
GENERATING SYNTHETIC UNIT-RECORD
DATA FROM PUBLISHED MARGINAL TABLES

Alan Lee

Department of Statistics, University of Auckland
Private Bag 92019, Auckland, New Zealand

email: lee@stat.auckland.ac.nz

SUMMARY. We survey methods for generating synthetic data sets without mak-
ing use of unit-record data. The methods we describe are based on creating
data sets which match publically available marginal tables. We describe a
set of R functions which implement the methods under study, and apply the
methods to data from the 2001 Census of Population and Dwellings.

KEY WORDS: Contingency tables, marginal tables, log-linear models, maximum likelihood,
iterated proportional fitting, integer programming.

Printed: May 4, 2007

1

Contents

1 INTRODUCTION 4
1.1 The integer programming (IP) approach 5

1.1.1 Constraints . 7
1.1.2 Scaling up . 8

1.2 The iterative proportional fitting approach 9
1.3 Organisation of the report . 9

2 THEORY 11
2.1 Contingency tables . 11

2.1.1 Marginal tables . 11
2.2 Log-linear models . 12

2.2.1 The general case . 13
2.2.2 Estimation . 14
2.2.3 The IPF algorithm . 15
2.2.4 Generating constraints . 16

2.3 Integer programming . 17
2.4 Modifying solutions . 20

2.4.1 Lattice bases . 21
2.4.2 Markov bases . 22
2.4.3 Constructing a Markov basis . 23
2.4.4 Quadratic programming . 25

2.5 Limitations . 26

3 DATA STRUCTURES, ALGORITHMS
AND SOFTWARE 28
3.1 Data Structures . 28

3.1.1 Arrays . 28
3.1.2 Data frames . 29
3.1.3 Standard form . 30
3.1.4 Converting between formats . 30

3.2 Integer programming implementations . 30
3.2.1 The R implementation . 30
3.2.2 The SAS implementation . 35
3.2.3 The CPLEX implementation . 37

3.3 Iterated proportional fitting . 39
3.4 Harmonising tables . 40

4 APPLICATION TO CENSUS DATA 44
4.1 Factors, tables and margins . 44
4.2 Generating census data sets . 50

4.2.1 Group 1 margins . 50
4.2.2 Group 2 margins . 51
4.2.3 Group 3 margins . 51

2

5 SUMMARY AND CONCLUSIONS 52

REFERENCES 53

A APPENDICES 54
A.1 Description of the R functions . 54
A.2 Installation of the R functions . 69

A.2.1 Three versions . 69
A.2.2 The Windows version . 69
A.2.3 The non-CPLEX Linux version . 69
A.2.4 The CPLEX Linux version . 69

A.3 R function listings . 71
A.4 Fortran and C code listings . 103

3

1 INTRODUCTION

Recently there has been an increased interest in issues concerning confidentiality of data.
Statistical agencies are often required by law or policy to protect the confidentiality of
the information they collect from individuals, businesses or other organisations. Much
survey and census data is categorical in nature and often statistical agencies report the
results in the form of marginal cross-classification tables of counts by aggregating over
different categories. In such tables of counts, the occurrence of small values is usually
taken to present the possibility of a disclosure risk, since data for individuals who are
unique in the population may be used in matching against other databases by an intruder
or data snooper. In order to reduce the likelihood of this, statistical agencies often employ
disclosure limitation methods minimize information loss while keeping small the disclosure
risk from different data snoopers. Considerable effort has gone into developing disclosure
limitation methods for tabular data that effectively lower disclosure risk. These techniques
include cell suppression, global recoding, rounding, and various forms of perturbation.

This project starts from a slightly different perspective. As discussed above, data
collected by statistical agencies is usually published in the form of marginal tables and the
original unit-record data are not publically available due to confidentiality requirements.
However, in some circumstances marginal tables are not sufficient, but a synthetic data
set matching the original in key respects may suffice. For example, unit-record data may
be required for educational purposes and as test data for software development projects.
Completely fictitious data could be used, but it is desirable that the unit-record data be
plausible in the sense that the marginal tables derived from the synthetic data match,
either exactly or approximately, the published marginal tables.

In other words, in many cases what we require is a synthetic data set which has the
same marginal totals for specified margins as the original one. This data set can be
conveniently represented as a complete cross-classification of all the variables of interest.
Put this way, the problem reduces to finding a complete table whose margins match
specified margins from the original, confidential complete table.

In this report, we describe two complementary approaches to this problem. First, we
address the problem of finding a joint table whose margins match specified published mar-
gins exactly. This approach uses integer programming techniques, where the marginal
tables are used to form linear constraints. This approach works well for moderate size
tables, but cannot handle very large problems due to the inability of current integer
programming software to deal with the associated time and memory demands.

The second approach is to find a table whose margins match specified published tables
approximately. This approach is feasible for much larger tables, and relies on the theory
of hierarchical log-linear models, iterative proportional fitting and simulation.

In this report, we do not address the interesting question of when a synthetic data
set can be used as if the data were genuine, and when such an approach will permit
valid inferences. To do this, we must have a genuine unit-record data set available.
In this project, we do not assume we have such a data set; we work solely with sets
of marginal tables that have been publicly released. Likewise, we do not address the
interesting question of which marginal tables can be released without compromising the

4

confidentiality of the unit-record data. For a discussion of this, see Dobra and Fienberg
(2000).

1.1 The integer programming (IP) approach

The following simple example illustrates the IP approach.

Example 1. Consider the following toy example from Agresti (2002, p 332) on alcohol,
cigarette and marijuana use among US high school students. 2276 high school students
were asked if they had ever used alcohol, cigarettes or marijuana. This resulted in a data
set with 3 variables:

A: Alcohol ever used (Y/N)

C: Cigarettes ever used (Y/N)

M: Marijuana ever used (Y/N)

The data generate the 3-dimensional contingency table shown in Table 1, which we can
take as a representation of the unit-record data.

Table 1: Alcohol, cigarette and marijuana use by US high school seniors.

Cigarette Use
Marijuana Alcohol Yes No
Yes Yes 911 44

No 3 2

No Yes 538 456
No 43 279

Table 2: Marginal tables for the ACM data.

M C
Yes No Yes No

A Yes 955 994 A Yes 1449 500
No 5 322 No 46 281

M
Yes No

C Yes 914 581
No 46 735

Suppose we are given the three marginal tables shown in Table 2. Can we recover
a table that matches these margins? We can represent a generic 2 × 2 × 2 table by a

5

Table 3: A generic 2 × 2 × 2 table.

Cigarette Use
Marijuana Alcohol Yes No
Yes Yes x1 x3

No x2 x4

No Yes x5 x7

No x6 x8

vector x = (x1, . . . , x8) of non-negative integers (cell counts) as shown in Table 3: The
requirement that this complete table have identical margins to that of the original table
gives the constraints

x1 + x2 = 914 x1 + x5 = 1449 x1 + x3 = 955

x3 + x4 = 46 x2 + x6 = 46 x2 + x4 = 5

x5 + x6 = 581 x3 + x7 = 500 x5 + x7 = 994

x7 + x8 = 735 x4 + x8 = 281 x6 + x8 = 322

where the solutions are non-negative integers. A quick and dirty solution is to embed this
problem in an integer programming problem, e.g. maximize x1 + · · · + x8 subject to the
constraints. All we want is a feasible solution. In actual fact the objective function has
only one value as it is fixed by the constraints.

For example, in SAS, the following code does the job:

data test;

input id $ x1-x8 _type_ $ _rhs_;

datalines;

obj 1 1 1 1 1 1 1 1 max .

con1 1 1 0 0 0 0 0 0 eq 914

con2 0 0 1 1 0 0 0 0 eq 46

con3 0 0 0 0 1 1 0 0 eq 581

con4 0 0 0 0 0 0 1 1 eq 735

con5 1 0 0 0 1 0 0 0 eq 1449

con6 0 1 0 0 0 1 0 0 eq 46

con7 0 0 1 0 0 0 1 0 eq 500

con8 0 0 0 1 0 0 0 1 eq 281

con9 1 0 1 0 0 0 0 0 eq 955

con10 0 1 0 1 0 0 0 0 eq 5

con11 0 0 0 0 1 0 1 0 eq 994

con12 0 0 0 0 0 1 0 1 eq 322

upper 1500 1500 1500 1500 1500 1500 1500 1500 upperbd .

type 1 1 1 1 1 1 1 1 integer .

6

run;

proc lp;

run;

This results in the solution shown in Table 4.

Table 4: Solutions to the IP.

Original SAS
911 909

3 5
44 46
2 0

538 540
43 41

456 454
279 281

1.1.1 Constraints

To every set of marginal tables, there corresponds a hierarchical log-linear model1 of the
form log(μ) = Xα for the complete table, where μ is the vector of cell means. The
marginal tables correspond to the maximal terms in the hierarchical model, so that
for example, the three 2-dimensional margins in our example correspond to the model
[AC][AM][CM].

Using the “treatment” parametrization in R, we prove in Section 2.2 that the constraint
matrix A is just the transpose of the “model matrix” X corresponding to the model

counts ~ A*C + A*M + C*M.

Using this idea, we can compute a solution using the R package lpSolve with the code
(Note the R prompts “>”)

> ACM = data.frame(counts=c(911, 3, 44, 2, 538, 43, 456, 279),

expand.grid(A=c("Yes","No"), C=c("Yes","No"), M=c("Yes","No")))

> A = t(model.matrix(counts ~ A*C + C*M + A*M, data=ACM))

> library(lpSolve)

> b = A%*%ACM$counts

> lp.soln = lp (direction = "min", rep(1,8), A,

rep("=",7), b, transpose.constraints = TRUE, int.vec=1:8)

> cbind(ACM$counts, lp.soln$solution)

[,1] [,2]

[1,] 911 914

1Log-linear models are discussed in more detail in Section 2.2.

7

[2,] 3 0

[3,] 44 41

[4,] 2 5

[5,] 538 535

[6,] 43 46

[7,] 456 459

[8,] 279 276

Note that A has 7 rows, corresponding to 7 constraints, so that the 5 redundant constraints
have been eliminated. In this example, there are 6 solutions which can be found as follows:
Note that x2 +x4 = 5, so that the only possible solutions for x2 are are 0,1,2,3,4,5. There
are 7 constraints and 8 variables, so that fixing any one variable determines the others.
All these solutions are feasible, they are

Soln 1 Soln 2 Soln 3 Soln 4 Soln 5 Soln 6
x1 914 913 912 911 910 909
x2 0 1 2 3 4 5
x3 41 42 43 44 45 46
x4 5 4 3 2 1 0
x5 535 536 537 538 539 540
x6 46 45 44 43 42 41
x7 459 458 457 456 455 454
x8 276 277 278 279 280 281

1.1.2 Scaling up

This example suggests representing the entries of a general table by variables x1 . . . , xn

(there will be many of these in a real example, but only 8 above) and finding a solution
to a linear equation of the form

Ax = b

where the elements of the vector b are the entries in the marginal tables. The elements
of the solution x must be non-negative integers. This is straightforward in such a simple
example, but several questions arise for more realistic problems, for example

• How can we automate construction of constraints, so that redundant equations are
eliminated?

• Integer programming is computationally difficult, what are the practical limits on
problem size?

• What algorithms should be used?

• Which solution to choose?

• Census tables are subject to base-3 rounding, so that the members of a set of
marginal tables will not be consistent with one another. How do we adjust the
tables to render them consistent?

8

1.2 The iterative proportional fitting approach

As noted previously, to each specified set of margins, there corresponds a unique hier-
archical log-linear model. To fit the model using the iterative proportional fitting (IPF)
algorithm (which we describe in more detail in Section 2.2.3), we need only the marginal
tables, as these are sufficient statistics for the problem. The result of the fitting process
is a set of estimated cell probabilities or cell means for the complete table. Using these,
we can generate random samples of arbitrary size from the corresponding multinomial or
Poisson distribution, or simply round the cell means. The following example illustrates
the idea.

Example 2. (The Agresti data again.) We can represent the data in R as the data frame
ACM :

> ACM

counts A C M

1 911 Yes Yes Yes

2 3 No Yes Yes

3 44 Yes No Yes

4 2 No No Yes

5 538 Yes Yes No

6 43 No Yes No

7 456 Yes No No

8 279 No No No

We can obtain the fitted cell probabilities using the IPF algorithm. Alternatively, since
in this case we actually know the complete data, we will cheat and use the standard R
glm software to fit the model corresponding to the three 2-dimensional marginal tables.
The following R code fits the model, calculates the fitted probabilities for each cell, and
generates 10 random samples of N = 2276 individuals from the probability distribution
corresponding to the fitted table.

> ACM.glm = glm(counts~A*C + A*M + C*M, data=ACM, family=poisson)

> fitted.means = predict(ACM.glm, type="response")

> N=sum(ACM$counts)

> fitted.probs = fitted.means/N

> rmultinom(10, N, fitted.probs)

The results of 10 samplings, together with the original data, are shown in Table 5.

1.3 Organisation of the report

The simple examples discussed above illustrate the methods we will use to construct
synthetic data sets that match a given set of margins. In the rest of the report, we discuss
the software and algorithms we require to solve problems of a more realistic size. In Section
2, we outline the relevant theory, beginning with a discussion of log-linear models. We
develop a general notation suitable for dealing with tables of arbitrary size, and discuss the
connections between log-linear models, marginal tables, constraint matrices and the IPF

9

Table 5: Ten samples from the ACM distribution

Sample
Actual 1 2 3 4 5 6 7 8 9 10

x1 911 912 914 935 946 909 932 914 899 937 913
x2 3 5 2 2 5 2 4 4 2 4 3
x3 44 65 55 37 49 54 33 32 40 39 44
x4 2 1 1 1 2 0 2 1 2 2 0
x5 538 561 536 529 484 567 504 546 518 558 573
x6 43 42 41 41 40 33 39 39 43 37 47
x7 456 447 454 447 465 443 450 456 468 435 432
x8 279 243 273 284 285 268 312 284 304 264 264

algorithm. We then go on to briefly outline the branch-and-bound algorithm for linear
programming, discuss how solutions can be modified, and how tables can be adjusted to
have compatible margins.

In Section 3, we describe the algorithms and software we use to generate our synthetic
data. We use the R statistical environment (R Development Core Team, 2005) for most
of our work, although other packages are used for the IP solutions. We work in a Linux
environment, although much of our software will also run under Windows. The programs
were developed under Red Hat Linux 4.0 Advanced Server, on a Dell Optiplex 745 with
4Gb of memory.

We begin by describing the data structures we use to represent tables, and then discuss
three implementations of the IP approach, using the freeware program lp solve, the
SAS system and finally the mathematical programming package CPLEX. Next, we give a
description of an IPF implementation, and then discuss R functions to harmonise tables
and modify IP solutions. We close with a description of the R functions used.

In Section 4, we describe a set of marginal tables from the 2001 Census of Population
and Dwellings, and show how they can be used to generate a variety of synthetic data
sets. Summary and conclusions are in Section 5, and more formal documentation of the
software appears in the Appendices.

10

2 THEORY

In this section we outline the theory that underpins our software, and develop a notation
suitable for discussing contingency tables of arbitrary size.

2.1 Contingency tables

Suppose we have a population of N individuals, on each of whom we make K categorical
measurements. Typical examples of such measurements or factors are age groups, em-
ployment status and so on. We denote these factors by A1, . . . , AK . The set of possible
categories for a factor is called the set of levels for that factor. Thus, the factor “Gender”
has levels (“Female”, “Male”), and the factor “Age group” has levels (0-4, 5-9, . . . , 80-84,
85+), or any other definition that might be appropriate. We assume that there are a
finite (typically small) number of levels for each factor. We denote the number of levels
of factor Ak by Ik. Thus, there are I = I1 × I2 × · · · Ik possible combinations of levels. A
typical combination of levels is denoted by i = (i1, . . . , iK).

The usual way to represent the data on these N individuals is by a contingency table,
an I1 × I2 ×· · · Ik array of counts, where the array element in position (i1, . . . , iK) or “cell
count”, is the number out of the N individuals that have A1 = i1, . . . , AK = iK . We use
the notation y[i1, . . . , ik] or more compactly y[i] to denote the cell count.

Note that the table depends on the order of the factors, and the ordering of the levels
of each factor. Given a fixed order of the factors, (which in this report will usually
be alphabetical), and a fixed ordering of the levels of each factor, we can arrange the
cell counts in a one-dimensional array or vector by stringing the counts out in reverse
lexigraphic order, where the leftmost index i1 varies most rapidly, followed by i2 and so
on. Thus if K = 2, I1 = 2, and I2 = 3, the ordering would be

y[1, 1], y[2, 1], y[1, 2], y[2, 2], y[1, 3], y[2, 3].

In some contexts the array representation is more convenient, and in others the vector
representation.

2.1.1 Marginal tables

Given a contingency table, we can form various marginal tables by summing over certain
indices. For example, suppose we have a 3-dimensional table with three factors, say age
group, employment status and gender. We can form the marginal age group × employ-
ment status table by summing over the index corresponding to gender. The marginal
table has counts

yM [i1, i2] =
∑

i3=1,...,I3

y[i1, i2, i3].

In a similar manner, we can form the gender × employment status table by summing
over age group, and the age group × employment status table by summing over gender.
We also have one-dimensional tables: the gender table is formed by summing over age
group and employment status, and so on. We can also regard the table grand total as

11

a“null margin” formed by summing over all the factors. It is clear that to every subset S
of {1, . . . , K} there corresponds a marginal table formed by summing over all the indices
not in S. Thus, there are 2K possible marginal tables, including the original table and
the table total.

2.2 Log-linear models

In contingency table work, a common assumption is to regard every count in the table as
the realization of a Poisson random variable with a given mean μ. A model for the table
is a formula which specifies the mean μ as a function of the factor levels corresponding
to each cell. We write μ as μ[i1, . . . , iK] to emphasise the dependence on the factor
levels. Since the Poisson means are necessarily positive this constraint is neatly handled
by specifying the log of the mean. Such models, giving the form of log μ[i1, . . . , iK], are
called log-linear models. Excellent discussions of these models are to be found in Agresti
(2002) and Christensen (1997).

We now describe a useful class of log-linear models that correspond in a natural way
to classes of marginal tables. We begin by considering the case where the table is two-
dimensional, so that we have K = 2 and two factors A1 and A2. Put λ[i1, i2] = log μ[i1, i2],
and define four sets of parameters as follows.

The “constant term” : this is α0 = λ[1, 1].

The “A1 main effects” : There are I1 of these, defined by α1[i1] = λ[i1, 1] − λ[1, 1],
i1 = 1, 2, . . . , I1. Note that necessarily α1[i1] = 0 by definition.

The “A2 main effects” : There are I2 of these, defined by α2[i2] = λ[1, i2] − λ[1, 1],
i2 = 1, 2, . . . , I2. Again, α2[1] = 0 by definition.

The “A1A2 interactions” : There are I1× I2 of these, defined by α12[i1, i2] = λ[i1, i2]−
λ[i1, 1] − λ[1, i2] − λ[1, 1], i1, i2 = 1, 2, . . . , I2. Note that α12[i1, i2] = 0 if either of i1
or i2 is 1.

In terms of these quantities, we can write

λ[i1, i2] = α0 + α1[i1] + α2[i2] + α12[i1, i2].

Note that this parametrization puts no restrictions on the means μ[i1, i2]: we have simply
expressed the I1×I2 means in terms of I1×I2 non-zero new parameters (1 constant term,
(I1−1) non-zero A1 main effects, (I2 −1) A2 main effects, and (I1−1)× (I2−1) non-zero
A1A2 interactions. By arranging the constant terms, main effects and interactions into a
vector α, we can write

log μ = Xα, (1)

where X is the model matrix.

By setting the elements of α corresponding to the interactions to zero, we obtain a
new, restricted model for the cell means.

12

2.2.1 The general case

Suppose now we have a K-dimensional table, obtained by classifying the individuals in
the population according to K criteria A1, . . . , AK . For l = 1, . . . , K and j = 2, .., Il,
define a “dummy variable” D

(l)
j by

D
(l)
j [i1, . . . , iK] =

{
1, if il = j;
0, otherwise.

For a subset {l1, . . . , lr} of {1, . . . , K}, let Xl1,...,lr be the matrix whose I1 × I2 × · · · × IK

rows correspond to the different factor level combinations (i1, . . . , iK), and whose columns
are of the form

D
(l1)
j1

× D
(l2)
j2

· · · × D
(lr)
jr

, 2 ≤ j1 ≤ Il1 , . . . , 2 ≤ jr ≤ Ilr ,

where × denotes elementwise multiplication. Then put

X =
[
1|X1| · · · |XK |X12| · · · |X(K−1),K | · · · |X1,...,K

]
.

Thus, for example when K = 3,

X =
[
1|X1|X2|X3|X12|X13|X23|X123

]
,

where 1 is a column of ones. We can show that the matrix X is square, non-singular and
has I1 × I2 × · · · × IK rows and columns, so that there is a vector α such that

log μ = Xα. (2)

We call X the saturated model matrix.

If we partition the vector α conformably with X, we obtain subvectors αl1,...,lr cor-
responding to the submatrices Xl1,...,lr . We call the elements of αl1,...,lr the Al1Al1 · · ·Alr

interactions. By setting various of the subvectors αl1,...,lr equal to zero, we get various
constrained sets of cell means. We can think of a particular model M as being specified
by a particular set of non-zero interactions. The model matrix for the model M is the
matrix XM obtained by deleting the blocks corresponding to the zero interactions from
the saturated model matrix X. Thus, the cell means specified by our model M are given
by

log(μ) = XMαM, (3)

where αM is α with the zero interactions deleted.

Example 3. Consider the case K = 2, I1 = 2, I2 = 3. Then the dummy variables are

cell D
(1)
2 D

(2)
2 D

(2)
3

11 0 0 0
21 1 0 0
12 0 1 0
22 1 1 0
13 0 0 1
23 1 0 1

13

and the matrix X is

1 D
(1)
2 D

(2)
2 D

(2)
3 D

(1)
2 D

(2)
2 D

(1)
2 D

(2)
3

1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 1 1 0 1 0
1 0 0 1 0 0
1 1 0 1 0 1

,

where the blocks in the matrix correspond to the partition α0, α1, α2, α12 of α into
constant term, A1 main effects, A2 main effects, and A1A2 interactions.

