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Preface

Conducting research is a bit like parenting.

Raising a child involves a lot of cleaning and tidying, setting standards, and
maintaining order, all of which goes completely unnoticed and for which the
parent receives absolutely no credit.

Similarly, producing a bright, shiny result from the raw beginnings of a
research project involves a lot of work that is almost never seen or acknowl-
edged. Data sets never pop into existence in a fully mature and reliable
state; they must be cleaned and massaged into an appropriate form. Just
getting the data ready for analysis often represents a significant component
of a research project.

Another thing that parenting and the “dirty jobs” of research have in com-
mon is that nobody gets taught how to do it. Parents just learn on the job
and researchers typically have to do likewise when it comes to learning how
to manage their data.

The aim of this book is to provide important information about how to
work with research data, including ideas and techniques for performing the
important behind-the-scenes tasks that take up so much time and effort,
but typically receive little attention in formal education.

The focus of this book is on computational tools. The intention is to improve
the awareness of what sorts of tasks can be achieved and to describe the
correct approach to performing these tasks. There is also an emphasis on
working with data technologies by typing computer code at a keyboard,
rather than using a mouse to select menus and dialog boxes.

This book will not turn the reader into a web designer, or a database admin-
istrator, or a software engineer. However, this book contains information
on how to publish information via the world wide web, how to access in-
formation stored in different formats, and how to write small programs to
automate simple, repetitive tasks. A great deal of information on these top-
ics already exists in books and on the internet; the value of this book is in
collecting only the important subset of this information that is necessary to
begin applying these technologies within a research setting.

xix
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Who should read this book?

This is an introductory computing book. It was originally developed as sup-
port for a second-year university course for statistics students and assumes
no background in computing other than the ability to use a keyboard and
mouse, and the ability to locate documents (or files) within folders (or di-
rectories). This means that it is suitable for anyone who is not confident
about his or her computer literacy.

However, the book should also serve as a quick start on unfamiliar topics
even for an experienced computer user, as long as the reader is not offended
by over-simplified explanations of familiar material.

The book is also directed mainly at educating individual researchers. The
tools and techniques, at the level they are described in this book, are of
most use for the activities of a a single researcher or the activities of a small
research team.

For people involved in managing larger projects, expert data management
assistance is advisable. Nevertheless, a familiarity with the topics in this
book will be very useful for communicating with experts and understanding
the important issues.

In summary, this book is primarily aimed at research students and individual
researchers with little computing experience, but it is hoped that it will also
be of use to a broader audience.

Writing code

The icon below was captured from the desktop of a computer running Mi-
crosoft Windows XP.

Is this document a Microsoft Office Excel spreadsheet?

Many computer users would say that it is. After all, it has got the little
Excel image on it and it even says Microsoft Office Excel right below the
name of the file. And if we double-clicked on this file, Excel would start up
and open the file.
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However, this file is not an Excel spreadsheet. It is a plain text file in a
Comma-Separated Values (CSV) format. In fact, the name of the file is not
“final”, but“final.csv”. Excel can open this file, but so can thousands of other
computer programs.

The computer protects us from this gritty detail by not showing the .csv
suffix on the filename and it provides the convenience of automatically using
Excel to open the file, rather than asking us what program to use.

Is this somehow a bad thing?

Yes, it is.

A computer user who only works with this sort of interface learns that this
sort of file is only for use with Excel. The user becomes accustomed to the
computer dictating what the user is able to do with a file.

It is important that users understand that we are able to dictate to the
computer what should be done with a file. A CSV file can be viewed and
modified using software such as Microsoft Notepad, but this may not occur
to a user who is used to being told to use Excel.

Another example is that many computer users have been led to believe that
the only way to view a web page is with Internet Explorer, when in fact
there are many different web browsers and it is possible to access web pages
using other kinds of software as well.

For the majority of computer users, interaction with a computer is limited to
clicking on web page hyperlinks, selecting menus, and filling in dialog boxes.
The problem with this approach to computing is that it gives the impression
that the user is controlled by the computer. The computer interface places
limits on what the user can do.

The truth is of course exactly the opposite. It is the computer user who
has control and can tell the computer exactly what to do. The standard
desktop PC is actually a “universal computing machine”. It can do (almost)
anything!

