Chapter 11

Other Topics

- Prediction surplus production example.
- Non-standard distributions zero/one tricks.
- A simple model too hard for WinBUGS .
- ADMB (Automatic Differentiation Model Builder) demonstration.

Chapter 11

Prediction: Surplus prodn example

The population dynamics equation was

 $B_t \ = \ \left(B_{t-1} + r B_{t-1} (1 - B_{t-1}/K) - C_{t-1} \right) e^{u_t} \ , \ t > 1 \ ,$

and this can be used (given the catch levels) to generate the posterior-predictive distribution of future biomass.

The example implements this from BRugs.

Non-standard distributions

In some circumstances, we might need to use a distribution (for the data, or as a prior) that is not implemented in WinBUGS. For example:

Cauchy

Recommended by Gelman (2005) as a prior for variance components. Not implemented in WinBUGS.

- Negative binomial
 - The WinBUGS implementation of the negative binomial only permits integer values of the overdispersion parameter.
- Reference prior
 - E.g., the Jeffreys' prior for the Beverton-Holt stock recruit curve (Millar, 2002).

Chapter 11

Non-standard distributions

It may be possible to generate the desired distribution as a function of other distributions.

- Cauchy
 - Gelman (2005) generates the Cauchy prior as the ratio Z/s, where Z is a standard normal and s is the square-root of a chisquare with 1 d.o.f.
- Negative binomial
 - The negative binomial can be generated as a gamma mixture of Poisson distributions.

Non-standard distributions

More generally, WinBUGS can be coerced into handling non-standard distributions by using the zero/one tricks.

Essentially, we want to introduce a term $g(y, \theta)$ into the joint density.

We tell WinBUGS a little white lie, namely, that we observed a datum, 0, from a Poisson distribution with mean $-\log(g(y,\theta))$. (If $g(y,\theta)$ can exceed unity, then we use mean $-\log(g(y,\theta))+C$, for some suitably big C.)

NOTE: For a Poisson(μ) distribution, the probability of a zero is $e^{-\mu}$. So, for a Poisson($-\log(g(y,\theta))$) distribution, the probability is $g(y,\theta)$.

Chapter 11

Example: Modelling Cauchy data

Assume

```
f(y \mid \theta) = \frac{1}{\pi} \frac{1}{1 + (y - \theta)^2}
```

Too hard for WinBUGS

WinBUGS can handle large and sophisticated models, with hundreds of parameters. However ...

The observation-error-only surplus production model is problematic for WinBUGS because the full conditional distributions for the parameters are massively non-linear and high-order. This model does not compile.

Chapter 11

ADMB software

The Automatic Differentiation Model Builder maximizes the joint posterior, and then uses adaptive Metropolis Metropolis-Hastings to sample from it.

ADMB demonstration: Observation-error-only surplus production model of the tuna data.

ADMB vs WinBUGS

ADMB advantages:

- More powerful and flexible.
- Faster.
- Finds posterior mode:
 - Useful for approximation of Bayes factors.
 - Alternative to $D(\overline{\theta}) = D(E_{\theta|_{\mathcal{V}}}[\theta])$ in calculation of DIC.
- Easily switch-able between classical and Bayesian.

Chapter 11

ADMB vs WinBUGS

ADMB disadvantages:

- Much, much, much harder to use.
- Not as well documented.
- Smaller group of users.
- Not as much fun!
- Lacking in exploratory tools and diagnostics.
- Difficult to interface to R.
- Non-free.