We will assume that the log-linear models we consider are hierarchical, in the sense
that if αl1,...,lr is non-zero, so is the α corresponding to any subset of {l1, . . . , lr}. Thus,
if in a hierarchical model α12 is non-zero, then α1 and α2 must be non-zero as well. A
model for which all the αl1,...,lr ’s are non-zero is called the saturated model, and the model
for which all the αl1,...,lr ’s are zero (except for the constant term) is called the null model.
The saturated model puts no restrictions on the cell means, but all other models do.

Since we are assuming that our models are hierarchical, we do not need to specify all
the non-zero interactions, but only the maximal ones. Thus, if a hierarchical model has an
A1A2A3 interaction, we don’t need to explicitly list the A1A2, A1A3 and A2A3 interactions,
they are included implicitly. Thus, we can specify our models compactly by listing only
these maximal interactions. In this report, we adopt the notation used by the R statistical
system where, for example, the saturated model for 3 factors, with maximal interaction
A1A2A3, is written A1 ∗ A2 ∗ A3, and the model with the A1A2A3 interactions zero, with
maximal interactions A1A2, A1A3 and A2A3, is written A1 ∗ A2 + A1 ∗ A3 + A2 ∗ A3. An
alternative notation often used in textbooks, is the “square bracket” notation. Using this,
the saturated model is written [A1A2A3] and the model with the zero 3-factor interaction
is written [A1A2][A1A3][A2A3].

2.2.2 Estimation

To estimate the parameters of a model from a complete table, we use the method of
maximum likelihood. Let i = (i1, . . . , iK) denote a typical cell. The cell count is y[i] and
the cell mean is μ[i] = exp(λ[i]), where λ[i] = XM[i]T αM, and XM[i]T is the row of XM
corresponding to cell i. The log-likelihood is

l =
∑

i

y[i] log μ[i] − μ[i]

=
∑

i

y[i]λ[i] − exp(λ[i]).

To estimate the parameters, we must maximize l as a function of αM. Consider a typical
element a of αM, corresponding to a column Dl1

j1
· · ·Dlr

jr
of XM. Then, since λ[i] =

XM[i]T αM, we get
∂λ[i]

∂a
= Dl1

j1
[i] · · ·Dlr

jr
[i]

14

so that

∂l

∂a
=

∑
i

∂l

∂λ[i]

∂λ[i]

∂a

=
∑

i

(y[i] − exp(λ[i]))Dl1
j1

[i] · · ·Dlr
jr

[i]

so that at the maximum we get∑
i

y[i]Dl1
j1

[i] · · ·Dlr
jr

[i] =
∑

i

μ[i]Dl1
j1

[i] · · ·Dlr
jr

[i]. (4)

The expression on the left is just ∑
il1=j1,...,ilr=jr

y[i],

which is the j1, . . . , jr entry in the marginal table for Al1 , . . . , Alr . It follows that to
estimate the parameters, we don’t require the original complete table of counts, but only
the marginal tables corresponding to the non-zero interactions in the model. Thus, for
example, to fit the model A1 ∗ A2 + A1 ∗ A3 + A2 ∗ A3, we require only the A1A2, A1A3

and A2A3 marginal tables. We can then obtain the fitted mean counts for each cell of the
complete table by solving the equations (4).

Turning this around, given a set of margins, we can calculate the set of fitted cell means
for the model for which the interactions corresponding to the margins are non-zero. Thus,
if we have the A1A2, A1A3 and A2A3 margins, we can fit the model A1∗A2+A1∗A3+A2∗A3.

The standard statistical algorithm for solving the equations (4) is known as iterated
proportional fitting or IPF, and was invented in the 1940’s by Deming and Stephan. We
describe the algorithm briefly in the next subsection.

2.2.3 The IPF algorithm

The IPF is a simple but effective algorithm, which allows us to compute the fitted cell
means corresponding to a given set of marginal tables, without having to compute the
maximum likelihood estimates of α. It was introduced by Deming and Stephan (1940) and
has been adapted to many other uses besides the fitting of log-linear models to contingency
tables. The algorithm is as follows:

Step 1: Set μ[i] = 1 for each cell i.

Step 2: For each margin in turn, update the μ[i]’s by adjusting them so that the marginal
table of fitted means matches the marginal table of cell counts. i.e. for the l1, . . . , lr
margin, update the μ[i]’s using the equation

μNEW [i] = μOLD[i] × yl1,...,lr [il1 , . . . , ilr]

μOLD
l1,...,lr

[il1 , . . . , ilr]
.

Here, yl1,...,lr [il1 , . . . , ilr] is the il1 , . . . , ilr entry in the l1, . . . , lr-margin of counts, and
μOLD

l1,...,lr
[il1 , . . . , ilr] is the corresponding entry in the l1, . . . , lr-margin of fitted mean

counts.

15

Step 3: Repeat Step 2 until the process converges.

Example 4. For K = 3, to fit the model A1 ∗ A2 + A1 ∗ A3 + A2 ∗ A3, step 2 takes the
form:

Step 2a: Adjust the means to match the A1A2 margin by

μNEW [i1, i2, i3] = μOLD[i1, i2, i3] × y1,2[i1, i2]

μOLD
1,2 [i1, i2]

,

where y1,2[i1, i2] =
∑

i3
y[i1, i2, i3].

Step 2b: Adjust the means to match the A1A3 margin by

μNEW [i1, i2, i3] = μOLD[i1, i2, i3] × y1,3[i1, i3]

μOLD
1,3 [i1, i3]

.

Step 2c: Adjust the means to match the A2A3 margin by

μNEW [i1, i2, i3] = μOLD[i1, i2, i3] × y2,3[i2, i3]

μOLD
2,3 [i2, i3]

.

The algorithm converges reasonably quickly. The log-likelihood is increased at each step.
An R implementation of the algorithm is described in Section 3.3.

2.2.4 Generating constraints

Given a set of margins, how can we calculate the constraint matrix A that relates the
elements of the complete table to the elements of the given marginal tables? We will
describe an algorithm that draws on the log-linear model theory discussed in Section 2.2.
First, as described above, we identify a log-linear model with the given set of margins,
with a set of maximal interactions in the model corresponding to the given margins. Now
consider the blocks in the model matrix. The first block is the column of 1’s corresponding
to the constant term. The next is the submatrix XA1 corresponding to the (I1 − 1) A1

main effects, followed by the submatrix XA2 corresponding to the (I2−1) A2 main effects
and so on.

We identify the columns of the model matrix with entries in the marginal tables as
follows. First, the constant term is identified with the grand total. Second, the (I1 − 1)
columns of XA2 correspond to the 2, 3, . . . I1 elements of the A1 marginal table. We make
similar identifications for the other main effects. Similarly, we identify the (I1−1)(I2 −1)
columns of XA1:A:2 with the entries y12[j1, j2] of the A1A2 marginal table with 2 ≤ j1 ≤ I1,
2 ≤ j2 ≤ I2. In general, the column of X with elements

D
(l1)
j1

[i] × D
(l1)
j1

[i] · · · × D
(lr)[i]
jr

corresponds to the j1, . . . , jr element of the Al1 , . . . , Alr marginal table. The equation
relating this marginal element to the full table is∑

i

D
(l1)
j1

[i] · · ·D(lr)
jr

[i] y[i] = yl1,...,lr [j1, . . . , jr],

16

representing a typical row of the matrix equation Ay = b. But

D
(l1)
j1

[i] · · ·D(lr)
jr

[i]

is the element of the model matrix in row i and column (j1, . . . , jr) of the (l1, . . . , lr) block
of X. It follows that the constraint matrix is the transpose of the model matrix.

This suggests that we can generate the constraint matrix by using available software
that allows us to extract the model matrix from a log-linear model fit. The function
model.matrix in R is an example of such a piece of software. Alternatively, we can
generate the constraint matrix directly from the definition of the model matrix by forming
the dummy variables and multiplying them together. The following algorithm does the
job:

Step 1: Given a set of marginal tables, identify each table with a subset of {1, . . . , K},
by identifying the Al1 , . . . , Alr margin with the set L = {l1, . . . , lr}. The grand total
is identified with the empty set.

Step 2: Write down a list of these subsets, and all subsets of these subsets.

Step 3: Eliminate duplicates from the list.

Step 4: For each set {l1, . . . , lr} in the list, and each set of indices {j1, . . . jr} with 2 ≤
j1 ≤ Il1 , 2 ≤ j2 ≤ Il2 , · · · , 2 ≤ jr ≤ Ilr , create a row of the constraint matrix by

forming the products D
(l1)
j1

[i] · · ·D(lr)
jr

[i]. Add this row to the constraint matrix.

An R function to implement this algorithm is described in Section 3.2.3.

2.3 Integer programming

In this section we describe the “branch and bound” algorithm that is used by most
commercial IP codes to solve the integer program

maximize cT x

subject to
Ax = b, x ≥ 0, x integral.

A trivial modification of this can be used to find a non-negative integral solution to the
linear equations Ax = b. An excellent discussion of this method may be found in Wolsey
(1998).

Before describing the algorithm, we introduce the idea of the “LP relaxation”. Suppose
we want to solve the problem

maximize cT x

subject to
Ax = b, x ≥ 0.

This is the same problem as before, except that the requirement that the solution be
integral has been dropped. This modified problem is called the LP relaxation of the

17

original problem. It is much easier to solve, as there are efficient algorithms such as the
simplex method available. It is tempting to suggest finding an approximate solution to the
IP by solving the LP relaxation and rounding the result. However, this is not satisfactory,
as the LP sulition may be very different from the IP solution, and in any event will not
in general satisfy the constraints. Neverthe less, the idea of LP relaxation is very useful,
and is the basis of the branch and bound algorithm which we now describe.

The branch and bound algorithm proceeds by recursively constructing a “solution
set tree” where the current set of feasible solutions is successively divided in two. The
algorithm proceeds as follows:

Step 1: At the first stage, the tree consists of a root node, which is the set of feasible
solutions {x : Ax = b, x ≥ 0, x integral}. Call this the current node; at this stage
there is only one active node, namely the current one. Take the vector c to be any
row of A.

Step 2: We solve the LP relaxation of the problem represented by the current node,
which solves the linear program

maximize cT x

subject to the constraints associated with the current node (but ignoring the require-
ment that the solution be integral). If the solution to the LP relaxation happens to
be integral, we are done: we have found an integral solution. If there is no feasible
solution, we remove the current node from the list of active nodes and retrace our
steps up the tree to the first active node. This then becomes the current node. If
there is no active node, we are done, as there can be no feasible solution to the IP
problem in this case.

Step 3: If neither of these outcomes occur, there will be a non-integer variable in the
solution say xr = xr

∗. We then split the problem into two sub-problems: The first
is formed by adding an extra constraint of the form xr ≤ [xr

∗], resulting in a new
solution set S1 = {x : Ax = b, x ≥ 0, x ≤ [xr

∗], x integral} and the second by adding
the constraint xr ≥ [x∗

r] + 1, resulting in a solution set S1 = {x : Ax = b, x ≥
0, x ≥ [xr

∗] + 1, x integral}. (We have used the notation [x] to mean the greatest
integer ≤ x.) The node corresponding to S1 becomes the current node, and that
corresponding to S2 is added to the list of active nodes. The splitting is shown in
Figure 1.

Step 4: We keep repeating Steps 2 and 3, until no feasible solution can be found, or an
integral solution is found.

If the constraint vector c is a row of A, the branch and bound algorithm for solving
the IP implicitly limplements the algorithm described above, as it will terminate as soon
as a feasible solution is found.

18

Figure 1: The branch and bound tree.

S1

S

S2

xr xr
*] xr xr

*] +1

Example 5. To find a non-negative integral solution to

⎡
⎣ 2 −2 0 0 1

0 1 0 1 0
7 −1 1 0 0

⎤
⎦

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣ 3

3
14

⎤
⎦ ,

we first solve the LP relaxation, maximizing 2x1 − 2x2 +x5. The solution is (2.2, 0.7, 0.0,
2.3, 0.0). We split on x1, add the constraint x1 ≤ 2 to the problem, and solve the LP
relaxation under the constraints Ax = b, x1 ≥ 2, x ≥ 0. This gives the solution (2, 0.5,
0, 2.5, 1). Finally, splitting on x4, we add the constraint x4 ≤ 2 to the problem, solve the
resulting LP relaxation, and obtain the solution (2, 1, 1, 2, 2). Since this is integral, we
are done. The solution set tree for the sequence of splits is shown in Figure 2.

Example 6. Suppose we have the contingency table

A2

1 2 3 Total
A1 1 x1 x2 x3 14

2 x4 x5 x6 8
Total 8 4 10 22

which gives rise to the equations

⎡
⎢⎢⎣

1 1 1 1 1 1
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

22
8
4

10

⎤
⎥⎥⎦ .

To find a table matching the given margins, we must find a non-negative integral solution
to these equations. If we solve the LP relaxation, maximizing x1 +x2 + x3 + x4 +x5 + x6,

19

Figure 2: The branch and bound tree for Example 5.

S1

S

S2

x1 x1

S11 S12

x4 x4

we obtain the solution (0, 4, 10, 8, 0, 0) which is integral. In this case the algorithm finds
the solution after one iteration.

For small problems, this is not a coincidence. From LP theory, the solution (after
some reordering of the variables) of the LP relaxation is of the form x = (B−1b, 0), where
B is a non-singular submatrix of A. Since b has integer elements, x will be integral if the
elements of B−1 are integers. By Cramer’s rule, this will happen if the determinant of B
is ±1. In the present case, this is the case for all the non-singular submatrices B of A.
In fact, for the types of constraint matrix arising from contingency tables, this tends to
happen rather often, at least for small tables.

The form of the LP solution indicates that the solutions to the IP will have a fair
number of zero elements, unless the tree gets very large. (In fact the number of zeros
is the dimension of x minus the number of constraints, so unless the number of added
constraints gets large, the solution will have a lot of zeroes.)

In practice, tables arising from classifying individuals according to a large number
of factors will tend to be sparse, with many zero cells. In addition, there are usually a
number of cells with very small cell counts. However, the tables constructed using the
integer programming method described above tend to have too few cells with small but
positive cell counts, so often don’t appear very plausible. It seems desirable to modify
them to rectify this problem. Next, we examine ways to do this.

2.4 Modifying solutions

In this section, we discuss three methods of modifying the solution obtained by the branch
and bound algorithm.

20

2.4.1 Lattice bases

Let A be the constraint matrix relating the complete table to a set of marginal tables,
and let x be a solution to Ax = b with non-negative integer elements. Consider the set of
all integral solutions to Ax = 0. (In mathematical terms, this set is a lattice). One way
of modifying a table is to repeatedly select an integral solution, say x∗, of the equations
Ax = 0, until x+x∗ has all non-negative elements. Then A(x+x∗) = Ax+Ax∗ = b+0 = b,
so x + x∗ is a new non-negative integer solution.

We need a way to generate integer solutions to Ax = 0. We now show how to construct
a matrix B with integer elements such that x = Bu is a solution for all integral vectors u.
The columns of B then form a lattice basis for the solution lattice. To find B, we permute
the columns of A (assumed to have r rows and c columns) until the first r columns form
a upper triangular matrix A1 with ones on the diagonal. (An induction argument shows
that is always possible.) This amounts to finding a permutation matrix2 P such that

AP = [A1|A2].

Suppose x∗ is a solution, and partition P Tx∗ conformably with A, so that

P T x∗ =

[
u
v

]
.

Then, since permutation matrices are orthogonal, we can write

Ax∗ = APP Tx∗

= [A1|A2]

[
u
v

]
= A1u + A2v.

Thus, A1u + A2v = 0, so u = −A−1
1 A2v and

P Tx∗ =

[−A−1
1 A2

I

]
v.

This implies that x∗ = Bv where

B = P

[−A−1
1 A2

I

]
.

Conversely, for any integer vector v, the vector x∗ = Bv is a solution, since

Ax∗ = APP Tx

= [A −| A2]

[−A−1
1 A2

I

]
v

= [A1(−A−1
1 A2 + A2]v

= 0.
2A permutation matrix has exactly one entry equal to 1 in each row and column, with the rest of the

entries zero. Post-multiplication by such a matrix permutes columns, and pre-multiplication permutes
rows.

21

Note that, by Cramer’s rule, A−1
1 must have integer elements since the determinant of A1

is 1.

Example 7. Consider the contingency table in Example 6, which has constraint matrix

A =

⎡
⎢⎢⎣

1 1 1 1 1 1
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎦

The table obtained by the IP algorithm was (0,4,10,8,0,0). To permute A into the correct
form, with the first four columns lower triangular, we postmultiply by

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

The matrix B is

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1
−1 0

0 −1
−1 −1

1 0
0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We picked the vectors v with elements v1, v2 randomly chosen from {-10, -9, . . . , 9, 10},
generated repeated solutions Bv, and retained those for which all elements of Bv + x∗

were positive. The first 5 solutions are shown in Table 6.

Table 6: Five modified tables for Example 7.

Soln 1 Soln 2 Soln 3 Soln 4 Soln 5
x1 9 6 2 5 8
x2 1 4 3 1 1
x3 1 4 8 5 2
x4 2 2 7 6 3
x5 6 6 1 2 5
x6 3 0 1 3 3

2.4.2 Markov bases

A set of integer solutions {x∗
1, . . . , x

∗
M} to the constraint equation Ax = 0 is called a

Markov basis if for any two solutions x and x′ to Ax = b, there is a subset l1, . . . , ls} of
{1, . . . , M} and constants ε1, . . . , εs all either ±1 such that

22

1. x = x′ +
∑s

j=1 εjx
∗
lj
, and

2. The elements of the vector x′ +
∑r

j=1 εjx
∗
lj

are non-negative for r = 1, 2, . . . s.

The idea is that given a basis, we can move between any two tables with the same fixed
margins by adding or subtracting an element of the basis. At each stage we can pick a
basis element so that the result remains non-negative, thus performing a “tour” through
the collection of tables with the specified margins.

Given a Markov basis, and a table with specified margins, we can make another table
with the same specified margins by repeatedly choosing an element of the basis at random,
and either adding to or subtracting from the original table (each with probability 0.5)
until we obtain a new table with all entries non-negative.

2.4.3 Constructing a Markov basis

To explain how this is done, we must venture briefly into the theory of polynomial ideals.
See Cox, Little and O’Shea (1996) for further background. Consider the set of polynomials
in n variables u1, . . . , un where n is the number of columns of A. A special type of
polynomial is the mononomial, which is a polynomial having a single term of the form
ux1

1 · · ·uxn
n where x1, . . . , xn are non-negative integers. We shall use the abbreviation ux

to mean the mononomial ux1
1 · · ·uxn

n .

More general polynomials can be obtained by adding one polynomial to another,
or multiplying polynomials by constants. Thus, polynomials are linear combinations of
mononomials. Polynomials can be added and multiplied, but in general one polynomial
cannot be divided by another. In algebraic terms, polynomials form a ring.

Important sets of polynomials are ideals. These are sets I of polynomials that are
closed under addition (i.e. if p1 and p2 are in I , so is p1 + p2) and have the property that
if p is in I and q is any polynomial, then the product pq is also in I.

Given a finite set of polynomials {p1, . . . pM}, we can form a bigger set

P =

{
M∑
i=1

piqi : q1, . . . , qM any polynomials

}
.

We call P the set generated by {p1, . . . pM}, and write

P = 〈p1, . . . pM〉.

The polynomials p1, . . . pM are called a basis for P, which is an ideal.

In a ring of polynomials, all ideals are finitely generated, in the sense that for any
ideal I there is a finite set of polynomials that generates I. (In other words, every ideal
has a finite basis; this is the Hilbert basis Theorem.) A particular finite basis of interest
is the Groebner basis; this has the property that a polynomial q is in the ideal if and only
if when q is divided by the elements of the Groebner basis, the remainder is zero. Given a
set of polynomials {p1, . . . pM}, there is a well-defined algorithm (Burbacher’s algorithm)
for calculating the Groebner basis of the ideal generated by {p1, . . . pM}. Implementations

23

of this algorithm may be found, for example, in the computer algebra packages Maple
and Mathematica.

Now consider two rings of polynomials: the first is the ring of polynomials in the
variables u1, . . . , un, and the second the ring of polynomials in the variables t1, . . . , tm,
where m and n are the numbers of rows and columns of A. We now define a function φ
between these two sets of polynomials. We first define φ for mononomials ux by

φ(ux) = tAx,

so that mononomials in u map onto mononomials in t. The mapping is extended to all
polynomials by

φ(p1 + p2) = φ(p1) + φ(p2)

and
φ(p1p2) = φ(p1)φ(p2)

for all polynomials p1, p2 in the variables u1, . . . , un. Now consider the kernel of this
mapping, the set of all polynomials that map onto zero. The kernel is an ideal. The
following result, due to Diaconis and Sturmfels (1998) gives a condition for a set of
solutions of Ax = 0 to be a Markov basis.

Theorem 1 For a solution x of Ax = 0, let x+ be x with all negative elements set to
0, and x− be the vector obtained by reversing the signs of the elements of x and then
setting the negative elements of the result to 0. Then a set of solutions {x1, . . . , xs} of
Ax = 0 is a Markov basis for the set of solutions if and only if the mononomial differences

{ux+
j − ux−

j : j = 1, 2, . . . , s} generates the kernel of φ.

Note that if x is a solution, then

φ(ux+ − ux−
) = φ(ux+ − φ(ux−

)

= tAx+ − tAx−

= 0

since
Ax+ − Ax− = A(x+ − x−) = Ax = 0.

Thus if x is a solution, the mononomial difference ux+ − ux−
is in the kernel of φ. In

fact, the reverse is also true: every polynomial in the kernel can be written as a linear
combination of mononomial differences ux+ − ux−

corresponding to solutions.

It turns out that the Groebner basis of the kernel of φ consists entirely of mononomial

differences ux+
j − ux−

j , j = 1, . . . , s and hence is a Markov basis. To find the Groebner
basis for the kernel, we use the following theorem, also due to Diaconis and Sturmfels:

Theorem 2 Consider the ring of polynomials in the variables t1, . . . , tm, u1, . . . , un,. Let
G be a Groebner basis for the ideal in this ring generated by the polynomials u1 − ta1 , u2 −
ta2 , . . . , un − tan , where a1, . . . , an are the first, second,. . . , nth columns of A. Delete from
G all polynomials that involve t. Then the resulting set is a Groebner basis for the kernel
of φ.