Learning to interact with a computer by writing computer code places users
in their rightful position of power.

Computer code also has the huge advantage of providing an accurate record
of the tasks that were performed. This serves both as a reminder of what
was done and a recipe that allows others to replicate what was done.

For these reasons, this book focuses on computer languages as tools for data
management.
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Open standards and open source

This book almost exclusively describes technologies that are described by
open standards or that are implemented in open source software, or both.

For a technology to be an open standard, it must be described by a pub-
lic document that provides enough information so that anyone can write
software to work with technology. In addition, the description must not
be subject to patents or other restrictions of use. Ideally, the document is
published and maintained by an international, non-profit organisation. In
practice, the important consequence is that the technology is not bound to
a single software product.

This is in contrast to proprietary technologies, where the definitive descrip-
tion of the technology is not made available and is only officially supported
by a single software product.

Open source software is software for which the source code is publicly avail-
able. This makes it possible, through scrutiny of the source code if nec-
essary, to understand how a software product works. It also means that,
if necessary, the behavior of the software can be modified. In practice, the
important consequence is that the software is not bound to a single software
developer.

This is in contrast to proprietary software, where the software is only avail-
able from a single developer, the software is a “black-box”, and changes,
including corrections of errors, can only be made by that software devel-
oper.

The obvious advantage of using open standards and open source software
is that the reader need not purchase any expensive proprietary software
in order to benefit from the information in this book, but that is not the
primary reason for this choice.

The main reason for selecting open standards and open source software is
that this is the only way to ensure that we know, or can find out, where
our data are on the computer and what happens to our data when we
manipulate the data with software, and it is the only way to guarantee that
we can have free access to our data now and in the future.

The significance of these points is demonstrated by the growing list of gov-
ernments and public institutions that are switching to open standards and
open source software for storing and working with information. In partic-
ular, for the storage of public records, it does not make sense to lock the
information up in a format that cannot be accessed except by proprietary
software. Similarly, for the dissemination and reproducibility of research, it
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makes sense to fully disclose a complete description of how an analysis was
conducted in addition to publishing the research results.

How this book is organized

This book is designed to be accessible and practical, with an emphasis on
useful, applicable information. To this end, each topic is introduced via one
or more case studies, which helps to motivate the need for the relevant ideas
and tools. Practical examples are used to demonstrate the most important
points and there is a deliberate avoidance of minute detail. Separate refer-
ence chapters then provide a more structured and detailed description for a
particular technology, which is more useful for finding specific information
once the big picture has been obtained. These reference chapters are still
not exhaustive, so pointers to further reading are also provided.

The main topics are organized into four core chapters, with supporting
reference chapters, as described below.

Chapter 2: Writing Computer Code
This chapter discusses how to write computer code, using the Hyper-
Text Markup Language, HTML, as a concrete example. A number
of important ideas and terminology are introduced for working with
any computer language, and it includes guidelines and advice on the
practical aspects of how to write computer code in a disciplined way.
HTML provides a way to produce documents that can be viewed in a
web browser and published on the world wide web.

Chapters 3 and 4 provide support in the form of reference material for
HTML and Cascading Style Sheets.

Chapter 5: Data Storage
This chapter covers a variety of data storage topics, starting with a
range of different file formats, which includes a brief discussion of how
data values are stored in computer memory, moving on to a discussion
of the eXtensible Markup Language, XML, and ending up with the
structure and design issues of relational databases.

Chapter 6 provides reference material for XML and the Document
Type Definition language.

Chapter 7: Data Queries
This chapter focuses on accessing data, with a major focus on ex-
tracting data from a relational database using the Structured Query



i
i

“itdt” — 2012/7/30 — 8:05 — page xxiv — #24 i
i

i
i

i
i

xxiv

Language, SQL. There is also a brief mention of the XPath language
for accessing data in XML documents.

Chapter 8 provides reference material for SQL, including additional
uses of SQL for creating and modifying relational databases.

Chapter 9: Data Processing
This chapter is by far the largest. It covers a number of tools and tech-
niques for searching, sorting, and tabulating data, plus several ways
to manipulate data to change the data into new forms. This chapter
introduces some very basic programming concepts and introduces the
R language for statistical computing.

