs, Location of marine reserves
 - Ordinal
 - e.g. Position in a food chain

One Quantitative Variable

- Dotplots
- Five-number-summary statistics
 - Minimum
 - Ist Quantile/Lower Quantile/25th percentile
 - 25% of the sorted variable is smaller than the 1st quantile
 - 75% of the sorted variable is greater than the 1st quantile
 - 2nd Quantile/Median/50th percentile
 - Divide the sorted variable in two equal halves
 - 3rd Quantile/Upper Quantile/75th percentile
 - $\bullet~25\%$ of the sorted variable is greater than the 3rd quantile
 - $\bullet~75\%$ of the sorted variable is smaller than the 3rd quantile

Maximum

- Boxplot: visual display of 5-number-summary statistics.
- Normal QQ plot
- Histogram

• Normal Quantile-Quantile (QQ) Plot

Histogram showing Normal Distribution

Histogram and boxplot showing Normal Distribution

Histogram showing left skewed distribution

Histogram and boxplot showing left skewed istribution

Histogram showing uniform distribution

Histogram and boxplot showing uniform distribution

One Qualitative Variable

• Frequency table

Table: One way frequency table

Phylum	Frequency	Percentage
Molluscs	250	61.4%
Annelids	34	8.4%
Arthropods	101	24.8%
Echinoderms	22	5.4%
Total	407	100%

- Pie chart
- Barplot

• Two way frequency table

Table: Two way frequency table

Phylum	Hahei	Leigh	Total
Molluscs	130	120	250
Annelids	29	5	34
Arthropods	82	19	101
Echinoderms	16	6	22
Total	257	150	407

• Side by side barplot: frequencies or percentages?

• Side-by-side boxplot

• Side-by-side boxplot

• QQ Plot

Table: Three way frequency table

	Location				
	Hahei		Leigh		
Phylum	Winter	Summer	Winter	Summer	
Molluscs	39	91	32	88	
Annelids	9	20	1	4	
Arthropods	25	57	6	13	
Echinoderms	6	10	2	4	

- Trellis Graphs: Display a variable or the relationship between variables, conditioned on one or more other variables.
 - Three continuous variables *-log(Concentration)*, *Outcome* and *Oxygen level*.
 - What is the relationship between *-log(Concentration)* and *Outcome*, conditioned on *Oxygen level*? In other words, how does the relationship between *-log(Concentration)* and *Outcome* change over different *Oxygen level*?
 - Plot -log(Concentration) against Outcome first.
 - Break Oxygen level into ordinal groups. e.g. Divide Oxygen level into 12 equally spaced interval.

Kai Xiong Data Exploration using R 36/47

- Iris flower data set
- Four continuous measure on Petal Length, Petal Width, Sepal Length and Sepal Width.
- One nominal variable, Species.
- Suppose we are interested in the relationship between Petal Length and Petal Width, and how such relationship changes for different species.
 - Plot Petal Length against Petal Width.
 - Use different plotting character/color to represent different species.

More Than Three Variables Pairs Plot

Kai Xiong

Data Exploration using R

42/47

More Than Three Variables

More Than Three Variables

- Suppose a dataset has *n* observations (rows) and *p* variables (columns).
- The *n* observations lie in a *p* dimensional space.
- To visualise the data, we apply some mathematical procedures to reduce the dimensionality of the data cloud, optimally into two dimensions.
 - **1** Throw away some/lots of variances/information, TANSTAAFL.
 - Plot the reduced data into a two/three dimensional graphs, and visualise the MAIN components of variance.

Kai.

http://www.stat.auckland.ac.nz/~kxio001.

Paul Murrell.

R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 2005.