24

Thus, we have the following procedure for finding the Markov basis.

1. Using a suitable package, compute a Groebner basis for the ideal generated by
x1 − ta1 , x2 − ta2 , . . . , xn − tan .

2. Delete from the basis all polynomials involving t. What is left is a set of mononomial

differences ux+
j − ux−

j , j = 1, . . . , s

3. The resulting set of xj ’s form the Markov basis for the set of solutions to Ax = 0.

Example 8. Consider the contingency table introduced in Example 6. To find a Markov
basis for this problem, we first must calculate the Groebner basis for the ideal generated
by the polynomials x1 − ta1 , x2 − ta2 , . . . , xn − tan , which in this case take the form

x1 − t1, x2 − t1t3, x3 − t1t4, x4 − t1t1t2, x5 − t1t2t3, x6 − t1t2t4.

This can be done in Maple using the code

with(Groebner):

ideal:=[u1 - t1, u2-t1*t3, u3-t1*t4, u4-t1*t2, u5-t1*t2*t3, u6-t1*t2*t4];

gbasis(ideal, plex(t1,t2,t3,t4,u1,u2,u3,u4,u5,u6));

which produces the output

[-u3 u5 + u6 u2, -u3 u4 + u1 u6, -u2 u4 + u1 u5, -u6 + t4 u4, t4 u1 - u3,

t3 u6 - t4 u5, -u5 + t3 u4, t3 u3 - t4 u2, t3 u1 - u2, t2 u3 - u6,

-u5 + t2 u2, t2 u1 - u4, -u1 + t1]

Deleting the polynomials in t, we get the polynomials u2u6−u3u5, u1u6−u3u4, u1u5−u2u4.
The corresponding solutions are

x∗
1 = (0, 1,−1, 0,−1, 1),

x∗
2 = (1, 0,−1,−1, 0, 1),

x∗
3 = (1,−1, 0,−1, 1, 0).

Note that the last two of these coincide with the lattice basis.

Using the solution x∗ = (0, 4, 10, 8, 0, 0), we generated repeated solutions x∗±x′ where
x′ is one of x∗

1, x∗
2, x∗

3 chosen with equal probability, and the sign ± is also chosen with
equal probability, retaining those for which all elements of x∗±x′ were non-negative. The
first 5 solutions are shown in Table 7.

2.4.4 Quadratic programming

A quite different method for generating a solution without too many zeroes is to pick a
solution that is as close as possible to the fitted cell means produced by the IPF solution.
Suppose that the IPF solution is x∗, where x∗ satisfies Ax∗ = b, has non-negative elements,
but is not necessarily integral. Then we can seek a vector x that satisfies Ax = b, has

25

Table 7: Five modified tables for Example 8, using a Markov basis.

Soln 1 Soln 2 Soln 3 Soln 4 Soln 5
x1 1 1 1 1 1
x2 4 3 4 4 3
x3 9 10 9 9 10
x4 7 7 7 7 7
x5 0 1 0 0 1
x6 1 0 1 1 0

integer non-negative elements, and is as close as possible to x∗, in the sense that it
minimises ||x − x∗||2, the sum of squared differences between the elements of x and the
elements of x∗. This is a standard problem in integer quadratic programming: we want
to minimize ||x− x∗||2 subject to the constraints Ax = b, x ≥ 0, x integral.

Example 9. For the contingency table in Example 6, the IPF solution is

x∗ = (5.090909, 2.545455, 6.363636, 2.909091, 1.454545, 3.636364),

so that we need to minimise

(x1 − 5.090909)2 + (x2 − 2.545455)2 + (x3 − 6.363636)2 + (x4 − 2.909091)2

+ (x5 − 1.454545)2 + (x6 − 3.636364)2 (5)

where x = (x1, . . . , x6) is a solution of Ax = b. Using the lattice basis for this problem,
and the LP solution (0, 4, 10, 8, 0, 0), any integral solution to Ax = b must be of the form

x1 = u + v,

x2 = 4 − u,

x1 = 10 − v,

x1 = 8 − u − v,

x5 = u,

x6 = v,

where u and v are integers. The requirement that the elements of x are non-negative
implies that

4 ≥ u, 8 ≥ u + v, u ≥ 0, and v ≥ 0.

Minimising (5) by direct search over this region gives the solution (5, 3, 6, 3, 1, 4) corre-
sponding to u = 1, v = 4. (This is also the result of rounding the IPF solution, but this
in general won’t work.)

2.5 Limitations

The methods described in this section are satisfactory for small problems, but will strug-
gle with big problems. Integer programming (and particularly quadratic integer program-
ming) is very demanding of computer time and memory, as the branch and bound trees

26

can grow very large. The calculation of Groebner bases is likewise a difficult computa-
tional problem, although Diaconis and Sturmfels (1998) and Dobra (2003) discuss ways
to calculate these in special cases. In contrast, IPF works well for quite big tables, but
cannot of course find tables that exactly match the margins. In the next section, we will
apply the methods described in this section to more realistic problems to get a sense of
the limits of the IP approach.

27

3 DATA STRUCTURES, ALGORITHMS

AND SOFTWARE

In this section, we define the data structures used in our software, and discuss a set of R
functions which implement the methods described in Section 2. We apply these methods
to more realistic examples, and explore the limits of the IP and IPF approaches.

3.1 Data Structures

There are two data structures in R suitable for representing contingency tables, arrays and
data frames. We discuss each in turn, and then describe some R functions for converting
from one representation to the other.

3.1.1 Arrays

An array in R can have one or more dimensions, and is indexed by one or more subscripts,
one per dimension. Arrays can represent a table directly, as the cell count corresponding
to A1 at level i1, A2 at level i2, and AK at level iK , can be stored in the (i1, i2, . . . , ik)
position in the array. For example, the Agresti data can be stored in a 2× 2× 2 array y,
with the array element y[i1,i2,i3] storing the count of the (i1, i2, i3) cell.

Arrays are created in R using the array function. We need to supply several pieces
of information to this function. First, we must specify the list of factors, in some fixed
order, say alphabetical. Second, for each factor, we need to specify an ordered set of
factor levels. Finally, we need to supply the vector of cell counts. Given the order of the
factors and the ordering of the levels for each factor, we can establish a reverse lex order
for the cells. The cell counts must be supplied in this order.

The array function has three arguments. The first is the cell counts in the appropriate
order, as detailed above. The second is the vector of dimensions I1, . . . , IK . The third
encodes the factor name and level information, in the form of an R list. The following
example illustrates the procedure.

Example 10. Consider the Agresti example on substance abuse by US teenagers. There
are three factors, A, C, M, each of which has two levels, “Yes” and “No”. With the factors
in alphabetical order, and the levels in the order “Yes”, “No”, the counts in reverse lex
order are 911, 3, 44, 2, 538, 43, 46, 279. The following R code creates the array and prints
it:

> counts = c(911, 3, 44, 2, 538, 43, 456, 279)

> names.and.levels = list(A = c("Yes", "No"), C = c("Yes", "No"),

M = c("Yes", "No"))

> y = array(counts, c(2,2,2), dimnames=names.and.levels)

> y

, , M = Yes

C

A Yes No

28

Yes 911 44

No 3 2

, , M = No

C

A Yes No

Yes 538 456

No 43 279

Individual counts can be referred to:

> y[1,2,2]

[1] 456

Apart from the level information, all that needs to be stored is the vector of counts, which
has I1 × I2 × · · · × IK elements.

3.1.2 Data frames

A data frame is the standard data structure in R for storing data in traditional row
and column form, with rows storing data on individuals, and columns storing data on
variables. To represent a contingency table as a data frame, we let each row correspond
to a cell of the table. One variable, counts say, stores the cell counts, and there are a
further K variables storing the factor level combinations. Thus, each row of the data
frame has a cell count, plus the factor level combinations that identify the cell. For the
Agresti data, we have

counts A C M

1 911 Yes Yes Yes

2 3 No Yes Yes

3 44 Yes No Yes

4 2 No No Yes

5 538 Yes Yes No

6 43 No Yes No

7 456 Yes No No

8 279 No No No

Note the row labels. These can be changed; for example we could label the rows with the
factor level combinations:

counts A C M

111 911 Yes Yes Yes

211 3 No Yes Yes

121 44 Yes No Yes

221 2 No No Yes

112 538 Yes Yes No

29

212 43 No Yes No

122 456 Yes No No

222 279 No No No

Data frames are usually created by reading in the data from a text file. They can also
be created directly from the appropriately ordered vector of counts, using the R function
expand.grid. The following code does this.

> counts = c(911, 3, 44, 2, 538, 43, 46, 279)

> ACM = data.frame(counts=counts, expand.grid(A=c("Yes", "No"),

C = c("Yes", "No"), M = c("Yes", "No")),

row.names = c("111","211","121","221","112","212","122","222"))

In contrast to arrays, the identification of the factor levels with the counts is made ex-
plicitly. The advantage of this is that we do not need to include zero counts in the data
frame. This may result in substantial saving in space if the table is sparse. Unlike arrays,
there is no need to have any particular ordering of the rows.

3.1.3 Standard form

Not all data frames represent tables. However, if a data frame has a single count variable,
having non-negative integer values, and all the other variables are factors, then the data
frame corresponds to a unique table, up to the order of the factors. We will say a data
frame is in standard form if the count variable is the first variable, the factors are arranged
alphabetically, and the rows are in reverse lex order.

3.1.4 Converting between formats

We have provided some R functions to convert between data frames and arrays. To
convert a data frame into an array, we must restore the zero counts in the proper places.
To convert from an array into a data frame in standard form, we eliminate the zero counts.
There is also functions to test if a data frame represents a table, and to convert such a
data frame into a data frame in standard form. The functions are described in Table 8,
and are fully documented in Appendix A.1. There is also an R class “table”: and some
functions (is.table, as.table, as.data.frame) for converting. However, these do not
implement the idea of a standard table. Moreover, it is possible for arrays with negative
elements to be tables in the R sense, so we make no use of the R “table” class in this
report.

3.2 Integer programming implementations

3.2.1 The R implementation

The R implementation of an integer program solver is based on the freeware program
lp solve, originally developed by Michel Berkelaar at Eindhoven University of Technol-
ogy, and subsequently developed further by several contributors. The current version is
5.5.0.9, and is released under a GNU Lesser General Public Licence. The R interface is
by Micheal Berkelaar and Sam Buttrey, and is described in Buttrey (2005).

30

Table 8: R functions for converting between formats.

Function name Argument Purpose Returns
is.table.df Any R object Checks if argument is a data frame TRUE or FALSE

which represents a table
as.standard A data frame Checks if argument is a data frame A data frame

which represents a table. If so, in standard form.
converts it into a data frame
in standard form

table2df An array Checks an array is non-negative A data frame
and if so converts it into data frame in standard form
in standard form

df2table A data frame Checks if a data frame represents
a table and if so converts it An array
into an array

Like most packages, lp solve uses the branch and bound algorithm to solve the IP. It
is a sophisticated package, which can be used as a stand-alone program, or as a collection
of library routines which can be embedded in user-written software. In addition, lp solve

has interfaces to several other packages such as Matlab and AMPL as well as R. In this
respect, lp solve is similar to the commercial package CPLEX, which we describe more
fully below in Section 3.2.3. Since CPLEX appears to be more powerful than lp solve,
we do not discuss the generic lp solve package further. However, the implementation
using CPLEX described in Section 3.2.3 could also be recreated using lp solve if a non-
commercial alternative to CPLEX is desired.

The R implementation is particularly simple to use, and consists of a single function lp.
This is in the package lpSolve which must be loaded first. We need only supply the bare
minimum of information to lp to specify the problem; the vector c defining the objective
function cT x, the constraint matrix A, the right hand side vector b, the direction of the
constraints (in our case always “=”), and the requirement that all variables be integral.
The full calling sequence is (taken from the R help pages)

Usage:

lp (direction = "min", objective.in, const.mat, const.dir,

const.rhs, transpose.constraints = TRUE, int.vec,

presolve=0, compute.sens=0)

Arguments:

direction: Character string giving direction of optimization: “min” (default) or“max.”

objective.in: Numeric vector of coefficients of objective function

const.mat: Matrix of numeric constraint coefficients, one row per constraint, one column
per variable (unless transpose.constraints = FALSE; see below).

31

const.dir: Vector of character strings giving the direction of the constraint: each value
should be one of “<,” “<=,” “=,” “==,” “>,” or “>=.”

const.rhs: Vector of numeric values for the right-hand sides of the constraints.

transpose.constraints: By default each constraint occupies a row of const.mat, and
that matrix needs to be transposed before being passed to the optimizing code.
For very large constraint matrices it may be wiser to construct the constraints in a
matrix column-by-column. In that case set transpose.constraints to FALSE.

int.vec: Numeric vector giving the indices of variables that are required to be integer.
The length of this vector will therefore be the number of integer variables.

presolve: Numeric: presolve? Default 0 (no); any non-zero value means “yes.” Currently
ignored.

compute.sens: Numeric: compute sensitivity? Default 0 (no); any non-zero value means
“yes.”

Not all of these arguments need be set for our application. Generic code in our case is is

> library(lpSolve)

> stuff = lp ("max", objective.in = A[1,], A,

const.dir=rep("=",dim(A)[1]), b, int.vec=1:dim(A)[2])

assuming the constraint matrix A and the RHS vector b have already been defined.

The main drawbacks of this implementation are (i) There is no provision for tuning
the branch and bound algorithm to improve performance, and (ii) the constraint matrix
A must be specified in the form of an R matrix array. If A is sparse, as in our application,
this is wasteful of storage, and puts limitations on the size of problem that can be handled.
Still, for small to medium problems, it is an effective and simple method.

As noted in the Introduction and Section 2, since the constraint matrix A is the
transpose of the model matrix, we can use the R modelling software to compute the
constraint matrix. We have written an R function generate.data.lpSolve based on
the R modelling software and lpSolve to generate a data set matching a supplied set
of margins. The function accepts as input either multiple data frames containing the
margins, or a list of such data frames. The data frames need not be in standard form,
as the function coerces them into standard form if this is possible, and terminates if it is
not. The output is a data frame in standard form containing a complete table matching
the margins. The function calculates the constraint matrix A and the RHS vector of
marginal counts b and calls lpSolve to solve the resulting integer program. It is formally
documented in Appendix A.1. The following examples illustrate its use.

Example 11. For our first example, we explore the limits of the lpSolve approach by
generating a series of complete tables, calculating certain marginals, and running the
function generate.data.lpSolve to generate a matching complete table. The results
are shown in Table 9. We see from this table that the R approach is capable of solving
our problem for some small to moderate tables. We were unable to push this approach

32

Table 9: Results of running generate.data.lpSolve.

Numberof Dimensions Number Dimension Margins
factors (K) (I1, . . . , IK) of cells of A supplied

3 3,4,2 24 18 × 24 All 2-dim
5 3,4,2,4,6 576 189 × 576 All 2-dim
6 2,3,5,6,2,5 1800 1640 × 1800 All 5-dim
7 2,3,5,3,2,5,4 3600 3408 × 3600 All 6-dim
7 2,3,5,5,2,5,4 6000 5616 × 6000 All 6-dim

beyond tables having about 6000 cells, but a computer with more memory could no doubt
do better.

Example 12. Our next example is taken from the 2001 Census. Consider the following
three variables from the census, classifying the working age population (i.e. 15+):

AgeGroup: Age group, one of 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, ,50-54, ,55-
59, 60-64, 65+. (11 levels)

HoursWork: Hours worked per week, one of 1-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34,
35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75+, (16 levels)

Sex: gender, one of M or F. (2 levels)

The complete table has 11×16×2 = 352 cells. Suppose we have the three two-dimensional
marginal tables, in the form of comma-delimited csv files AgeGroup.HoursWork.csv,
AgeGroup.Sex.csv and HoursWork.Sex.csv. These csv files should be in a suitable
form with rows corresponding to cells and columns corresponding to variables, all but one
of which should be coded using alphabetic codes so that the variables will be recognised
as factors. The remaining variable should have non-negative numeric values, representing
the counts. In addition, there should be a header row giving the variable names. See
Section 4 for a description of a library of such tables. An easy way to create such a csv
file is to create a data frame that represents a table (all variables except one factors,
the remaining variable having non-negative integer values) and then save it using the R
command write.table, as in

write.table(my.df, "my.csv", row.names=F, sep=",")

Note the use of row.names=F to suppress the writing of case labels. An R script to read

the data, make a list of data frames and create a matching 3-dimensional table is

AgeGroup.HoursWork.df = read.csv("AgeGroup.HoursWork.csv")

AgeGroup.Sex.df = read.csv("AgeGroup.Sex.csv")

HoursWork.Sex.df = read.csv("HoursWork.Sex.csv")

df.list = list(AgeGroup.HoursWork.df, AgeGroup.Sex.df,

HoursWork.Sex.df)

AgeGroup.HoursWork.Sex.df = generate.data.lpSolve(df.list)

33

This creates a three dimensional table AgeGroup.HoursWork.Sex.df:

> AgeGroup.HoursWork.Sex.df

y AgeGroup HoursWork Sex

1 6843 15-19 1-4 Female

2 1818 20-24 1-4 Female

3 1743 25-29 1-4 Female

4 2808 30-34 1-4 Female

5 3141 35-39 1-4 Female

6 2394 40-44 1-4 Female

7 1743 45-49 1-4 Female

10 570 60-64 1-4 Female

12 7959 15-19 10-14 Female

13 7572 20-24 10-14 Female

14 4680 25-29 10-14 Female

15 6555 30-34 10-14 Female

16 7938 35-39 10-14 Female

17 6921 40-44 10-14 Female

18 5337 45-49 10-14 Female

..... 352 lines in all

Example 13. Here is another census example. This time we classify the adult population
15+ according to the variables

AgeGroup: Age group, one of 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59,
60-64, 65-69, 70-74, 75-79, 80-84, 85+ (15 levels),

Ethnic: Ethnicity, one of Asian, European, Maori, Other, PI (5 levels),

Qual: Highest educational qualification, one of NoQual, FifthForm, SixthForm, Higher-
School, OtherNZ, Overseas, BasicVocational, SkilledVocational, IntermediateVoca-
tional, AdvancedVocational, BachelorDegree, HigherDegree, Other (13 levels),

Sex: gender, one of M or F (2 levels).

The complete four-dimensional table has 15×5×13×2 = 1950 cells. We will find a table
that matches the two-dimensional margins. Once again, assume that these margins are in
suitable csv files, say AgeGroup.Ethnic.csv, AgeGroup.Ethnic.csv, AgeGroup.Sex.csv,
Ethnic.Qual.csv, Ethnic.Sex.csv and Qual.Sex.csv. The following R script creates
a matching complete table:

> AgeGroup.Ethnic.df = read.csv("AgeGroup.Ethnic.csv")

> AgeGroup.Qual.df = read.csv("AgeGroup.Qual.csv")

> AgeGroup.Sex.df = read.csv("AgeGroup.Sex.csv")

> Ethnic.Qual.df = read.csv("Ethnic.Qual.csv")

> Ethnic.Sex.df = read.csv("Ethnic.Sex.csv")

> Qual.Sex.df = read.csv("Qual.Sex.csv")

34

> df.list = list(AgeGroup.Ethnic.df, AgeGroup.Qual.df, AgeGroup.Sex.df,

Ethnic.Qual.df, Ethnic.Sex.df, Qual.Sex.df)

> AgeGroup.Ethnic.Qual.Sex.df = generate.data.lpSolve(df.list)

3.2.2 The SAS implementation

The SAS procedure PROC LP has capabilities somewhat superior to those of lp Solve.
We have written an R function to create a suitable SAS script and input data set. The
script uses PROC LP, and the data are in a sparse matrix form. The R function then
runs the SAS script on this data set, to produce a solution which can then be used to
create a complete table in the form of an R data frame in standard form.

Our first task is to generate the required SAS data set using the SAS sparse matrix
format. This data set has four variables with special SAS names: type , column , row

and coefficient . Each non-zero entry in the constraint matrix and right hand side
generates a separate line in the data set, as do the coefficients of the objective function.
In addition, there are lines specifying the type of the solution variables (integer or real),
and upper bounds for each solution. We set these to be the table total. Note that zero
entries in the constraint matrix and RHS vector are ignored, and do not appear in the
data set. The variable type refers to the type of the coefficient, and has value max for
the objective value coefficients, value eq for constraints, rhs for right hand sides, upperbd
for the upper bounds, and integer for the type of solution variable.

Rows and columns are referred to symbolically by character values. We use r1, r2,
. . . to denote rows, and x1, x2, . . . to denote columns. The RHS is denoted by rhs, and
the rows representing the objective function, the upper bounds and the variable types are
denoted by obj, upper and int respectively. The variable coef stores the numerical
value of the appropriate coefficient. Note that the values of the variable type are
keywords and must be as shown, but the row and column names can be chosen by the
user. The following example illustrates the form of the data set.

Example 14. The two-dimensional problem discussed in Example 6 involves maximizing
x1 + x2 + · · ·+ x6, subject to

⎡
⎢⎢⎣

1 1 1 1 1 1
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

22
8
4

10

⎤
⎥⎥⎦

where x1, . . . , x6 are non-negative and integral. The SAS input data file in “sparse” form
is (with variables in the order type , column , row and coefficient)

max x1 obj 1

max x2 obj 1

max x3 obj 1

max x4 obj 1

35

max x5 obj 1

max x6 obj 1

eq x1 r1 1

eq x2 r1 1

eq x3 r1 1

eq x4 r1 1

eq x5 r1 1

eq x6 r1 1

rhs _rhs_ r1 22

eq x4 r2 1

eq x5 r2 1

eq x6 r2 1

rhs _rhs_ r2 4

eq x2 r3 1

eq x5 r3 1

rhs _rhs_ r3 10

eq x3 r4 1

eq x6 r4 1

rhs _rhs_ r4 8

upperbd x1 upper 22

upperbd x2 upper 22

upperbd x3 upper 22

upperbd x4 upper 22

upperbd x5 upper 22

upperbd x6 upper 22

integer x1 int 1

integer x2 int 1

integer x3 int 1

integer x4 int 1

integer x5 int 1

integer x6 int 1

Given the sparse matrix representation of the constraint matrix used by CPLEX (see
below in Section 3.2.3), it is a simple matter to write an R script that will generate both
a “sparse” SAS input data file in the format described above, and also a SAS script to
run the IP. The R script will then run the SAS program it has created and assemble the
result into a data frame. The R function generate.data.SAS performs these tasks.

This implementation can handle quite large problems. We have successfully run prob-
lems with 20,000 cells, taking a few minutes to obtain a solution.

Example 15. The following code generates a data set for the margins in Example 6:

df.list = list(AgeGroup.Ethnic.df, AgeGroup.Qual.df, AgeGroup.Sex.df,

Ethnic.Qual.df, Ethnic.Sex.df, Qual.Sex.df)

AgeGroup.Ethnic.Qual.Sex.df = generate.data.sas(df.list)

36

3.2.3 The CPLEX implementation

In this section we describe a more powerful IP solver. The CPLEX package is a sophisti-
cated and expensive commercial package which represents the state-of-the-art in mathe-
matical programming. Like lp solve, it can be used in conjunction with other packages
such as AMPL and Matlab, as a stand-alone program with its own programming interface,
or as a collection of C library routines that can be embedded in C or Fortran programs
written by the user. We will use it in the latter mode. CPLEX can solve a variety of
mathematical programming problems. We will use it for just two. First, we will use it as
a more powerful alternative to lp solve, to solve the integer programming problem

maximize cT x

subject to
Ax = b, x ≥ 0, x integral.

We will also use it to solve the quadratic integer program

minimize 1
2
xT Dx − cT x

where D is positive-definite, subject to

Ax = b, x ≥ 0, x integral,

which we require to implement the table harmonisation algorithm described in Section
3.4, and also for modifying tables to avoid too many empty cells as described in Section
2.4.

A feature of CPLEX is its ability to handle sparse matrices in a compact way. In this
way, we avoid having to reserve storage for the whole of the constraint matrix A. Even
in the small examples considered in Table 9, the matrix A had up to 5, 616 × 6, 000 =
33, 696, 000 entries. CPLEX allows for two ways of representing a matrix, a row form
and a column form. We shall describe and use the row form. This requires three vectors,
which are referred to in the CPLEX documentation as rmatbeg, rmatind and rmatval.
The non-zero elements of A are placed in row order into rmatval. The columns of A in
which these elements lie are represented by the corresponding elements of rmatind, so
that these two vectors have length nzcnt, the number of non-zero elements of A. Finally,
the position in rmatind corresponding to the start of row i of A is recoded in the ith
element of rmatbeg, so the length of rmatbeg is the number of rows of A. As a final
complication, since CPLEX routines are coded in C, all arrays start at position 0, rather
than position 1.

Example 16. Consider the matrix A of Example 6, given by

A =

⎡
⎢⎢⎣

1 1 1 1 1 1
0 0 0 1 1 1
0 1 0 0 1 0
0 0 1 0 0 1

⎤
⎥⎥⎦ .

37

There are 13 non-zero elements, all 1, so that the array rmatval consists of 13 1’s in this
example. There are 6 columns, which in C fashion are labelled 0,1,2,3,4,5. The columns
containing the 1’s are the elements of rmatind, these are

0, 1, 2, 3, 4, 5, 3, 4, 5, 1, 4, 2, 5.

The positions in this sequence where a new row starts are 0, 6, 9, 11; these are the
elements of rmatbeg.

To solve an IP or integer QP in CPLEX using the CPLEX library routines, we must
write a C or Fortran program to

• Read in the problem elements: the matrix D and vector c defining the objective
function, the RHS vector b, and the constraint matrix A, coded in the form described
above. Recall that in our application, we use a row of the constraint matrix A as
our vector c. In our case this will be a vector of ones, as this is always the first row
of A. The matrix D will always be diagonal in the cases we consider;

• Initialize the problem, reserve memory;

• Populate the data structures;

• Perform the optimisation;

• Extract the solution vector;

• Shut down the CPLEX environment.

The CPLEX library functions we use are described in Table 10. A full description of the
calling sequences can be found in the CPLEX documentation. We have written some C
and Fortran code to perform the tasks listed above, using the library routines in Table
10. These programs are listed in Appendix A.4. To create the necessary R interface to
these routines, we have written an R function generate.data.cplex. This has similar
inputs and outputs to generate.data.lpSolve, but is different internally. To avoid
calculating the constraint matrix A explicitly, we do not use the R modelling software
to calculate a model matrix. Rather, we calculate the sparse matrix representation of A
(i.e. the arrays rmatbeg, rmatind) directly from the “dummy variable” representation of
the model matrix described in Section 2.2.4. This is implemented in a mixture of R and
Fortran code. The R function then calls a function written in C (using the R .C function)
to interface with the CPLEX Callable Library.

The function generate.data.cplex can also be used to calculate a table that satisfies
the constraints Ax = b, and is the closest quadratic approximation to the IPF solution,
thus implementing the method described in Section 2.4.4. This is done by means of the
argument objective.

Example 17. Consider again the margins in Example 13. To find the table satisfying
Ax = b using the IP approach, we can use the R code

df.list = list(AgeGroup.Ethnic.df, AgeGroup.Qual.df, AgeGroup.Sex.df,

Ethnic.Qual.df, Ethnic.Sex.df, Qual.Sex.df)

AgeGroup.Ethnic.Qual.Sex.df = generate.data.cplex(df.list)

38

Table 10: CPLEX functions.

Function Purpose
CPXopenCPLEX Open CPLEX environment
CPXgeterrorstring Get error message
CPXsetintparam Set integer parameters
CPXcreateprob Set up new problem
CPXaddrows Add rows to the constraint matrix, RHS
CPXchgobj Define vector c in the objective function
CPXchgctype Define all solutions to be integer
CPXcopyqpsep Define diagonal elements of matrix D
CPXlpwrite Write out problem description to a file
CPXmipopt Solve linear or quadratic IP
CPXgetstat Get status of solution
CPXgetx Extract solution
CPXfreeprob Delete problem information, free up space
CPXcloseCPLEX Close CPLEX environment

To find the closest quadratic approximation to the IPF solution, we use the code

AgeGroup.Ethnic.Qual.Sex.quad.df = generate.data.cplex(df.list,

objective="quadratic")

3.3 Iterated proportional fitting

The theory of iterated proportional fitting was described briefly in Section 2.2.3. In this
section we describe an implementation of this algorithm which will allow us to generate
synthetic data sets whose margins approximately match the supplied marginal tables.
Although we cannot obtain an exact match with this technique, we can handle much
larger tables (say up to a million cells).

Given a set of marginal tables, we can use IPF to obtain a complete table of fitted
means determined by the log-linear model that corresponds to the given set of marginal
tables. We can then generate complete tables by randomly generating cell counts from
Poisson distributions with these means. This will result in a table with a random total
sample size. Alternatively, if a table with a fixed sample size is desired, we can convert
the table of means into a table of probabilities by dividing each cell mean by the total of
all the cell means. We can then draw a sample of the desired size from the multinomial
distribution. A third alternative is simply to round the complete table of fitted means.

We have written an R function generate.data.ipf which features a Fortran imple-
mentation of the IPF algorithm. This runs under Linux, but we have also supplied a
Windows version written completely in R. The function calculates the cell probabilities
and then generates a table either using multinomial sampling, or by rounding the fitted
means. We can control the number of iterations of the IPF algorithm by specifying the
maximum number of iterations (default 20), and the tolerance (default 1.0e-8). When the

39

maximum amount of change in mean count at an iteration is less than the tolerance, the
iterations stop.

Example 18. Recall the Census example discussed in Example 13. The variables are
AgeGroup, Ethnic, Qual and Sex. As before suppose we have the six two-dimensional
marginal tables, stored in in comma-delimited text files AgeGroup. Ethnic.csv, AgeGroup.
Qual.csv, AgeGroup.Sex.csv, Ethnic.Qual.csv, Ethnic.Sex.csv and Qual.Sex.csv.
The following R script creates a matching complete table using generate.data.ipf:

AgeGroup.Ethnic.df = read.csv("AgeGroup.Ethnic.csv")

AgeGroup.Qual.df = read.csv("AgeGroup.Qual.csv")

AgeGroup.Sex.df = read.csv("AgeGroup.Sex.csv")

Ethnic.Qual.df = read.csv("Ethnic.Qual.csv")

Ethnic.Sex.df = read.csv("Ethnic.Sex.csv")

Qual.Sex.df = read.csv("Qual.Sex.csv")

df.list = list(AgeGroup.Ethnic.df, AgeGroup.Qual.df, AgeGroup.Sex.df,

Ethnic.Qual.df, Ethnic.Sex.df, Qual.Sex.df)

AgeGroup.Ethnic.Qual.Sex.df = generate.data.ipf(df.list)$data

Example 19. To explore the limits of this technique, we constructed the series of test
problems shown in Table 11. All problems ran successfully, and the error shown is the
biggest difference between the margins of the complete table of fitted means, and the
supplied margins. The timings shown are in seconds, using a maximum of 20 iterations,
multinomial sampling, and the default tolerance.

Table 11: Results of running generate.data.ipf

Number of Dimensions Number margins Time Error
factors (K) (I1, . . . , IK) of cells (Seconds)

3 3,4,2 24 All 2-dim 0.01 1.5 × 10−9

5 3,4,2,4,6 576 All 2-dim 0.06 16.2 × 10−9

6 2,3,5,6,2,5 1800 All 5-dim 0.18 9.1 × 10−7

7 2,3,5,3,2,5,4 3600 All 6-dim 0.44 1.0 × 10−3

7 2,3,5,5,2,5,4 6000 All 6-dim 0.688 4.8 × 10−3

7 2,5,5,4,6,5,4 24,000 All 3-dim 4.10 3.6 × 10−12

9 2,5,5,4,6,3,5,4,2 144,000 All 3-dim 47.20 5.8 × 10−11

10 2,5,5,4,6,3,5,4,2,8 1,152,000 All 3-dim 478.64 9.3 × 10−10

7 2,5,5,4,6,5,4 24,000 All 4-dim 6.64 2.3 × 10−8

9 2,5,5,4,6,3,5,4,2 144,000 All 4-dim 99.18 7.9 × 10−8

10 2,5,5,4,6,3,5,4,2,8 1,152,000 All 4-dim 1205.43 1.2 × 10−8

3.4 Harmonising tables

The methods we have described assume that the given marginal tables have been obtained
by summing over a complete table. However, due to accidentally or deliberately intro-
duced errors, the actual marginal tables we work with may not correspond to the margins

40

of any complete table. For example, tables are often modified using base-3 rounding to
preserve confidentiality.

If this is the case, then the submargins of one margin may even be incompatible with
the submargins of the other. Thus, for example, suppose we have four factors A, B,
C and D, and the ABC and ABD marginal tables. If these tables have been derived
without error from a complete ABCD table, then the AB submargin of the ABC table
must necessarily match the AB submargin of the ABD table. On the other hand, if the
tables have been modified, this will not necessarily be the case.

We will say that a set of marginal tables is compatible if any submargin derived from
one table in the set matches the same submargin derived from any other table in the
set. Clearly, compatibility of margins is a necessary (but not sufficient) condition for the
existence of a complete table whose margins coincide with the given set.

If no complete table exists whose margins match the supplied set, we need to adjust
the supplied margins so that they are the margins of some complete table. We call this
process of adjustment harmonising the tables. We next describe two methods of doing
this, one based on quadratic programming that is satisfactory for small problems, and
another based on iterative proportional fitting that will handle much bigger tables.

To describe the first method, let A be the constraint matrix representing the given
set of margins, and let b∗ be the vector of supplied margins. We want to find a complete
table x whose margins Ax match the given margins as closely as possible. If we interpret
“as closely as possible” as minimizing ||Ax − b∗||2 we can find the adjusted table x by
solving the quadratic program

Minimize ||Ax − b∗||2

subject to x ≥ 0, x integral. An equivalent formulation is to set z = (x, b) and solve

Minimize ||b − b∗||2

subject to Bz = 0, z ≥ 0, z integral, where B = [A| − I]. This method simultaneously
adjusts the margins and calculates the best-fitting complete table, using a quadratic
program in m + n variables, where m and n are the number of rows and columns of A.

However, as quadratic integer programs are extremely demanding of computer time
and memory, a more heuristic approach is required for bigger tables. The IPF algorithm
may not converge if the supplied margins are not derived from some complete table.
Nevertheless, after a few cycles of the algorithm, the fitted cell means will approximate a
set of means derived from some related set of marginals that do correspond to a complete
table. We simply round the fitted cell means to obtain a complete table, and calculate the
margins of this table corresponding to the supplied margins. This gives a rough-and-ready
method of harmonising larger tables.

Of course, the simplest and most satisfactory method of producing a set of harmonised
marginal tables is to calculate and make available the margins of the real, complete table.

We can also adjust the marginal tables to make them compatible without finding the
complete table. This requires solving a smaller quadratic program in as many variables as
there are entries in all the marginal tables. However, in this method, unlike the other two

41

above, there is no guarantee that there will exist a complete table matching the adjusted
marginals.

To describe this last method, recall from Section 2.2.4 that the constraint matrix
depends on the margins and the full table. Also, it is convenient to identify each marginal
table with a subset of 1, . . . , K, where K is the number of factors in the complete table.
Thus, we identify the A1A2A3 marginal table with the subset {1, 2, 3}, and the marginal
table A2A3A5 with {2, 3, 5} and so on. For two such tables (subsets) Si and Sj say, let
Aij be the constraint matrix corresponding to the single margin Si ∩ Sj, treating Si as
the complete table. Similarly, let Aji be the constraint matrix corresponding to the single
margin Si ∩ Sj, treating Sj as the complete table. Then if bi and bj are vectors of table
counts for Si and Sj , the two marginal tables will be compatible if Aijbi = Ajibj .

Thus, to adjust all the margins, we find a set of compatible marginal tables b1, . . . , bM

which most closely match the supplied tables z∗ = (b∗1, . . . , b
∗
M), by setting z = (b1, . . . , bM)

and solving the quadratic program

Minimize ||z − z∗||2

subject to Bz = 0, z ≥ 0, z integral, where

B =

⎡
⎢⎢⎢⎣

A12 −A21 0 · · · 0 0
A13 0 −A31 · · · 0 0
...

...
... · · · ...

...
0 0 0 · · · AM−1,M −AM,M−1

⎤
⎥⎥⎥⎦ .

Example 20. As an example of this technique, consider the three marginal tables intro-
duced in Example 13. These tables are compatible, but if we round them to base 3 they
cease to be so:

round tables to base 3

first define a function

> base3.round=function(x){

+ xx= x%%3

+ ifelse(xx==0,x, ifelse(xx==1, x-1, x+1))

+ }

> AgeGroup.HoursWork.df$y = base3.round(AgeGroup.HoursWork.df$y)

> AgeGroup.Sex.df$y = base3.round(AgeGroup.Sex.df$y)

> HoursWork.Sex.df$y = base3.round(HoursWork.Sex.df$y)

> sum(AgeGroup.HoursWork.df$y)

[1] 1621038

> sum(AgeGroup.Sex.df$y)

[1] 1621017

> sum(HoursWork.Sex.df$y)

[1] 1621011

42

We harmonise them using the R function harmonise:

> df.list = list(AgeGroup.HoursWork.df, AgeGroup.Sex.df, HoursWork.Sex.df)

> new.df.list = harmonise(df.list, method = "complete")

They are now compatible:

> sum(new.df.list[[3]]$y)

[1] 1621016

> sum(new.df.list[[2]]$y)

[1] 1621016

> sum(new.df.list[[1]]$y)

[1] 1621016

43

4 APPLICATION TO CENSUS DATA

4.1 Factors, tables and margins

The Table Builder tool on the Statistics New Zealand website allows one to download
marginal tables based on variables from the 2001 Census of Population and Dwellings. In
this section we describe a subset of the available tables, which we will use to illustrate
the methods described in the previous sections of this report. The tables are based on
the set of variables listed in Table 12. We will use these variable names in what follows.

Table 12. Description of the variables in the census tables.

Name: Age
Abbreviation: age
Definition: Age is the length of time a person has been alive, measured

in complete elapsed years. It is measured as the difference between
‘date of birth’ and ‘6 March 2001’.

Number of Levels: 18
Levels: 0-4 Years; 5-9 Years; 10-14 Years; 15-19 Years; 20-24 Years;

25-29 Years; 30-34 Years; 35-39 Years; 40-44 Years; 45-49 Years;
50-54 Years; 55-59 Years; 60-64 Years; 65-69 Years; 70-74 Years;
75-79 Years; 80-84 Years; 85 Years and Over

Reference Population: Census Night Population Count.

Name: Birthplace
Abbreviation: birthplace
Definition: Birthplace refers to the country where the respondent was born.

A country is the current name, either short or official of a country,
dependency or other area of particular geopolitical interest.
The term country is defined to include: independent countries
recognised by the New Zealand government; units which are recognised
geographic areas; administrative subdivisions of Australia
and the United Kingdom; overseas dependencies, external territories
of independent countries.

Number of levels: 9
Levels: Asia, Australia, Europe (excl. United Kingdom and Ireland),

New Zealand, North America, Not Elsewhere Included, Other,
Pacific Islands, United Kingdom and Ireland.

Reference Population: Census Night Population Count.

Name: Ethnic Group
Abbreviation: ethnic
Definition: Ethnicity is the ethnic group or groups that people

identify with or feel they belong to. Thus, ethnicity is self-perceived
and people can belong to more than one ethnic group. Ethnicity
is a measure of cultural affiliation, as opposed to race, ancestry,
nationality or citizenship. An ethnic group is a social group whose
members have the following four characteristics:

44

Definition (Cont) share a sense of common origins; claim a common and
distinctive history and destiny; possess one or more dimensions of
collective cultural individuality; feel a sense of unique collective
solidarity.

Number of levels: 5
Levels: Asian, European, Maori, Pacific Peoples, Other
Reference Population: Census Night Population Count.
Other Total responses means that a person can be counted in more

than one ethnic group. In 2001 a person can be counted in up to 6
ethnic groups. Although ethnicity is an hierarchical classification
with four levels, only one set of levels is used for this variable, as listed.

Name: Highest Qualification
Abbreviation: highqual
Definition: Highest Qualification combines Highest School

Qualification and Post-School Qualification to derive a
single Highest Qualification by category of attainment.
A qualification is a formally recognised award for attainment
resulting from a full-time (20 hours per week) learning
course of at least three months, or from part-time study
for an equivalent period of time or from on the job training.

Number of levels: 13
Levels: Advanced Vocational Qualification, Bachelor Degree

Basic Vocational Qualification, Fifth Form Qualification
Higher Degree, Higher School Qualification, Intermediate
Vocational Qualification, No Qualification, Not Elsewhere
Included, Other NZ Secondary School Qualification, Overseas
Secondary School Qualification, Sixth Form Qualification,
Skilled Vocational Qualification

Reference population: Census Usually Resident Population
Count aged 15 years and over

Name: Hours Worked in Employment per Week
Abbreviation: hoursperweek
Definition: Hours worked in employment is the total number

of hours worked in employment per week by all people aged
15 and over who at the time of the census: worked for one
hour or more for pay, profit or payment in kind in a job,
business, farm or professional practice; or worked without
pay for one hour or more in work which contributed directly
to the operation of a farm, business or professional practice
operated by a relative; or had a job or business they were
temporarily absent from.

Number of levels: 9
Levels: 1-9 Hours; 10-19 Hours; 20-29 Hours;

Part-time Not Elsewhere Included;
30-39 Hours; 40-49 Hours; 50-59 Hours; 60 Hours or More;
Full-time Not Elsewhere Included;

Reference Population: Employed Census Usually Resident
Population Count aged 15 years and over.

45

Name: Legal Marital Status
Abbreviation: legalms
Definition: Marital status is a persons reported status

with respect to the marriage laws or customs of the country.
There are two types of marital status: Legal Marital Status
and Social Marital Status. Legal Marital Status is a persons
status with respect to registered marriage. Social Marital Status
is a persons status with respect to consensual union. People
who are in a consensual union are partnered; people who are not
in a consensual union are non-partnered.

Number of levels: 7
Levels: Never Married; Married (Not Separated); Separated;

Divorced; Widowed; Not Elsewhere Included
Reference Population: Census Usually Resident Population Count

aged 15 years and over.

Name: Number of languages spoken
Abbreviation: languages
Definition: Number of languages spoken - counts the number of languages

spoken as indicated by the respondent. Language spoken -this collects
information on whether a person can speak and understand spoken or sign
language.

Number of levels: 8
Levels: None; One Language; Two Languages; Three Languages; Four

Languages; Five Languages; Six Languages; Not Elsewhere Included
Reference Population: Census Usually Resident Population Count.

Name: Occupation
Abbreviation: occupation
Definition: An occupation is defined as a set of jobs which involve the

performance of a common set of tasks. A job is a set of tasks performed
or designed to be performed by one individual. Two jobs are similar if
they require the performance of a similar set of tasks or to fulfill
the technical requirements of an occupation. Skill is defined as the
ability of an individual to perform a set of tasks or to fulfils the
technical requirements of an occupation.

Number of levels: 10
Levels: Legislators, Administrators and Managers; Professionals; Technicians

and Associate Professionals; Clerks; Service and Sales Workers; Agriculture
and Fishery Workers; Trades Workers; Plant and Machine Operators and
Assemblers; Elementary Occupations ; Not Elsewhere Included

Reference Population: Employed, Census Usually Resident Population
Count aged 15 years and over.

Other: There are some cases where people have been coded to an occupation
where in fact they are not really meant to be in the labour force, because
occupation is coded independently of work and labour force or employment
status. Care should be taken when using this variable particularly if relating
it to other Labour Market variables (ie Status in Employment, Work and
Labour Force Status, Hours worked, or Total Income) due to the different
time frames (census day, last four weeks, previous week, previous year).

46

Name: Relgious Affiliation
Abbreviation: religion
Definition: Religious affiliation is the self-identified

association of a person with a religion, denomination or
sub-denominational religious group. A denomination is the
church or religious sect that forms a sub-group of a religion.
Denominations of a particular religion share the same principles
but differ from each other in aspects such as the form of
worship used and the way in which they are governed.

Number of levels: 10
Levels: No Religion; Buddhist; Christian; Hindu; Islam/Muslim;

Judaism/Jewish; Maori Christian; Spiritualism and New Age Religions;
Other Religions; Object to Answering

Reference Population: Census Usually Resident Population Count.
Other: Up to four responses are coded.

Name: Sex
Abbreviation: sex
Definition: Sex is the distinction between males and females

based on the biological differences in sexual characteristics.
Number of levels: 2
Levels: Male; Female
Reference Population: Census Night Population Count.

Name: Social Marital Status
Abbreviation: socialms
Definition: Marital status is a persons reported status with

respect to the marriage laws or customs of the country.
There are two types of marital status: Legal Marital
Status and Social Marital Status. Legal Marital Status
is a persons status with respect to registered marriage.
Social Marital Status is a persons status with respect
to consensual union. People who are in a consensual union
are partnered; people who are not in a consensual union
are non-partnered.

Number of levels: 9
Levels: Partnered (not further defined); Legal Spouse;

Other Partnership; Non-partnered (not further defined);
Non-partnered, Never Married; Non-partnered, Separated;
Non-partnered, Divorced; Non-partnered, Widowed; Not Stated

Reference Population: Census Usually Resident Population
Count aged 15 years and over.

Name: Total Personal Income
Abbreviation: tpincome
Definition: Information on total personal income received

is collected from individuals in the 2001 Census. It represents
the before-tax income for the respondent in the twelve months
ended 31 March 2001. Total personal income is collected as an
income range rather than an actual dollar income.

47

Definition: (Cont)Total personal income is aggregated to form
a number of other income outputs including: total household
income; total family income; combined parental income for
couples with child(ren);total extended family income.

Number of levels: 14
Levels: Loss; Zero Income; $1 - $5,000; $5,001 - $10,000;

$10,001 - $15,000; $15,001 - $20,000; $20,001 - $25,000;
$25,001 - $30,000; $30,001 - $40,000; $40,001 - $50,000;
$50,001 - $70,000; $70,001 - $100,000; $100,001 or More;
Not Stated

Reference Population: Census Usually Resident Population
Count aged 15 years and over.

Name: Work and Labour Force Status
Abbreviation: workstatus
Definition: Work and labour force status classifies people aged 15 years

and over according to their inclusion or exclusion from the
labour force. For people who are employed, it distinguishes
whether they are employed full-time (30 hours or more per week)
or part-time (fewer than 30 hours per week). Work and labour
force status imputation supplies a value for work and labour
force status, where this cannot be derived from the labour force
information supplied by the respondent. The work and labour force
status imputation uses whatever labour force information has
been given, and various other responses from the individual
(for example, age and income). A work and labour force status
is then imputed to equal the known work and labour force status
of a similar person.

Number of levels: 5
Levels: Employed Full-time; Employed Part-time; Unemployed;

Not in the Labour Force; Work and Labour Force Status Unidentifiable
Reference Population: Census Usually Resident Population

Count aged 15 years and over.

We refer to a table in our list using a name constructed from its variables. Thus, a
table containing the variables age, ethnic and sex will be referred to as the age×ethnic×sex
table, and is stored in a file age ethnic sex.txt. It can be read into R as a data frame
using the R statement

age_ethnic_sex.df = read.table("age_ethnic_sex.txt", header=T)

This produces a data frame in standard form (i.e. counts as the first variable, and the
factors age, ethnic and sex in successive alphabetical order.)

The tables fall into three groups, according to which population the tables represent.
The three groups are

Group 1: Tables classifying the usually resident census night population.

Group 2: Tables classifying the usually resident census night population aged 15 years
and over.

48

Group 3: Tables classifying the employed usually resident census night population aged
15 years and over.

The complete list of tables is shown in Table 13.

Due to rounding, missing values and other unexplained factors the tables do not have
the same totals. In addition, any table with ethnicity as a factor (variable ethnic) is
problematical, as this classification is not exclusive (an individual may belong to arbitrar-
ily many ethnic groups). We have dealt with this in a very crude manner by normalizing
the tables in each group to have approximately the same totals. This was done by multi-
plying each count by a conversion factor and rounding the result. This “preharmonises”
the tables and makes the application of the harmonisation algorithm more efficient.

Note also that the variable age takes different values in each of the three groups. For
tables in the first group having age as a factor, the levels are 0-4 Years, 5-9 Years, . . . ,
80-84 Years, 85 Years and Over. For tables in the second group, the levels for age are
15-19 Years, 20-24 Years, . . . , 80-84 Years, 85 Years and Over, while for tables in the

Table 13: The census tables.

Table File Table Total Number of
cells

Group 1: Usually resident census population

age languages sex age languages sex.txt 3,737,262 288
age religion sex age religion sex.txt 3,737,261 360
birthplace ethnic sex birthplace ethnic sex.txt 3,737,260 90
ethnic languages sex ethnic languages sex.txt 3,737,260 80
ethnic religion sex ethnic religion sex.txt 3,737,263 100

Group 2: Usually resident census population aged 15 and over

age ethnic highqual sex age ethnic highqual sex.txt 2,889,609 2080
age ethnic sex tpincome age ethnic sex tpincome.txt 2,889,598 2100
age legalms sex age legalms sex.txt 2,889,552 180
age sex socialms age sex socialms.txt 2,889,539 270
ethnic highqual sex tpincome ethnic highqual sex tpincome.txt 2,889,598 2100
ethnic sex socialms ethnic sex socialms.txt 2,889,552 90
ethnic sex tpincome workstatus ethnic sex tpincome workstatus.txt 2,889,565 700

Group 3: Employed usually resident census population aged 15 and over

age ethnic occupation sex age ethnic occupation sex.txt 1,727,258 1100
age hoursperweek sex age hoursperweek sex.txt 1,727,274 198
age occupation sex age occupation sex.txt 1,727,259 220
highqual occupation sex highqual occupation sex.txt 1,727,247 260
hoursperweek sex tpincome hoursperweek sex tpincome.txt 1,727,262 252
occupation sex tpincome occupation sex tpincome.txt 1,727,233 280

49

third group the levels are 15-19 Years, 20-24 Years, . . . , 60-64 Years, 65 Years and Over.
These three sets of tables are not harmonised. A discussion of how they may be

harmonised is given in the next section.

4.2 Generating census data sets

To generate complete tables from these three sets of margins, we use the functions intro-
duced in Section 3.

4.2.1 Group 1 margins

First, we generate a data set based on the complete census night usually resident popu-
lation. A set of margins relating to this population comprises Group 1 in table 13. The
variables for this population are age (18 levels), birthplace (9 levels), ethnic (5 levels),
languages (8 levels) religion (10 levels) and sex (2 levels). The complete table has
259,200 cells.

The first step is to harmonise the tables. The methods based on quadratic program-
ming won’t cope with such a big table, but the IPF method has no problems. The
following code sets up the list of tables and performs the harmonisation. The adjusted
set of tables is in the R list harmonised.group1.list. We are assuming the input text
files containing the margins are in the directory tables, this will have to be changed to
suit the user’s own directory structure.

> input.directory = "tables/" # change this to suit

> group1.files = paste(input.directory, c("age_languages_sex.txt",

"age_religion_sex.txt", "birthplace_ethnic_sex.txt",

"ethnic_languages_sex.txt", "ethnic_religion_sex.txt"), sep="")

> group1.list = vector(mode="list", length=length(group1.files))

> for (i in 1:length(group1.files))group1.list[[i]]=

read.table(group1.files[i], header=T)

> harmonised.group1.list = harmonise(group1.list, method="ipf")

We can get a complete table group1.df based on rounding the IPF solution using the
code

> group1.ipf.df = generate.data.ipf(harmonised.group1.list, result="ro")

A table with 259,200 cells is a bit beyond the integer programming methods. However,
if we drop the variable birthplace, and the birthplace ethnic sex margin, the complete
table now has only 28,800 cells, within the reach of CPLEX. A complete table (the best
quadratic approximation to the IPF solution) that exactly matches the margins can be
obtained using the code

> group1a.list = list(harmonised.group1.list[[1]],

harmonised.group1.list[[2]], harmonised.group1.list[[4]],

harmonised.group1.list[[5]])

> group1a.cplex.df =

generate.data.cplex(group1a.list, objective="quad")

50

4.2.2 Group 2 margins

The second set of margins, in Group 2, refers to the usually resident census night popula-
tion aged 15 and over. The variables for this table are age (15 levels), ethnic (5 levels),
highqual (13 levels), legalms (6 levels), sex (2 levels), socialms (9 levels), tpincome,
(14 levels) and workstatus (5 levels), so that the complete table has 7,371,000 cells. If we
drop the table ethnic sex tpincome workstatus, we get a complete table with 1,474,200
cells, which is just within the reach of the IPF harmonisation method. The following code
accomplishes this.

> group2.files = paste(input.directory, c("age_ethnic_highqual_sex.txt",

"age_ethnic_sex_tpincome.txt", "age_legalms_sex.txt",

"age_sex_socialms.txt", "ethnic_highqual_sex_tpincome.txt",

"ethnic_sex_socialms.txt", "ethnic_sex_tpincome_workstatus.txt")

, sep="")

> group2.list = vector(mode="list", length=length(group1.files))

> for (i in 1:length(group2.files))group2.list[[i]]=

read.table(group2.files[i], header=T)

> group2a.list = list(group2.list[[1]], group2.list[[2]],

group2.list[[3]], group2.list[[4]], group2.list[[5]],

group2.list[[6]])

> harmonised.group2a.list = harmonise(group2a.list, method="ipf")

A table can be generated from these margins using the “random” IPF method by the
code

> group2a.ipf.df = generate.data.ipf(harmonised.group2a.list,

result="random")

Again, this table, with 1,474,200 cells, is too big to be generated using the integer pro-
gramming methods. A smaller table, involving only the variables age, ethnic, highqual
and socialms can be generated using the quadratic CPLEX method by the code

> group2b.list = list(harmonised.group2a.list[[1]],

harmonised.group2a.list[[4]], harmonised.group2a.list[[6]])

> group2b.cplex.df = generate.data.cplex(group2b.list, objective="q")

4.2.3 Group 3 margins

The final set of margins, in Group 3, refers to the employed usually resident census night
population aged 15 and over. The variables for this table are age (11 levels), ethnic

(5 levels), highqual (13 levels), hoursperweek (9 levels), occupation (10 levels), sex

(2 levels), and tpincome (14 levels), so that the complete table has 1,801,800 cells. The
margin data is assembled into a list group3.list using code similar to that above. This
set of margins, corresponding to a complete table with 1.8 million cells, is just a bit
beyond the IPF harmonisation method, but if we drop the variable highqual, and the
table highqual occupationsex txt, we get a set of margins corresponding to a much smaller
table with only 138,600 cells. We can harmonise the reduced set of 5 tables using the IPF
method, and generate a complete table as above.

51

5 SUMMARY AND CONCLUSIONS

We have described two approaches to the problem of creating synthetic data sets using
publicly available marginal tables. In the first approach, we used integer programming to
find a complete table which exactly matched the given margins. Three implementations
of this idea were described, based on the packages lp solve, SAS and CPLEX. The first
will run under Windows. All implementations run under Linux, provided the relevant
package (SAS or CPLEX) is available.

The complete table often has many zero entries, which may not be acceptable. We
discussed three methods for modifying tables having this problem, two based on adding
solutions of the equation Ax = 0 to the table, and the third based on quadratic program-
ming. We have provided an implementation of this last method based on the quadratic
programming capabilities of CPLEX.

The second approach is based on iterative proportional fitting. The set of supplied
margins corresponds to a hierarchical log-linear model, and the IPF algorithm can be
used to calculate a set of cell probabilities or cell means for the complete table, based on
this log-linear model. These probabilities can then be used to generate a complete table
whose margins will approximately match the supplied margins. Alternatively, the mean
cell counts can be rounded.

The methods we describe all require that the tables be harmonised. We described
three methods of harmonising tables. The first, based on quadratic programming, pro-
duces marginal tables that correspond to a complete table, but is only practical for small
to medium problems. The second, heuristic method uses IPF and will handle bigger
problems, while the third, again based on quadratic programming, will merely adjust the
tables to be compatible. The first and third methods require the CPLEX package.

These methods have been illustrated with numerous examples, and we have described
a set of marginal tables sourced from the Statistics New Zealand web site that can be
used to generate synthetic data sets whicjh mimic the 2001 Census of Population and
Dwellings. We have written a set of R functions to implement our methods, and have
illustrated the use of these to create synthetic data from the SNZ tables. These are
documented in the text and more formally in the Appendices.

52

REFERENCES

Agresti, A. (2002). Categorical Data Analysis, 2nd Ed. Johns Hopkins University
Press, Baltimore.

Bishop, Y.M.M., Fienberg, S.E. and Holland, P.W. (1975). Discrete Multivariate
Analysis. MIT Press, Cambridge.

Buttrey, S.E. (2005). Calling the lp solve linear program software from R, S-Plus and
Excel. J. Statistical Software, 14.

Christensen, R. (1997). Log-Linear Models and Logistic Regression. Springer-Verlag,
New York.

Cox, D., Little, J and O’Shea, D. (1996). Ideals, Varieties and Algorithms. Springer-
Verlag, New York.

Deming, W.E and Stephan, F.F. (1940). On a least squares adjustment of a sampled
frequency table when the expected marginal totals are known. Ann. Math. Statist.,
11, 427 – 444.

Diaconis, P and Sturmfels, B. (1998). Algebraic algorithms for sampling from
conditional distributions. Ann. Statist., 26, 363 – 397.

Dobra, A. (2003). Markov bases for decomposable graphical models. Bernoulli, 9,
1093–1108.

R Development Core Team (2005). R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0, URL http://www.R-project.org.

Wolsey, L.A. (1998). Integer Programming. Wiley, New York.

53

A APPENDICES

A.1 Description of the R functions

In this appendix we document the following R functions:

as.standard

check.data.frame

df2table

generate.data.cplex

generate.data.ipf

generate.data.lpSolve

generate.data.sas

harmonise

table2df

54

as.standard package:SNZ R documentation

Coerces a data frame into standard form

Description:

Coerces a data frame representing a contingency table into a standard form

Usage:

as.standard(data.df)

Arguments:

data.df: a data frame.

Details:

If the data frame represents a contingency table (i.e. if one variable con-
tains counts and the rest are factors) it is transformed into standard form.
Otherwise an error message is returned.

Value:

A data frame in standard form.

Example:

convert data frame data.df to standard form

data.df = as.standard(data.df)

55

check.data.frame package:SNZ R documentation

Checks a data frame

Description:

Checks if a data frame is in standard form

Usage:

check.data.frame(data.df)

Arguments:

data.df: a data frame.

Value:

A list with elements

status: has value 1 if the argument can be coerced into a data frame repre-
senting a contingency table in standard form, and zero otherwise;

data: if status = 1, the data frame representing the contingency table, oth-
erwise NULL;

message: if status = 0, an error message.

Example:

check data frame data.df to see if it represents

a contingency table in standard form

data.df=check.data.frame(data.df)$data

56

df2table package:SNZ R documentation

Converts a data frame in standard form into an array

Description:

Converts a data frame in standard form into an array, and issues an error
message if the input cannot be converted to standard form.

Usage:

df2table(data.df)

Arguments:

data.df: a data frame.

Details:

If the data frame represents a contingency table (i.e. if one variable contains
counts and the rest are factors) it is transformed into an array. Otherwise an
error message is returned.

Value:

An array representing the contingency table.

Example:

convert data frame data.df to an array my.table

my.table = df2table(data.df)

57

generate.data.cplex package:SNZ R documentation

Generates a contingency table whose margins match a set of specified margins.

Description:

Generates a contingency table whose margins match a set of specified margins.
The margins are in the form of data frames in standard form, or a list of such
data frames

Usage:

data.df = generate.data.cplex(..., objective="linear", MAXITER=20,

TOL=1.0e-8)

Arguments:

. . . : Data frames representing the margins, or a single list of such data
frames.

objective: Has value “linear”, in which case the table will be found by
solving the IP with objective function equal to the sum of the table
entries, or “quadratic”, in which case the best integral approximation to
the IPF solution is found. The abbreviations "l" or "q" suffice.

MAXITER: The maximum number of iterations for the iterative proportional
fitting algorithm.

TOL: Stopping criterion for the iterative proportional fitting algorithm.

Details:

The margins are assumed to be consistent, as no checks for consistency are
made. The data frames are checked to determine if they are in standard form.
The contingency table is generated by solving an integer program using the
CPLEX callable library. The function also assumes that the shared library
SNZ.so has been loaded.

Value:

A data frame in standard form representing the contingency table.

58

Example:

array.dim<-c(3,4,2)

y = round(100*runif(prod(array.dim)))

X<-array(y, dim=array.dim, dimnames =

list(A = paste("a",1:array.dim[1], sep=""),

B=paste("b",1:array.dim[2], sep=""),

C=paste("c",1:array.dim[3], sep="")))

get marginal tables (AB, BC, AC)

AB<-apply(X, c(1,2), sum)

BC<-apply(X, c(2,3), sum)

AC<-apply(X, c(1,3), sum)

AB.df<-table2df(AB)

BC.df<-table2df(BC)

AC.df<-table2df(AC)

df.list = list(BC.df, AC.df, AB.df)

ABC.df = generate.data.cplex(df.list)

59

generate.data.ipf package:SNZ R documentation

Generates a contingency table whose margins match approximately a set of specified
margins.

Description:

Generates a contingency table whose margins match approximately a set of
specified margins, using the iterated proportional fitting algorithm. The mar-
gins are in the form of data frames in standard form, or a list of such data
frames.

Usage:

data.df = generate.data.ipf(..., result= "random", MAXITER=20,

TOL=1.0e-8)

Arguments:

. . . : Data frames representing the margins, or a single list of such data
frames.

result: One of “random” or “rounded”. If the former, a contingency
table is generated using multinomial sampling from the table of fitted
probabilities. If the latter, the table is obtained by rounding the fitted
cell means.

MAXITER: The maximum number of iterations for the iterative proportional
fitting algorithm.

TOL: Stopping criterion for the iterative proportional fitting algorithm.

Details:

The margins are assumed to be consistent, as no checks for consistency are
made. The data frames are checked to determine if they are in standard
form. The contingency table is generated by calculating cell means using
the IPF algorithm, and then generating the table by multinomial sampling.
The function assumes that the shared library SNZ.so has been loaded using
dyn.load.

60

Value:

A list having four components:

data: A data frame in standard form representing the generated contingency
table,

probs: The array of fitted cell probabilities,

iter: The number of IPF iterations taken (Windows version only),

error: The maximum relative change in the fitted means at the last IPF
iteration.

Example:

array.dim<-c(3,4,2)

y = round(100*runif(prod(array.dim)))

X<-array(y, dim=array.dim, dimnames =

list(A = paste("a",1:array.dim[1], sep=""),

B=paste("b",1:array.dim[2], sep=""), C=paste("c",1:array.dim[3], sep="")))

get marginal tables (AB, BC, AC)

AB<-apply(X, c(1,2), sum)

BC<-apply(X, c(2,3), sum)

AC<-apply(X, c(1,3), sum)

AB.df<-table2df(AB)

BC.df<-table2df(BC)

AC.df<-table2df(AC)

df.list = list(BC.df, AC.df, AB.df)

ABC.df = generate.data.ipf(df.list)

61

generate.data.lpSolve package:SNZ R documentation

Generates a contingency table whose margins match a set of specified margins

Description:

Generates a contingency table whose margins match a set of specified margins.
The margins are in the form of data frames in standard form, or a list of such
data frames.

Usage:

data.df = generate.data.lpSolve(...)

Arguments:

. . . : Data frames representing the margins, or a single list of such data
frames.

Details:

The margins are assumed to be consistent, as no checks for consistency are
made. The data frames are checked to determine if they are in standard form.
The contingency table is generated by solving an integer program using R
package lpSolve, which must be present.

Value:

A data frame in standard form representing the contingency table.

Example:

y = round(100*runif(prod(array.dim)))

X<-array(y, dim=array.dim, dimnames =

list(A = paste("a",1:array.dim[1], sep=""),

B = paste("b",1:array.dim[2], sep=""),

C = paste("c",1:array.dim[3], sep="")))

get marginal tables (AB, BC, AC)

AB<-apply(X, c(1,2), sum)

62

BC<-apply(X, c(2,3), sum)

AC<-apply(X, c(1,3), sum)

AB.df<-table2df(AB)

BC.df<-table2df(BC)

AC.df<-table2df(AC)

df.list = list(BC.df, AC.df, AB.df)

ABC.df = generate.data.lpSolve(df.list)

63

generate.data.sas package:SNZ R documentation

Generates a contingency table whose margins match a set of specified margins

Description:

Generates a contingency table whose margins match a set of specified margins.
The margins are in the form of data frames in standard form, or a list of such
data frames.

Usage:

data.df = generate.data.sas(...)

Arguments:

. . . : Data frames representing the margins, or a single list of such data
frames.

Details:

The margins are assumed to be consistent, as no checks for consistency are
made. The data frames are checked to determine if they are in standard
form. The contingency table is generated by solving an integer program using
the SAS system, which must be present. The function also assumes that the
shared library SNZ.so has been loaded. The function removes all the generated
SAS files except the file lp.log, which should be checked to see if the integer
program was successfully solved.

Value:

A data frame in standard form representing the contingency table.

Example:

y = round(100*runif(prod(array.dim)))

X<-array(y, dim=array.dim, dimnames =

list(A = paste("a",1:array.dim[1], sep=""),

B = paste("b",1:array.dim[2], sep=""),

C = paste("c",1:array.dim[3], sep="")))

64

get marginal tables (AB, BC, AC)

AB<-apply(X, c(1,2), sum)

BC<-apply(X, c(2,3), sum)

AC<-apply(X, c(1,3), sum)

AB.df<-table2df(AB)

BC.df<-table2df(BC)

AC.df<-table2df(AC)

df.list = list(BC.df, AC.df, AB.df)

ABC.df = generate.data.sas(df.list)

65

harmonise package:SNZ R documentation

Modifies a set of marginal tables to make them consistent

Description:

Takes a set of marginal tables and ajusts them so that the adjusted set is
consistent. The margins are in the form of data frames in standard form, or
a list of such data frames. The result is a list of the adjusted data frames.

Usage:

adjusted.list = harmonise(..., method = "ipf", MAXITER = 20, TOL

= 1.0e-8)

Arguments:

. . . : Data frames representing the margins to be adjusted, or a single list
of such data frames.

method: One of “complete”, “partial”, “ipf” corresponding to the three
harmonisation methods discussed in the text.

MAXITER: The maximum number of iterations for the iterative proportional
fitting algorithm.

TOL: Stopping criterion for the iterative proportional fitting algorithm.

Details:

The data frames are first checked to determine if they can be coerced standard
form. The harmonisation adjustment is made in one of three ways depending
on the value of method. If method = "complete", then a complete table is
found whose margins match those supplied, using a quadratic criterion. If
method = "partial", the tables are adjusted to be compatible as described
inn the text. Finally, if method = "ipf" (the default), then a complete table
is found whose margins match those supplied, using the IPF method. The first
two methods assume that the using the CPLEX Callable Library is installed.
The function also assumes that the shared library SNZ.so has been loaded
using dyn.load.

66

Value:

A list of the adjusted data frames

Example:

df.list = list(BC.df, AC.df, AB.df)

adjusted.df.list = harmonise(df.list)

67

table2df package:SNZ R documentation

Converts an array to a data frame in standard form

Description:

Converts an array into a data frame in standard form, and issues an error
mesage if the input is not capable of conversion to standard form (e.g. if there
are negative or non-integer entries in the array.)

Usage:

table2df(my.table)

Arguments:

my.table: a multidimensional array.

Details:

If the array represents a contingency table (i.e. if the entries are non-negative
integers) it is transformed into a data frame in standard form. Otherwise an
error message is issued. The count variable in the data frame is named y.

Example:

convert array my.table to a data frame data.df in standard form

data.df = table2df(my.table)

68

A.2 Installation of the R functions

We have provided three versions of the R functions.

A.2.1 Three versions

The first set of functions, in file SNZ.Windows.zip, includes the functions as.standard,
check.data.frame,df2table, generate.data.lpSolve, generate.data.ipf, harmon-
ise, and table2df. These make no use of the CPLEX Callable Library, and may be run
under both the Windows and Linux versions of R.

The second set, in file SNZ.noCPLEX.tar, is designed to run under Linux, and uses
some Fortran code. To use these functions, you will need to create an R shared library
SNZ.so. See below for instructions for doing this. This set contains the same set of
functions as the Windows version, plus the function generate.data.sas. To use this
function, you will need to have SAS installed.

The third set, in file SNZ.CPLEX.tar, contains all the functions, and is also designed
to run under Linux. It uses some Fortran code and C code, and requires the use of the
CPLEX Callable Library. Again, a shared library SNZ.so will have to be created.

A.2.2 The Windows version

To use Windows versions of these functions, simply unzip the file SNZ.Windows.zip, place
the contents (including the R source code in file SNZ.r) in some suitable folder. Then
invoke R, choose “Source R code...” from the R file menu, and select the file StatsNZ.r.
If you want to use the function generate.data.lpSolve, you will also have to load the
library lpSolve by selecting “Install package(s)...” from the packages menu and following
the dialog. You are then ready to go.

A.2.3 The non-CPLEX Linux version

Extract the files from the tar file supplied and place them in some suitable directory. Set
your working directory to this directory, and create the shared library SNZ.so by running
the commands in the file make.R. Do this by typing

sh make.R

which will create the shared library SNZ.so. Then, to load the shared library and the R
functions, invoke R and type

source("SNZ.r")

This assumes that the shared library is in the directory from which you invoked R.
If not, an error message will be given. If you want to invoke R from one directory
and have the shared library in another, you will have to edit the first executable line
dyn.load("SNZ.so") in the file StatsNZ.r. As before, if you want to use the function
generate.data.lpSolve, you will need the lpSolve package loaded in R.

A.2.4 The CPLEX Linux version

To install this, the procedure is the same as for the non-CPLEX version. The only
complication is that location of the CPLEX Callable Library must be specified in the files

69

make.R and Makevars. On my system, the library is in directory
/usr/local/ilog/cplex101/lib/x86 rhel4.0 3.4/static pic

This string must be replaced by the one appropriate to your system in the file Makevars.
In addition, the C code requires some CPLEX include files, which in my system are in
the directory

/usr/local/ilog/cplex101/include

Again, this string should be replaced by the name of the appropriate directory in the file
make.R.

70

A.3 R function listings

In this appendix, we provide a listing of the R functions in the file StatsNZ.r supplied
with the CPLEX version. The non-CPLEX and Windows versions have fewer functions.

##

Linux Cplex version Last Modified 25 Jan 2007

First load shared library

dyn.load("SNZ.so")

Functions

##
#
check.data.frame=function(data.df){

checks that the data frame is in standard form
returns a list with elements status
(=0 if arg cannot be coereced into the standard form, otherwise 1)
and data (the possibly modified data frame in standard form,
if status =1, otherwise NULL)
standard form is a data frame with the first column a numeric variable,
and the other variables factors.

The numeric variable must be a non-negative vector of counts.

first check argument is a data frame, quit if not

if(!is.data.frame(data.df))return (list(status=0, data=NULL,
message = "Not a data frame"))

n.var=dim(data.df)[2]
is.number=logical(n.var)
for(j in 1:n.var) is.number[j]=is.numeric(data.df[,j])

check if exactly one is numeric
if(!(sum(is.number)==1)) return (list(status=0, data=NULL, message =
"More than one numeric variable"))

check to see if y is non-neg
if(!all(data.df[,is.number]>=0)) return (list(status=0, data=NULL,
message ="Cannot have non-negative counts"))

check that all factors have more than one level

71

use.cols = (1:n.var)[!is.number]
max.levels = numeric(length(use.cols))
for(i in 1:length(use.cols)) max.levels[i]=length(levels(data.df[,i]))
if(any(max.levels==1))stop(paste("All factors must have at least 2 levels.\n
The following variables have only one:",

paste(var.names[max.levels==1], collapse=", ")))

now re-arrange factors into alphabetic order
first get name of count variable
count.name = names(data.df)[is.number]
data.df = data.frame(data.df[,is.number],
data.df[, use.cols[order(names(data.df)[!is.number])]])
names(data.df)[1] = count.name
and counts in reverse lexographic order

dims = get.dim(data.df)
sortvec = rep(1,dim(data.df)[1]); myprod = 1
for(l in 1:length(dims)){
sortvec=(unclass(data.df[,l+1]) - 1)*myprod + sortvec
myprod = myprod * dims[l]
}

combine duplicated rows
data.df = data.df[order(sortvec),]
sortvec = sort(sortvec)
no.dups = !duplicated(sortvec)
counts = tapply(data.df[,1], sortvec, sum)
data.df = data.df[no.dups,]
data.df[,1] = counts

list(status=1, data=data.df, message ="Data frame OK")
}

##
#
get.dim = function(data.df){

gets the number of levels of the factors in the data frame data.df
not required by users

J = dim(data.df)[2] -1 # assumes counts are in column 1
dims=numeric(J)
for(j in 1:J)dims[j] = length(levels(data.df[,j+1]))
dims
}

##

72

#
is.table.df = function(data.df){
wrapper for check.data.frame, tests if object is a data
frame representing a table
check.data.frame(data.df)$status ==1
}

##
#
as.standard = function(data.df){

wrapper for check.data.frame, tests if object is a data frame
representing a table, returns table in standard form if so
result = check.data.frame(data.df)
if(result$status!=1)stop(result$message)
result$data
}

###
#
table2df= function(table){

function to convert an array "table" to a data frame
in standard form
First check input is an array
if(!is.array(table))stop("Input must be an array")
then check presence of dimnames
dimlist=dimnames(table)
if(is.null(dimlist)){
n.var=length(dim(table))
var.names= paste("V", 1:n.var, sep="")
dimlist=vector(n.var, mode="list")
for(i in 1:n.var) dimlist[[i]] = as.character(1:(dim(table)[i]))
names(dimlist)=var.names
}
y=as.vector(table)
if(any(y<0))stop("Table must have non-negative counts")
data.df=data.frame(y, expand.grid(dimlist))
data.df[y!=0,]
}

##
#
df2table = function(data.df){

converts data frame to array

first checks that the data frame is in standard form,

73

if not, coerces into standard form, bails out if not possible.
then forms array after resoring missing zero counts

first convert input to standardised data frame, quit if not

data.df = as.standard(data.df)

now restore zero counts
dims = get.dim(data.df)
sortvec = rep(1,dim(data.df)[1]); myprod = 1
for(l in 1:length(dims)){
sortvec=(unclass(data.df[,l+1]) - 1)*myprod + sortvec
myprod = myprod * dims[l]
}
counts = numeric(prod(dims))
counts[sortvec] = data.df[,1]

get levels for each factor

levels.list = vector(mode="list", length = length(dims))
for (i in 1:length(dims))levels.list[[i]] = levels(data.df[,i+1])
names(levels.list) = names(data.df)[-1]
array(counts, dims, dimnames=levels.list)
}

##
#
n.to.nvec = function(n, base.vec){

converts the integer n into a mixed-base representation
bases are in base.vec
not requireed by users

eg if (n-1) = i-1 + (j-1)*I + (k-1)*I*J + (l-1)*I*J*K
returns (i-1,j-1,k-1,l-1)

Nvar=length(base.vec)
l.index = numeric(Nvar)
cumlevels = (c(1,cumprod(base.vec)[-Nvar]))
nn=n-1
for(index in length(base.vec):1){
l.index[index] = nn%/%cumlevels[index]
nn = nn %% cumlevels[index]
}
l.index
}

74

###
#
generate.data.sas=function(...){

R function to generate artificial data set matching specified margins
SAS implementation

inputs are data frames containing margins
requires fortran shared library

df.list=list(...)
df.list = if(is.list(df.list[[1]]) && length(df.list)==1) df.list[[1]]
else df.list

inputs: either a single list of df’s or each argument is a list
df.list=list(...)

df.list: a list of data frames in standard form

if((length(df.list)==1)&is.list(df.list[[1]])) df.list=df.list[[1]]

now check data frames, and convert to arrays, expanding to include
zero counts.

array.list = vector(mode="list", length=length(df.list))

for(i in 1:length(df.list))array.list[[i]] = df2table(df.list[[i]])

get names and dimensions
names.list = vector(mode="list", length=length(df.list))
dim.list = vector(mode="list", length=length(df.list))

vars=NULL; dims = NULL

for(i in 1:length(df.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

remove duplicates and sort variable names into order

75

dup=duplicated(vars)

var.names=vars[!dup]
max.levels=dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

check for consistency of levels, record factor levels

levels.list = vector(mode="list", length=length(var.names))
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if(!is.na(k)){

current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else
{
if(length(first.levels) != length(current.levels)){

stop(paste("Factor levels for factor",name, "not compatible"))}
if(any(first.levels!= current.levels)){

stop(paste("Factor levels for factor", name, "not compatible"))}
}

}
}

levels.list[[j]] = first.levels
}

names(levels.list) = var.names
row.names=NULL; effect.names=NULL; b=NULL

for(i in 1:length(df.list)){
result=get.b(names.list[[i]], dim.list[[i]],

as.vector(array.list[[i]]), dimnames(array.list[[i]]))
row.names = c(row.names,result$row.names)
effect.names = c(effect.names,result$effect.names)
b = c(b,result$b)
}
dup = duplicated(row.names)
row.names = row.names[!dup]
b = b[!dup]

names(b) = row.names

76

edup = duplicated(effect.names)
effect.names = effect.names[!edup]

Nvar=length(var.names)
Nterms = length(effect.names)
Nrows = prod(max.levels)

make a binary matrix representing effect names
ie 0 1 0 1 represents B:D, 0 1 1 1 B:C:D etc

index.mat = matrix(F,Nterms, Nvar)
for (i in 1: Nterms){
index.mat[i,match(unlist(strsplit(effect.names[i],":")),var.names)] = T
}

now create constraint matrix A in coded row form
get dimensions of A

Ncols = prod(max.levels) # no of columns of A (constraint) matrix

Nrows = 1 + sum(apply(index.mat, 1, function(x)prod((max.levels-1)[x])))
no of rows of A matrix

max.levels.m1 = max.levels -1
term.offset=numeric(Nterms)
term.offset[1]=1
for(i in 1:(Nterms-1)) term.offset[i+1] = term.offset[i] +

prod(max.levels.m1[index.mat[i,]])

get sum of matrix entries nzcnt, this will be the
number of non-zero entries in A

nzcnt = Ncols # top row of constraint matrix is all 1’s
for(i in 1:Nterms){
nzcnt = nzcnt + prod(max.levels[!index.mat[i,]])*

prod(max.levels.m1[index.mat[i,]])
}

values of non-zero matrix elements are all ones
rmatind = numeric(nzcnt) # col in which they occur
rmatbeg = numeric(Nrows) # starting position in
rmatind where row i cols occur

in the following call, rows (nrow) and columns (ncol) refer
to the model matrix, the transpose of the constraint matrix.
Thus nrow = Ncol, ncol = Nrow

77

stuff = .Fortran("modmat", indmat= as.integer(index.mat*1),
maxlev = as.integer(max.levels),

rmatbeg = integer(Nrows), rmatind = integer(nzcnt),
nterms =as.integer(Nterms), nvar=as.integer(Nvar),
nrow=as.integer(Ncols), ncol=as.integer(Nrows),
nzcnt=as.integer(nzcnt))

now construct SAS program
outfile = "’x’"
sink("lp.sas")
cat("data test;\n")
cat(paste("infile ’lpdata’;\n"))
cat("input _type_ $ _col_ $ _row_ $ _coef_;\n")
cat("run;\n")
cat("proc lp primalout = x maxit1=10000 maxit2=10000

imaxit=10000 time=10000 sparsedata;\n")
cat("run;\n")
cat("data out;\n")
cat("set x;\n")
cat("keep _var_ _value_;\n")
cat("if _type_ eq ’INTEGER’;\n")
cat("run;\n")
cat("PROC EXPORT DATA= WORK.OUT OUTFILE= ",outfile,

"DBMS=TAB REPLACE;\n")
cat("run;\n")
sink()

and data

rmatind = stuff$rmatind
rmatbeg = c(stuff$rmatbeg, nzcnt)

sink("lpdata")
objective function
for(j in 1:Ncols)cat("max", paste("x",j,sep=""), "obj 1 \n")
constraints
for(i in 1:Nrows){

start = rmatbeg[i] + 1; stop = rmatbeg[i+1]
for(j in start:stop)cat("eq", paste("x",rmatind[j]+1,sep=""),

paste("r",i,sep=""), 1,"\n")
cat("rhs _rhs_", paste("r",i,sep=""), b[i],"\n")

}

upperbounds
for(j in 1:Ncols)cat(paste("upperbd x",j,sep=""), "upper", b[1],"\n")

variable types

78

for(j in 1:Ncols)cat("integer", paste("x",j,sep=""), "int 1 \n")
sink()

and run it

system("sas lp.sas")
get x

temp = read.table("x", header=T)
var.order = order(as.numeric(substring(temp[,1],2)))
x = round(temp[var.order,2])

clean up, leaving sas log for diagnostic purposes

system("rm x")
system("rm lp.sas")
system("rm lpdata")

table2df(array(x, dim = max.levels, dimnames = levels.list))
}

convert=function(n, base.levels){

converts the integer n into a mixed-base representation
bases are in base.vec

eg if (n-1) = i-1 + (j-1)*I + (k-1)*I*J + (l-1)*I*J*K
returns (i-1,j-1,k-1,l-1)

nbase = length(base.levels)
cumlevels = numeric(nbase)
cumlevels[1] = 1
if(nbase>1)for(i in 2:nbase)cumlevels[i]= cumlevels[i-1]*

base.levels[i-1]

l.index=numeric(nbase)
nn=n-1
for(index in nbase:1){
l.index[index] = nn%/%cumlevels[index]
nn = nn - cumlevels[index]*l.index[index]
}
l.index
}

###
#
generate.data.cplex=function(..., objective="linear", MAXITER=20,TOL=1.0e-8){

79

R function to generate artificial data set matching specified margins

inputs are data frames containing margins

requires shared library "SNZ.o" to have been loaded

If objective="linear", then the IP solution is returned. Otherwise
the closest quadratic integer approximation to the IPF solution
is returned

df.list=list(...)
df.list = if(is.list(df.list[[1]]) && length(df.list)==1) df.list[[1]]
else df.list

if (substr(objective,1,1)!="l" && substr(objective,1,1)!="q"){
stop("Invalid value for objective")}

objective = if (substr(objective,1,1)=="l") "l" else "q"

inputs: either a single list of df’s or each argument is a list
df.list=list(...)

df.list: a list of data frames in standard form

if((length(df.list)==1)&is.list(df.list[[1]])) df.list=df.list[[1]]

now check data frames, and convert to arrays, expanding to
include zero counts.

array.list = vector(mode="list", length=length(df.list))

for(i in 1:length(df.list))array.list[[i]] = df2table(df.list[[i]])

get names and dimensions
names.list = vector(mode="list", length=length(df.list))
dim.list = vector(mode="list", length=length(df.list))

vars=NULL; dims = NULL

for(i in 1:length(df.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

80

remove duplicates and sort variable names into order

dup=duplicated(vars)

var.names=vars[!dup]
max.levels=dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

check for consistency of levels, record factor levels

levels.list = vector(mode="list", length=length(var.names))
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if(!is.na(k)){

current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else
{
if(length(first.levels) != length(current.levels))

stop(paste("Factor levels for factor", name, "not compatible"))
if(any(first.levels!= current.levels))

stop(paste("Factor levels for factor", name, "not compatible"))
}

}
}

levels.list[[j]] = first.levels
}

names(levels.list) = var.names
row.names=NULL; effect.names=NULL; b=NULL

for(i in 1:length(df.list)){
result=get.b(names.list[[i]], dim.list[[i]],

as.vector(array.list[[i]]), dimnames(array.list[[i]]))
row.names = c(row.names,result$row.names)
effect.names = c(effect.names,result$effect.names)
b = c(b,result$b)

}
dup = duplicated(row.names)
row.names = row.names[!dup]
b = b[!dup]

81

names(b) = row.names

edup = duplicated(effect.names)
effect.names = effect.names[!edup]

Nvar=length(var.names)
Nterms = length(effect.names)
Nrows = prod(max.levels)

make a binary matrix representing effect names
ie 0 1 0 1 represents B:D, 0 1 1 1 B:C:D etc

index.mat = matrix(F,Nterms, Nvar)
for (i in 1: Nterms){
index.mat[i,match(unlist(strsplit(effect.names[i],":")),

var.names)] = T
}

now create constraint matrix A in coded row form
get dimensions of A

Ncols = prod(max.levels) # no of columns of A matrix

Nrows = 1 + sum(apply(index.mat, 1,
function(x)prod((max.levels-1)[x])))

no of rows of A matrix

max.levels.m1 = max.levels -1
term.offset=numeric(Nterms)
term.offset[1]=1
for(i in 1:(Nterms-1)) term.offset[i+1] = term.offset[i] +

prod(max.levels.m1[index.mat[i,]])

get sum of matrix entries nzcnt, this will be the
number of non-zero entries in A

nzcnt = Ncols # top row of constraint matrix is all 1’s
for(i in 1:Nterms){
nzcnt = nzcnt + prod(max.levels[!index.mat[i,]])*

prod(max.levels.m1[index.mat[i,]])
}

values of non-zero matrix elements are all ones
rmatind = numeric(nzcnt) # col in which they occur

82

rmatbeg = numeric(Nrows) # starting position in
rmatind where row i cols occur

in the following call, rows (nrow) and columns (ncol) refer
to the model matrix, the transpose of the constraint matrix.
Thus rrow = Ncol, ncol = Nrow

Astuff = .Fortran("modmat", indmat= as.integer(index.mat*1),
maxlev = as.integer(max.levels), rmatbeg = integer(Nrows),
rmatind = integer(nzcnt), nterms =as.integer(Nterms),
nvar=as.integer(Nvar), nrow=as.integer(Ncols),
ncol=as.integer(Nrows), nzcnt=as.integer(nzcnt))

if(objective=="l"){

call cplex
x=.C("docplex", as.integer(Nrows), as.integer(Ncols),
as.integer(nzcnt), as.integer(Astuff$rmatbeg),
as.integer(Astuff$rmatind), as.double(b),
x=double(Ncols))$x

} else {

names(levels.list) = var.names
make a binary matrix representing effect names
ie 0 1 0 1 represents B:D, 0 1 1 1 B:C:D etc

N.effect = length(df.list)
Nvar = length(var.names)
N=prod(max.levels)

effect.mat = matrix(F,N.effect, Nvar)
margin = vector(mode="list", length= N.effect)

for (i in 1: N.effect){
effect.mat[i,match(names.list[[i]],var.names)] = T
}

margin.ind = cumsum(c(0, sapply(array.list,length)))[-(N.effect+1)]
margin = unlist(array.list)

Now do IPF iterations by calling Fortran subroutine

xstar = .Fortran("IPF", effmat = as.integer(effect.mat*1),
neff = as.integer(N.effect),
nvar = as.integer(Nvar),
maxlev = as.integer(max.levels),
marginvec = as.integer(margin),

83

nmarg = as.integer(length(margin)),
marginind = as.integer(margin.ind),
x = double(N),
n = as.integer(N),
maxiter = as.integer(MAXITER),
tol = as.double(TOL),
crit = double(1))$x

call quadratic program

x=.C("quadcplex", as.integer(Nrows), as.integer(Ncols),
as.integer(nzcnt), as.integer(Astuff$rmatbeg),
as.integer(Astuff$rmatind), as.double(b),
as.double(xstar), x=double(Ncols))$x
}

table2df(array(round(x), dim = max.levels, dimnames = levels.list))
}

###
#
generate.data.ipf=function(..., result = "random", MAXITER=20, TOL=1.0e-8){

program to generate data using IPF
requires shared library "SNZ.so"

inputs: either a single list of df’s or each argument is a list

check input "result"

if(substr(result,1,2)=="ra") result = "ra" else
if(substr(result,1,2)=="ro") result = "ro" else
stop(" result must be ’random’ or ’rounded’ ")

df.list=list(...)

df.list: a list of data frames in standard form

if((length(df.list)==1)&is.list(df.list[[1]])) df.list=df.list[[1]]

now check data frames, and convert to arrays, expanding to
include zero counts.

array.list = vector(mode="list", length=length(df.list))

for(i in 1:length(df.list))array.list[[i]] = df2table(df.list[[i]])

84

get names and dimensions
names.list = vector(mode="list", length=length(df.list))
dim.list = vector(mode="list", length=length(df.list))

vars=NULL; dims = NULL

for(i in 1:length(df.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

remove duplicates and sort variable names into order

dup=duplicated(vars)

var.names=vars[!dup]
max.levels=dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

check for consistency of levels, record factor levels

levels.list = vector(mode="list", length=length(var.names))
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if(!is.na(k)){

current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else
{
if(length(first.levels) != length(current.levels)) {

stop(paste("Factor levels for factor", name, "not compatible"))}
if(any(first.levels!= current.levels)) {

stop(paste("Factor levels for factor", name, "not compatible"))}
}

}
}

levels.list[[j]] = first.levels
}

85

names(levels.list) = var.names
make a binary matrix representing effect names
ie 0 1 0 1 represents B:D, 0 1 1 1 B:C:D etc

N.effect = length(df.list)
Nvar = length(var.names)
N=prod(max.levels)

effect.mat = matrix(F,N.effect, Nvar)
margin = vector(mode="list", length= N.effect)

for (i in 1: N.effect){
effect.mat[i,match(names.list[[i]],var.names)] = T
}

margin.ind = cumsum(c(0, sapply(array.list,
length)))[-(N.effect+1)]

margin = unlist(array.list)

Now do IPF iterations by calling Fortran subroutine

ipf.list = .Fortran("IPF", effmat = as.integer(effect.mat*1),
neff = as.integer(N.effect),
nvar = as.integer(Nvar),
maxlev = as.integer(max.levels),
marginvec = as.integer(margin),
nmarg = as.integer(length(margin)),
marginind = as.integer(margin.ind),
x = double(N),
n = as.integer(N),
maxiter = as.integer(MAXITER),
tol = as.double(TOL),
crit = double(1))

now generate a data set
xsum =sum(ipf.list$x)
probs = ipf.list$x/xsum
if(result=="ra"){
list(data =table2df(array(rmultinom(1, xsum, probs),
dim = max.levels, dimnames = levels.list)), probs = probs,
error=ipf.list$crit)
} else
{
list(data =table2df(array(round(ipf.list$x), dim = max.levels,

dimnames = levels.list)), probs=probs, error=ipf.list$crit)
}
}

86

##
#
generate.data.lpSolve=function(...){

R function to generate artificial data set matching specified margins

inputs are data frames containing margins in
requires R library lpSolve

inputs: either a single list of df’s or each argument is a df

df.list=list(...)

df.list: a list of data frames in standard form

if((length(df.list)==1)&is.list(df.list[[1]])) df.list=df.list[[1]]

now check data frames, and convert to arrays, expanding to
include zero counts.

array.list = vector(mode="list", length=length(df.list))

for(i in 1:length(df.list))array.list[[i]] = df2table(df.list[[i]])

get names and dimensions
names.list = vector(mode="list", length=length(df.list))
dim.list = vector(mode="list", length=length(df.list))

vars=NULL; dims = NULL

for(i in 1:length(df.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

remove duplicates and sort variable names into order

dup=duplicated(vars)

var.names=vars[!dup]
max.levels=dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

87

check for consistency of levels, record factor levels

levels.list = vector(mode="list", length=length(var.names))
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if(!is.na(k)){

current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else
{
if(length(first.levels) != length(current.levels)){

stop(paste("Factor levels for factor",name, "not compatible"))}
if(any(first.levels!= current.levels)){

stop(paste("Factor levels for factor", name, "not compatible"))}
}

}
}

levels.list[[j]] = first.levels
}

names(levels.list) = var.names
first construct formula

complete.formula = ""

for(i in 1:length(df.list)) {
listvars=names.list[[i]]
complete.formula=if(i==1){
paste(complete.formula,paste(listvars, collapse="*"), sep="")} else
paste(complete.formula,"+", paste(listvars, collapse="*"),sep="")
}

get vector of terms in formula

term.vec = unlist(strsplit(complete.formula, "\\+"))

loop over the effects in the model, getting b’s as we go, plus
expand star terms into main effects, interactions etc

row.names=NULL; b=NULL

for(i in 1:length(term.vec)){
response = names(df.list[[i]])[1]

88

formula = formula(paste(response,"~",term.vec[i]))
A=model.matrix(formula, df.list[[i]])
row.names = c(row.names,dimnames(A)[[2]])
b = c(b,t(A)%*%df.list[[i]][,1])
}
dup = duplicated(row.names)
row.names = row.names[!dup]
b = b[!dup]

names(b) = row.names

now get model matrix for complete model
complete.formula = formula(paste("y~",complete.formula))

make dummy data frame

dummy.data = data.frame(y=rep(1, prod(max.levels)),
expand.grid(levels.list))

A = t(model.matrix(complete.formula, dummy.data))

sort individual row labels of A so they match those of b
row.labels = row.names(A)
for(i in 1:length(row.labels)){
split.vec = sort(unlist(strsplit(row.labels[i], "\\:")))
row.labels[i] = paste(split.vec, collapse=":")
}
row.names(A)=row.labels

rearrange the elements of b to match A
perm= match(row.names(A),names(b))
b=b[perm]

now solve the IP
library(lpSolve)
ip.obj = lp ("max", objective.in = A[1,], A,

const.dir=rep("=",dim(A)[1]), b, int.vec=1:dim(A)[2])

convert back to a data frame

table2df(array(round(ip.obj$solution), dim = max.levels,
dimnames = levels.list))

}

harmonise = function(..., method="ipf", MAXITER=20, TOL=1.0e-8){

function to harmonise tables

89

wrapper for functions harmonise.partial, harmonise.ipf, harmonise.all
which follow

inputs:
... : either a single list of data frames or data frames
method: One of "partial", "complete", "ipf" (first letter suffices)
MAXITER: maximum number of iterarions for ipf method
(ignored if method is not ipf)
TOL: stopping criterion for ipf method
(ignored if method is not ipf)

output: list of adjusted data frames

df.list=list(...)

if((length(df.list)==1)&is.list(df.list[[1]])) df.list=df.list[[1]]

if(substr(method,1,1) =="i") harmonise.ipf(df.list, MAXITER, TOL) else
if(substr(method,1,1) =="c") harmonise.all(df.list) else
if(substr(method,1,1) =="p") harmonise.partial(df.list) else
stop("CPLEX not avaliable, Method must be ipf")
}

###
#
harmonise.ipf = function(df.list, MAXITER=20, TOL=1.0e-8){

inputs: df.list, a list of data frames

first check data frames, and convert to arrays, expanding
to include zero counts.

array.list = vector(mode="list", length=length(df.list))

for(i in 1:length(df.list))array.list[[i]] = df2table(df.list[[i]])

get names and dimensions
names.list = vector(mode="list", length=length(df.list))
dim.list = vector(mode="list", length=length(df.list))

vars=NULL; dims = NULL

for(i in 1:length(df.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)

90

vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

remove duplicates and sort variable names into order

dup=duplicated(vars)

var.names=vars[!dup]
max.levels=dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

check for consistency of levels, record factor levels

levels.list = vector(mode="list", length=length(var.names))
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if(!is.na(k)){

current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else
{
if(length(first.levels) != length(current.levels)){

stop(paste("Factor levels for factor", name, "not compatible"))}
if(any(first.levels!= current.levels)){

stop(paste("Factor levels for factor", name, "not compatible"))}
}

}
}

levels.list[[j]] = first.levels
}

names(levels.list) = var.names
make a binary matrix representing effect names
ie 0 1 0 1 represents B:D, 0 1 1 1 B:C:D etc

N.effect = length(df.list)
Nvar = length(var.names)
N=prod(max.levels)

effect.mat = matrix(F,N.effect, Nvar)
margin = vector(mode="list", length= N.effect)

91

for (i in 1: N.effect){
effect.mat[i,match(names.list[[i]],var.names)] = T
}

margin.ind = cumsum(c(0, sapply(array.list,length)))[-(N.effect+1)]
margin = unlist(array.list)

Now do IPF iterations by calling Fortran subroutine

x = .Fortran("IPF", effmat = as.integer(effect.mat*1),
neff = as.integer(N.effect),
nvar = as.integer(Nvar),
maxlev = as.integer(max.levels),
marginvec = as.integer(margin),
nmarg = as.integer(length(margin)),
marginind = as.integer(margin.ind),
x = double(N),
n = as.integer(N),
maxiter = as.integer(MAXITER),
tol = as.double(TOL),
crit = double(1))$x

now generate harmonised margins
X = array(round(x), dim = max.levels, dimnames = levels.list)
for(i in 1:length(df.list)){
X.temp = apply(X, match(names.list[[i]], var.names), sum)
dimnames(X.temp) = dimnames(array.list[[i]])
df.list[[i]] = table2df(X.temp)
}
df.list
}

###
#
harmonise.partial = function(df.list){

inputs: either a single list of data frames or each argument
is a data frame
output: list of adjusted data frames

array.list = vector(mode="list", length=length(df.list))

for(i in 1:length(df.list))array.list[[i]] = df2table(df.list[[i]])

get names and dimensions
names.list = vector(mode="list", length=length(df.list))
dim.list = vector(mode="list", length=length(df.list))

92

vars=NULL; dims = NULL

for(i in 1:length(df.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

remove duplicates and sort variable names into order

dup=duplicated(vars)

var.names=vars[!dup]
max.levels=dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

get marginal tables

b = NULL
for(i in 1:length(df.list)) b = c(b, as.vector(array.list[[i]]))

get length of solution vector

x.lengths = sapply(dim.list, prod)
x.start = c(0,cumsum(x.lengths))

rmatind = NULL
rmatbeg = 0
rmatval = NULL

loop over pairs of tables to get intersections
for(i in 1:(length(df.list)-1)){
for(j in (i+1):length(df.list)){

Si=match(names.list[[i]], var.names)
Sj=match(names.list[[j]], var.names)

if Si and Sj intersect form the contrast matrices Aij and
Aji in row form

if(length(intersect(Si,Sj))>0){
result = get.constraint.matrices(Si, Sj, max.levels)
off1 = x.start[i]
off2 = x.start[j]
lmb=length(result$rmatbeg1)
for(k in 1:lmb){

93

index1 = if (k<lmb) (result$rmatbeg1[k] + 1):
result$rmatbeg1[k+1] else

(result$rmatbeg1[k]+1): length(result$rmatind1)
index2 = if (k<lmb) (result$rmatbeg2[k] + 1):

result$rmatbeg2[k+1] else
(result$rmatbeg2[k]+1): length(result$rmatind2)

rmatind= c(rmatind, result$rmatind1[index1]+off1,
result$rmatind2[index2]+off2)

rmatval = c(rmatval, rep(1, length(index1)),
rep(-1, length(index2)))

rmatbeg = c(rmatbeg, length(index1) + length(index2))
}

}
}

}

check for no intersecting tables

if(is.null(rmatind)) return(df.list)

otherwise adjust tables

newb = .C("h2cplex", as.integer(length(rmatbeg)),
as.integer(length(b)), as.integer(length(rmatind)),
as.integer(cumsum(rmatbeg)), as.integer(rmatind),
as.double(rmatval), as.double(b), x=double(length(b)))$x

new.list = vector(mode="list", length=length(df.list))
start=0
stop = 0
for(i in 1: length(df.list)){
start=stop + 1
stop = stop + dim(df.list[[i]])[1]
df.list[[i]][,1] = newb[start:stop]
new.list[[i]] = df.list[[i]]
}
new.list
}

###
#
harmonise.all=function(df.list){

R function to harmonise tables, using quadratic method
called by function harmonise
input: df.list, a list of data frames
requires fortran and cplex shared libraries

94

first check data frames, and convert to arrays, expanding to
include zero counts.

array.list = vector(mode="list", length=length(df.list))

for(i in 1:length(df.list)){
array.list[[i]] = df2table(df.list[[i]])
}

get names and dimensions
names.list = vector(mode="list", length=length(df.list))
dim.list = vector(mode="list", length=length(df.list))

vars=NULL; dims = NULL

for(i in 1:length(df.list)) {
names.list[[i]] = names(dimnames(array.list[[i]]))
dim.list[[i]] = sapply(dimnames(array.list[[i]]), length)
vars = c(vars, names.list[[i]])
dims = c(dims, dim.list[[i]])
}

remove duplicates and sort variable names into order

dup=duplicated(vars)

var.names=vars[!dup]
max.levels=dims[!dup]

var.order = order(var.names)
var.names = var.names[var.order]
max.levels = max.levels[var.order]

check for consistency of levels, record factor levels

levels.list = vector(mode="list", length=length(var.names))
for(j in 1:length(var.names)){
first=TRUE
name = var.names[j]
for(i in 1:length(array.list)){

k = match(name, names(dimnames(array.list[[i]])))
if(!is.na(k)){
current.levels = dimnames(array.list[[i]])[[k]]
if(first) { first.levels = current.levels

first = FALSE} else
{
if(length(first.levels) != length(current.levels)){

95

stop(paste("Factor levels for factor",name, "not compatible"))}
if(any(first.levels!= current.levels)){

stop(paste("Factor levels for factor", name, "not compatible"))}
}

}
}

levels.list[[j]] = first.levels
}

names(levels.list) = var.names
row.names=NULL; effect.names=NULL; b=NULL

for(i in 1:length(df.list)){
result=get.b(names.list[[i]], dim.list[[i]],

as.vector(array.list[[i]]), dimnames(array.list[[i]]))
row.names = c(row.names,result$row.names)
effect.names = c(effect.names,result$effect.names)
b = c(b,result$b)

}
dup = duplicated(row.names)
row.names = row.names[!dup]
b = b[!dup]

names(b) = row.names

edup = duplicated(effect.names)
effect.names = effect.names[!edup]

Nvar=length(var.names)
Nterms = length(effect.names)
Nrows = prod(max.levels)

make a binary matrix representing effect names
ie 0 1 0 1 represents B:D, 0 1 1 1 B:C:D etc

index.mat = matrix(F,Nterms, Nvar)
for (i in 1: Nterms){
index.mat[i,match(unlist(strsplit(effect.names[i],":")),

var.names)] = T
}

now create constraint matrix A in coded row form
get dimensions of A

Ncols = prod(max.levels) # no of columns of A matrix

Nrows = 1 + sum(apply(index.mat, 1,

96

function(x)prod((max.levels-1)[x])))
no of rows of A matrix

max.levels.m1 = max.levels -1
term.offset=numeric(Nterms)
term.offset[1]=1
for(i in 1:(Nterms-1)) term.offset[i+1] = term.offset[i] +

prod(max.levels.m1[index.mat[i,]])

get sum of matrix entries nzcnt, this will be the
number of non-zero entries in A

nzcnt = Ncols # top row of constraint matrix is all 1’s
for(i in 1:Nterms){
nzcnt = nzcnt + prod(max.levels[!index.mat[i,]])*

\prod(max.levels.m1[index.mat[i,]])
}

values of non-zero matrix elements are all ones
rmatind = numeric(nzcnt) # col in which they occur
rmatbeg = numeric(Nrows) # starting position in
rmatind where row i cols occur

in the following call, rows (nrow) and columns (ncol)
refer to the model matrix, the transpose of the constraint matrix.
Thus rrow = Ncol, ncol = Nrow

Astuff = .Fortran("modmat", indmat= as.integer(index.mat*1),
maxlev = as.integer(max.levels), rmatbeg = integer(Nrows),
rmatind = integer(nzcnt), nterms =as.integer(Nterms),
nvar=as.integer(Nvar), nrow=as.integer(Ncols),
ncol=as.integer(Nrows), nzcnt=as.integer(nzcnt))

now adjust rmatbeg etc

rmatind = Astuff$rmatind
rmatval = rep(1, length(rmatind))
rmatbeg = c(Astuff$rmatbeg, length(rmatind))

insert = function(x, val,pos)if(pos==0)c(val,x) else
if(pos==length(x)) c(x,val) else
c(x[1:pos], val, x[(pos+1):length(x)])

for(i in 1:Nrows){
rmatbeg[i+1] = rmatbeg[i+1]+i
rmatind = insert(rmatind, Ncols + i-1, rmatbeg[i+1]-1)
rmatval = insert(rmatval, -1, rmatbeg[i+1]-1)
}

97

rmatbeg = rmatbeg[-length(rmatbeg)]
newNcols = Ncols + Nrows
nzcnt = nzcnt + Nrows
zstar = c(rep(0,Ncols),b)

call cplex

z = .C("h1cplex", as.integer(Nrows), as.integer(Ncols),
as.integer(newNcols), as.integer(nzcnt), as.integer(rmatbeg),
as.integer(rmatind), as.double(rmatval),
as.double(zstar), z=double(newNcols))$z

now produce list of harmonised tables

X = array(z[1:Ncols], max.levels)
for(i in 1:length(df.list)){
X.temp = apply(X, match(names.list[[i]], var.names), sum)
dimnames(X.temp) = dimnames(array.list[[i]])
df.list[[i]] = table2df(X.temp)
}

df.list
}

###
#
get.b = function(namevec, dimvec,y, level.list){

namevec: vector of variable names for table margin
dimvec: table dimensions
y: vector of counts in standard form
(as.vector applied to array)
level.list: levels for factors in current term
(dimnames for current array)
returns list with margins in b, names in row.names
used in generate.data.cplex, generate.data.sas

Nvars = length(namevec)
Nterms = 2^Nvars-1

make index.mat
index.mat = matrix(F, Nterms, Nvars)

for(i in 1:Nterms) index.mat[i,] = as.logical(n.to.nvec(i+1,
rep(2,Nvars)))

98

make rownames for the margin b

rownames=NULL
effectnames=NULL
for(i in 1:Nterms){
tempnames1 = ""
tempnames2 = ""
use = (1:Nvars)[index.mat[i,]]
for(k in 1:length(use)){
fac2 = paste(namevec[use[k]],level.list[[use[k]]][-1], sep="")
fac3 = namevec[use[k]]
tempnames1 = outer(tempnames1, fac2,

function(x,y)ifelse(x=="", y, paste(x,y,sep=":")))
tempnames2 = outer(tempnames2, fac3,

function(x,y)ifelse(x=="", y, paste(x,y,sep=":")))
}
rownames=c(rownames, tempnames1)
effectnames=c(effectnames, tempnames2)
}
rownames=c("Intercept", rownames)

now create constraint matrix A in coded row form
get dimensions of A

Ncols = prod(dimvec) # no of columns of A matrix
dimvec.m1 = dimvec -1

no of rows of A matrix
Nrows = 1 + sum(apply(index.mat, 1,

function(x)prod((dimvec.m1)[x])))

term.offset=numeric(Nterms)
term.offset[1]=1
for(i in 1:(Nterms-1)) term.offset[i+1] = term.offset[i] +

prod(dimvec.m1[index.mat[i,]])

get sum of matrix entries nzcnt, this will be the number
of non-zero entries in A

nzcnt = Ncols # top row of constraint matrix is all 1’s
for(i in 1:Nterms){
nzcnt = nzcnt + prod(dimvec[!index.mat[i,]])*

prod(dimvec.m1[index.mat[i,]])
}

99

#initialize rmatind
rmatind = numeric(nzcnt)

in the following call, rows (nrow) and columns (ncol) refer to
the model matrix, the transpose of the constraint matrix.
Thus rrow = Ncol, ncol = Nrow

stuff = .Fortran("modmat", indmat= as.integer(index.mat*1),
maxlev = as.integer(dimvec), rmatbeg = integer(Ncols),
rmatind = integer(nzcnt), nterms =as.integer(Nterms),
nvar=as.integer(Nvars), nrow=as.integer(Ncols),
ncol=as.integer(Nrows), nzcnt=as.integer(nzcnt))

calculate b

rmatbeg = c(stuff$rmatbeg, nzcnt)

b=numeric(Nrows)
for(i in 1:Nrows){
start = rmatbeg[i] + 1
stop = rmatbeg[i+1]
b[i] = sum(y[stuff$rmatind[start:stop]+1])
}

list(b=b, row.names = rownames, effect.names=effectnames)

}

###

get.constraint.matrices=function(S1, S2, factor.levels){

function to extract Aij and Aji in row form, given
margin sets and factor levels

S1, S2: two subsets corresponding to two different
marginal tables e.g S1={1,3} corresponds to the A1A3 table
max.levels: vector containing the number of levels in each
factor outputs model matrices in coded form in vectors
rmatbeg1 and rmatind1 and rmatbeg2 and rmatind2

make a binary matrix representing effect names for a
saturated model; rows are binary reps of 1:(k-1) where
k is number of elements in intersect(S1,S2)

100

S=intersect(S1,S2)
k=length(S)
k1=length(S1)
k2=length(S2)

if(k>0){
bin.mat = matrix(0,2^k-1, k)
for (i in 1: (2^k-1)){
bin.mat[i,] = convert(i+1, rep(2,k))
}
}

first matrix

max.levels = factor.levels[S1]

index.mat = matrix(0, (2^k-1), k1)
index.mat[,match(S,S1)] = bin.mat
Ncols = 1+sum(apply(index.mat,1,function(x,max.levels){

prod((max.levels-1)^x)},max.levels))

Nrows=prod(max.levels)
Nterms = dim(index.mat)[1]
Nvar = dim(index.mat)[2]

Initialize rmatbeg
rmatbeg = numeric(Ncols)
rmatbeg[1]=0

get sum of matrix entries

max.levels.m1 = max.levels -1
matsum=prod(max.levels)
for(i in 1:Nterms){
matsum = matsum + prod(max.levels[index.mat[i,]!=1])*

prod(max.levels.m1[index.mat[i,]==1])
}

#initialize rmatind

rmatind = numeric(matsum)

now call .Fortran function

stuff = .Fortran("modmat", indmat= as.integer(index.mat*1),
maxlev = as.integer(max.levels), rmatbeg = integer(Ncols),

101

rmatind = integer(matsum), nterms =as.integer(Nterms),
nvar=as.integer(Nvar), nrow=as.integer(Nrows),
ncol=as.integer(Ncols), matsum=as.integer(matsum))
rmatbeg1=stuff$rmatbeg
rmatind1=stuff$rmatind

now for second matrix

max.levels = factor.levels[S2]

index.mat = matrix(0, (2^k-1), k2)
index.mat[,match(S,S2)] = bin.mat
Ncols = 1+sum(apply(index.mat,1,function(x,max.levels){

prod((max.levels-1)^x)},max.levels))

Nrows=prod(max.levels)
Nterms = dim(index.mat)[1]
Nvar = dim(index.mat)[2]

Initialize rmatbeg
rmatbeg = numeric(Ncols)
rmatbeg[1]=0

get sum of matrix entries

max.levels.m1 = max.levels -1
matsum=prod(max.levels)
for(i in 1:Nterms){
matsum = matsum + prod(max.levels[index.mat[i,]!=1])*

prod(max.levels.m1[index.mat[i,]==1])
}

#initialize rmatind
rmatind = numeric(matsum)

now call .Fortran function

stuff = .Fortran("modmat", indmat= as.integer(index.mat*1),
maxlev = as.integer(max.levels), rmatbeg = integer(Ncols),
rmatind = integer(matsum), nterms =as.integer(Nterms),
nvar=as.integer(Nvar), nrow=as.integer(Nrows),
ncol=as.integer(Ncols), matsum=as.integer(matsum))

list(rmatbeg1=rmatbeg1, rmatind1=rmatind1, rmatbeg2=stuff$rmatbeg,
rmatind2=stuff$rmatind)
}

102

A.4 Fortran and C code listings

Finally, we give the listings of the C and Fortran code used to construct the shared
libraries.

In file Rcplex.c:

/* Includes and definitions */

#include <ilcplex/cplex.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#define ROWSPACE 50000
#define COLSPACE 100000
#define NZSPACE 500000

/* cplex program for first quadratic harmonisation program*/

void h1cplex(int *numrows, int *numcols, int *newnumcols, int *nzcnt,
int *rmatbeg, int *rmatind, double *rmatval, double *zstar, double *z){

int numcols1; /* numcols-1 */

/* Declare and allocate space for the variables and arrays where we will
store the optimization results including the status, objective value,
variable values, dual values, row slacks and variable reduced costs. */

char sense[ROWSPACE];
double rhs[ROWSPACE];
double value[COLSPACE];
char ctype[COLSPACE];
int index[COLSPACE];

CPXENVptr env = NULL;
CPXLPptr lp = NULL;
int status;
int i;
int newnumcols1;
char errmsg[1024];
char *filename = "harm1.lp";
char *probname = "harm1";

/* Initialize the CPLEX environment */

env = CPXopenCPLEX (&status);

103

/* If an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.
but we do not do this */

if (env == NULL) {
fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;

}

/* Load the problem. */

lp = CPXcreateprob(env, &status, probname);
if (lp == NULL){

printf("Failed to load LP");
goto TERMINATE;

}

/* set RHS equal to zero*/

for(i=0; i<*numrows; i++) rhs[i] = 0.0;

/* get vector sens, length NUMMROWS */

for(i=0; i<*numrows; i++) sense[i] = ’E’;

/* now add rows to lp */

status = CPXaddrows(env, lp, *newnumcols, *numrows,
*nzcnt, rhs, sense, rmatbeg, rmatind, rmatval, NULL, NULL);

if(status!=0)goto TERMINATE;

/* add coefficients to objective function */

for(i=0; i<*newnumcols; i++){
index[i] = i;

value[i] = -zstar[i];
ctype[i]=’I’;
}

status = CPXchgobj(env, lp, *newnumcols, index, value);
if(status!=0)goto TERMINATE;

104

/* now add quadratic terms (reuse vector value to save space)*/

for(i=0; i<*numcols; i++){
value[i] = 0.0;

}
for(i=0; i<*numrows; i++){

value[i+*numcols] = 1.0;
}

status = CPXcopyqpsep(env,lp,value);
if(status!=0)goto TERMINATE;

/* and change their type */

status = CPXchgctype(env,lp, *numcols, index, ctype);
if(status!=0)goto TERMINATE;

/* write out problem specification*/

status = CPXlpwrite(env, lp, filename);
if(status!=0)goto TERMINATE;

printf("mip saved\n");

/* do optimisation */

status = CPXmipopt(env, lp);
if(status!=0)goto TERMINATE;

/* printf("mipopt done\n");*/

newnumcols1 = *newnumcols - 1;
status = CPXgetx(env,lp,z, 0, newnumcols1);

if(status!=0)goto TERMINATE;
printf("found x\n ");

TERMINATE:

if (lp != NULL){
status = CPXfreeprob(env, &lp);
if(status!= 0) printf("CPXfreeprob failed, error code %d", status);

}

/* Free up the CPLEX environment, if necessary*/

if(env !=NULL){

105

status = CPXcloseCPLEX(&env);

if(status != 0){
printf("Could not close CPLEX environment");
CPXgeterrorstring(env ,status, errmsg);
printf("%s",errmsg);

}
}

}

/* ##*/

/* cplex function h2cplex for second quadratic harmonisation program*/

void h2cplex(int *numrows, int *numcols, int *nzcnt, int *rmatbeg,
int *rmatind, double *rmatval, double *b, double *x){

int numcols1; /* numcols-1 */

/* Declare and allocate space for the variables and arrays where we will
store the optimization variables. */

char sense[ROWSPACE];
double rhs[ROWSPACE];
double value[COLSPACE];
char ctype[COLSPACE];
int index[COLSPACE];

CPXENVptr env = NULL;
CPXLPptr lp = NULL;
int status;
int i;
char errmsg[1024];
char *filename = "h2cplex.lp";
char *probname = "h2cplex";

/* Initialize the CPLEX environment */

env = CPXopenCPLEX (&status);

if (env == NULL) {
fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;

}

106

/* Load the problem. */

lp = CPXcreateprob(env, &status, probname);
if (lp == NULL){
printf("Failed to load LP");
goto TERMINATE;

}

/* set RHS equal to zero*/

for(i=0; i<*numrows; i++) rhs[i] = 0.0;

/* get vector sens, length NUMMROWS */

for(i=0; i<*numrows; i++) sense[i] = ’E’;

/* now add rows to lp */

status = CPXaddrows(env, lp, *numcols, *numrows,
*nzcnt, rhs, sense, rmatbeg, rmatind, rmatval, NULL, NULL);

if(status!=0)goto TERMINATE;

/* add coefficients to objective function */

for(i=0; i<*numcols; i++){
index[i] = i;

value[i] = -b[i];
ctype[i]=’I’;
}

status = CPXchgobj(env, lp, *numcols, index, value);
if(status!=0)goto TERMINATE;

/* now add quadratic terms (reuse vector value to save space)*/

for(i=0; i<*numcols; i++){
value[i] = 1.0;

}
status = CPXcopyqpsep(env,lp,value);
if(status!=0)goto TERMINATE;

/* and change their type */

107

status = CPXchgctype(env,lp, *numcols, index, ctype);
if(status!=0)goto TERMINATE;

/* write out problem specification*/

status = CPXlpwrite(env, lp, filename);
if(status!=0)goto TERMINATE;

printf("mip saved\n");

/* do optimisation */

status = CPXmipopt(env, lp);
if(status!=0)goto TERMINATE;

/* printf("mipopt done\n");*/

numcols1 = *numcols - 1;
status = CPXgetx(env,lp,x, 0,numcols1);

if(status!=0)goto TERMINATE;
printf("found x\n ");

TERMINATE:

if (lp != NULL){
status = CPXfreeprob(env, &lp);
if(status!= 0) printf("CPXfreeprob failed, error code %d", status);

}

/* Free up the CPLEX environment, if necessary*/

if(env !=NULL){
status = CPXcloseCPLEX(&env);

if(status != 0){
printf("Could not close CPLEX environment");
CPXgeterrorstring(env ,status, errmsg);
printf("%s",errmsg);

}
}

}
/* ##
/* cplex function for linear objective function */

void docplex(int *numrows, int *numcols, int *nzcnt, int *rmatbeg,

108

int *rmatind, double *rhs, double *x){

int numcols1; /* numcols-1 */

/* Declare and allocate space for the variables and arrays where we will
store the optimization variables */

double obj[COLSPACE];
char sense[ROWSPACE];
double rmatval[NZSPACE];
double value[COLSPACE];
char ctype[COLSPACE];
int index[COLSPACE];

CPXENVptr env = NULL;
CPXLPptr lp = NULL;
int status;
int i;
char errmsg[1024];
char *filename = "linear1.lp";
char *probname = "linear1";

/* Initialize the CPLEX environment */

env = CPXopenCPLEX (&status);

/* If an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON. */

if (env == NULL) {
fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;

}

/* status = CPXsetintparam (env, CPX_PARAM_SCRIND, CPX_ON);
if (status) {

fprintf (stderr, "Failure to turn on screen indicator, error %d.\n", status);
goto TERMINATE;

}

*/

109

/* Load the problem. */

lp = CPXcreateprob(env, &status, probname);

if (lp == NULL){
printf("Failed to load LP");
goto TERMINATE;

}

/* get vector sens, length NUMMROWS */

for(i=0; i<*numrows; i++) sense[i] = ’E’;

/* make vector rmatval, all values 1, length nzcnt */

for(i=0; i<*nzcnt; i++) rmatval[i] = 1.0;

/* now add rows to lp */

status = CPXaddrows(env, lp, *numcols, *numrows,
*nzcnt, rhs, sense, rmatbeg, rmatind, rmatval, NULL, NULL);

if(status!=0)goto TERMINATE;

/* add coefficients to objective function */

for(i=0; i<*numcols; i++){
index[i] = i;

value[i] = 1.0;
ctype[i]=’I’;
}

status = CPXchgobj(env, lp, *numcols, index, value);
if(status!=0)goto TERMINATE;

/* and change their type */

110

status = CPXchgctype(env,lp, *numcols, index, ctype);
if(status!=0)goto TERMINATE;

/* write out problem specification*/

status = CPXlpwrite(env, lp, filename);
if(status!=0)goto TERMINATE;

printf("mip saved\n");

/* do optimisation */

status = CPXmipopt(env, lp);
if(status!=0)goto TERMINATE;

/* printf("mipopt done\n");*/

numcols1 = *numcols - 1;
status = CPXgetx(env,lp,x, 0,numcols1);
if(status!=0)goto TERMINATE;

printf("found x\n ");

TERMINATE:

if (lp != NULL){
status = CPXfreeprob(env, &lp);
if(status!= 0) printf("CPXfreeprob failed, error code %d", status);

}

/* Free up the CPLEX environment, if necessary*/

if(env !=NULL){
status = CPXcloseCPLEX(&env);

/* Note that CPXcloseCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX_PARAM_SCRIND indicator is set to CPX_ON.

*/

if(status != 0){
printf("Could not close CPLEX environment");
CPXgeterrorstring(env ,status, errmsg);
printf("%s",errmsg);

}

111

}

}

/* ##*/
/* cplex function used to find integer solution closest to ipf solution */

void quadcplex(int *numrows, int *numcols, int *nzcnt, int *rmatbeg,
int *rmatind, double *rhs, double *xstar, double *x){

int numcols1; /* numcols-1 */

/* Declare and allocate space for the variables and arrays where we will
store the optimization variables. */

double obj[COLSPACE];
char sense[ROWSPACE];
double rmatval[NZSPACE];
double value[COLSPACE];
char ctype[COLSPACE];
int index[COLSPACE];

CPXENVptr env = NULL;
CPXLPptr lp = NULL;
int status;
int i;
char errmsg[1024];
char *filename = "quad.lp";
char *probname = "quad";

/* Initialize the CPLEX environment */

env = CPXopenCPLEX (&status);
if (env == NULL) {

fprintf (stderr, "Could not open CPLEX environment.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "%s", errmsg);
goto TERMINATE;

}

/* Load the problem. */

lp = CPXcreateprob(env, &status, probname);
if (lp == NULL){
printf("Failed to load LP");
goto TERMINATE;

}

112

/* get vector sens, length NUMMROWS */

for(i=0; i<*numrows; i++) sense[i] = ’E’;

/* make vector rmatval, all values 1, length nzcnt */

for(i=0; i<*nzcnt; i++) rmatval[i] = 1.0;

/* now add rows to lp */

status = CPXaddrows(env, lp, *numcols, *numrows,
*nzcnt, rhs, sense, rmatbeg, rmatind, rmatval, NULL, NULL);

if(status!=0)goto TERMINATE;

/* add coefficients to objective function */

for(i=0; i<*numcols; i++){
index[i] = i;

value[i] = -xstar[i];
ctype[i]=’I’;
}

status = CPXchgobj(env, lp, *numcols, index, value);
if(status!=0)goto TERMINATE;

/* now add quadratic terms (reuse vector value to save space) */

for(i=0; i<*numcols; i++){
value[i] = 1.0;

}

status = CPXcopyqpsep(env,lp,value);
if(status!=0)goto TERMINATE;

/* and change their type */

status = CPXchgctype(env,lp, *numcols, index, ctype);
if(status!=0)goto TERMINATE;

/* write out problem specification*/

status = CPXlpwrite(env, lp, filename);
if(status!=0)goto TERMINATE;

113

printf("mip saved\n");

status = CPXchgctype(env, lp, *numcols, index, ctype);
if(status!=0)goto TERMINATE;

status = CPXlpwrite(env, lp, filename);
if(status!=0)goto TERMINATE;

printf("program saved\n");

/* do optimisation */

status = CPXmipopt(env, lp);
if(status!=0)goto TERMINATE;

/* get solution */

numcols1 = *numcols - 1;
status = CPXgetx(env,lp,x, 0,numcols1);

printf("found x\n ");

TERMINATE:

if (lp != NULL){
status = CPXfreeprob(env, &lp);
if(status!= 0) printf("CPXfreeprob failed, error code %d", status);

}

/* Free up the CPLEX environment, if necessary*/

if(env !=NULL){
status = CPXcloseCPLEX(&env);

/* close CPLEX */

if(status != 0){
printf("Could not close CPLEX environment");
CPXgeterrorstring(env ,status, errmsg);
printf("%s",errmsg);

}
}
}

114

In file SNZ.f

C Subroutine for iterated proportional fitting

subroutine IPF(effmat, neff, nvar, maxlev, marginvec,
; nmarg, marginind, x, n, maxiter, tol, crit)

C
C effmat: the matrix of effects, coded as for vector use above
C neff: the number of effects (margins), this is the number of
C rows of effmat
C nvar: the number of columns of effmat, equal to the number
C of variables in the full table
C maxlev: the vector containing the number of levels for each factor
C marginvec: a vector of length nmarg containing the margins
C nmarg: length of marginvec
C marginind: the offsets for the individual margins
C x: the computed table of fitted means
C n: length of x
C maxiter: max number of iterations for the IPF algorithm
C tol: stopping criterion

integer effmat(neff,*), maxlev(nvar), marginvec(nmarg)
integer marginind(neff), iter
double precision x(n), tol, crit

C local variables
integer i, j, jj, k, nprod, use(nvar), curoff

double precision xx(n), change, newcrit
integer lindex(nvar), ivec(nvar)
integer istar, bvec(nvar), index

do 1 i=1,n
x(i) = 1.0D0

1 continue

do 2 iter = 1, maxiter
crit = 0.0D0
do 3 i = 1, neff

nprod = 1
do 4 j = 1, nvar

nprod = nprod * maxlev(j)**effmat(i,j)
use(j) = effmat(i,j)

4 continue

C nprod is number of elements in current configuration

call getconfig(x, n, xx, nprod, maxlev, use, nvar)

115

curoff = marginind(i)
do 5 k = 1, nprod

check = DABS(xx(k))
if(check. GT. 1.0D-8) then

xx(k) = marginvec(k+curoff)/xx(k)
else

xx(k) = 0.0D0
endif

5 continue

do 7 j=1,n
call convert(j, maxlev, nvar, lindex)
index = 0
do 10 jj = 1, nvar
if(use(jj).eq. 0) goto 10

index = index + 1
ivec(index) = lindex(jj)
bvec(index) = maxlev(jj)

10 continue
call nvec2j(ivec, bvec, index, istar)

change = (xx(istar) -1)*x(j)

newcrit = DABS(change)
if(newcrit.gt.crit) then
crit = newcrit
endif
x(j) = change + x(j)

7 continue
3 continue

C check stoping criterion

if(crit.lt.tol)goto 9999
2 continue
9999 return

end

subroutine nvec2j(ivec, bvec, n, j)
C
C converts a mixed base representation to an integer
C i.e. if j-1 = (i1-1) + (i2-1)*I1 + (i3-1)*I1*I2 + ...
C converts the vector ivec = (i1-1,i2-1,...) of length n into j
C the mixed bases I1, I2, are in vector bvec of dimension n
C only the first n-1 elements of bvec are used

116

integer ivec(n), bvec(n)

integer cumvec(n),i
C cumvec contains the cumulative products 1, I1, I1*I2

cumvec(1) = 1
do 1 i=2,n

cumvec(i) = cumvec(i-1)*bvec(i-1)
1 continue

j=1
do 2 i=1,n

j = j + ivec(i)*cumvec(i)
2 continue

return
end

subroutine convert(n, bselev, nbase, lindex)

C converts the integer n into a mixed-base representation in lindex
C bases are in bselev, of length nbase

C eg if (n-1) = i-1 + (j-1)*I + (k-1)*I*J + (l-1)*I*J*K
C returns (i-1,j-1,k-1,l-1)

integer bselev(nbase),lindex(nbase)

C local variables

integer cumlev(nbase), nn, i, j

cumlev(1) = 1
if(nbase.ge.2) then

do 1 i=2,nbase
cumlev(i) = cumlev(i-1) * bselev(i-1)

1 continue
endif

nn = n - 1
do 2 j = nbase, 1, -1

lindex(j) = nn/cumlev(j)
nn = nn - lindex(j)*cumlev(j)

2 continue
return
end

117

subroutine getconfig(x, n, xx, nprod, maxlev, use, nvar)
C
C converts a vector x of length n into a "configuration" of length
C nprod. The configuration corresponds to a marginal table specified
C by the vector use, of length nvar

C e.g. in a table x of 3 variables A, B, C, the effect(marginal table)
C AB would have use = (1,1,0)

integer maxlev(nvar), use(nvar)
double precision xx(nprod), x(n)

C local variables
integer lindex(nvar), ivec(nvar), j, jj

integer istar, bvec(nvar), index

do 3 j=1,nprod
xx(j) = 0.0D0

3 continue

do 2 j=1, n
call convert(j, maxlev, nvar, lindex)
index = 0
do 1 jj = 1, nvar
if(use(jj).eq. 0) goto 1

index = index + 1
ivec(index) = lindex(jj)
bvec(index) = maxlev(jj)
1 continue

call nvec2j(ivec, bvec, index, istar)
C print *, ’istar’, istar

xx(istar) = xx(istar) + x(j)
2 continue

return
end

C###
C
C fortran subroutine to create model matrix for GLM in form
C suitable for CPLEX input
C model matrix is nrow by ncol

subroutine modmat(indmat, maxlev, rmatbeg, rmatind, nterms, nvar,
. nrow, ncol, nzcnt)

118

integer indmat(nterms,*), maxlev(nvar), rmatbeg(ncol)
integer rmatind(nzcnt)

C local variables

integer i,j,n1,index1,lindex1(nvar),n2,index2,lindex2(nvar)
integer cumlev(nvar), iprod, nuse, ind, uselev(nvar), nfix
integer colind, bselev(nvar), ipos

rmatbeg(1) = 0
do 10 i=1,nrow

rmatind(i) = i - 1
10 continue

ipos = nrow + 1
colind = 2
cumlev(1) = 1
if(nvar.ge.2) then

do 1 i=2,nvar
cumlev(i) = cumlev(i-1) * maxlev(i-1)

1 continue
endif

C loop over rows of indmat to process each term in turn

do 2 i=1,nterms

n1 = 1
nuse = 0

do 3 j=1,nvar
nuse = indmat(i,j) + nuse

n1 = n1*(maxlev(j) ** indmat(i,j))
3 continue

C compute subvector uselev of cumlev and bselev of max.levels

ind = 0
do 4 j = 1,nvar

if(indmat(i,j).eq.1) then
ind = ind + 1
uselev(ind) = cumlev(j)
bselev(ind) = maxlev(j)

119

endif
4 continue

C ind will never be 0 provided no row of indmat is all F or all T

C now generate all columns for the current term

do 5 index1 = 1, n1

C get mixed base representation of row index
C nuse is rowsum of indmat (= number of variables in effect)
C bselev is corresponding subvector of maxlev

call convert(index1, bselev, nuse, lindex1)

C check no level equals baseline. If so, go directly to end of loop

do 6 j=1, nuse
if(lindex1(j).eq.0) goto 5

6 continue

C compute nfix

nfix = 0
do 7 j=1, nuse

nfix = nfix + lindex1(j)*uselev(j)
7 continue

C now update rmatbeg and rmatind

rmatbeg(colind) = ipos - 1
call genrow(rmatind, ipos, maxlev, cumlev, indmat, nfix,

c nterms, nrow, nvar, i, nzcnt)
colind = colind + 1

5 continue
2 continue

return
end

subroutine genrow(rmatind, ipos, maxlev, cumlev, indmat, nfix,
c nterms, nrow, nvar, i, nzcnt)

integer rmatind(nzcnt), maxlev(nvar), indmat(nterms, nvar)
integer cumlev(nvar)

120

C local variables

integer n, j, index, uselev(nvar), bselev(nvar)
integer ind, nvary, nuse, lindex(nvar)

C get number of vars not in effect (nuse) and loop extent (n)

n = 1
nuse = nvar

do 3 j=1,nvar
nuse = nuse - indmat(i,j)

n = n*(maxlev(j) ** (1-indmat(i,j)))
3 continue

C compute subvector uselev of maxlev

ind = 0
do 4 j = 1,nvar

if(indmat(i,j).eq.0) then
ind = ind + 1
uselev(ind) = cumlev(j)
bselev(ind) = maxlev(j)

endif
4 continue

do 5 index = 1, n

call convert(index, bselev, nuse, lindex)

C compute nvary

nvary = 0
do 7 j=1, nuse

nvary = nvary + lindex(j)*uselev(j)
7 continue

rmatind(ipos) = nvary + nfix
ipos = ipos + 1

5 continue
return
end

121