Chapter 10 provides reference material for R and Chapter 11 provides
reference material for regular expressions, which is a language for pro-
cessing text data.

Chapter 12 provides a brief wrap-up of the main ideas in the book.

There is an overall progression through the book from writing simple com-
puter code with straightforward computer languages to more complex tasks
with more sophisticated languages. The core chapters also build on each
other to some extent. For example, Chapter 9 assumes that the reader
has a good understanding of data storage formats and is comfortable writ-
ing computer code. Furthermore, examples and case studies are carried
over between different chapters in an attempt to illustrate how the different
technologies need to be combined over the lifetime of a data set. There are
also occasional “flashbacks” to a previous topic to make explicit connections
between similar ideas that reoccur in different settings. In this way, the
book is set up to be read in order from start to finish.

However, every effort has been made to ensure that individual chapters
can be read on their own. Where necessary, figures are reproduced and
descriptions are repeated so that it is not necessary to jump back and forth
within the book in order to acquire a complete understanding of a particular
section.

Much of the information in this book will require practice in order to gain
a full understanding. The reader is encouraged to make use of the exercises
on the book’s web site.
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The web site

There is an accompanying web site for this book at:

http://www.stat.auckland.ac.nz/∼paul/ItDT/

This site includes complete PDF and HTML versions of the book, code and
data sets used in the case studies, and a suite of exercises.

Software

The minimum software requirements for making use of the information in
this book are the following open source products:

Mozilla’s Firefox web browser
http://www.mozilla.com/en-US/products/firefox/

The SQLite database engine
http://www.sqlite.org/

The R language and environment
http://www.r-project.org/

About the license

This work is licensed under a Creative Commons license, specifically the
Attribution-Noncommercial-Share Alike 3.0 New Zealand License. This
means that it is legal to make and share copies of this work with anyone, as
long as you do not do so for commercial gain.

The main idea is that anyone may make copies of this work, for example,
for personal or educational purposes, but only the publisher of the print
version is allowed to sell copies.

For more information about the motivation behind this license, please see
the book web site.

http://www.stat.auckland.ac.nz/~paul/ItDT/
http://www.mozilla.com/en-US/products/firefox/
http://www.sqlite.org/
http://www.r-project.org/
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1
Introduction

1.1 Case study: Point Nemo

The Pacific Ocean is the largest
body of water on Earth and ac-
counts for almost a third of the
Earth’s surface area.

The Live Access Server is one of many services provided by the National
Aeronautics and Space Administration (NASA) for gaining access to its
enormous repositories of atmospheric and astronomical data. The Live
Access Server1 provides access to atmospheric data from NASA’s fleet of
Earth-observing satellites, data that consist of coarsely gridded measure-
ments of major atmospheric variables, such as ozone, cloud cover, pressure,
and temperature. NASA provides a web site that allows researchers to se-
lect variables of interest, and geographic and temporal ranges, and then to
download or view the relevant data (see Figure 1.1). Using this service, we
can attempt to answer questions about atmospheric and weather conditions
in different parts of the world.

The Pacific Pole of Inaccessibility is a location in the Southern Pacific Ocean
that is recognized as one of the most remote locations on Earth. Also known
as Point Nemo, it is the point on the ocean that is farthest from any land
mass. Its counterpart, the Eurasian Pole of Inaccessibility, in northern
China, is the location on land that is farthest from any ocean.

These two geographical extremes—one in the southern hemisphere, over
2,500 km from the nearest land, and one in the northern hemisphere, over
2,500 km from the nearest ocean—are usually only of interest either to in-
trepid explorers or conspiracy theorists (a remote location is the perfect

1http://mynasadata.larc.nasa.gov/LASintro.html

1

http://mynasadata.larc.nasa.gov/LASintro.html
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2 Introduction to Data Technologies

Figure 1.1: NASA’s Live Access Server web site. On the map, the Pacific Pole of

Inaccessibility is marked with a white plus sign.
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Introduction 3

place to hide an important secret!). However, our interest will be to in-
vestigate the differences in weather conditions between these interesting
geographical extremes by using NASA’s Live Access Server.

To make our task a little more manageable, for now we will restrict our
attention to a comparison of the surface temperatures at each of the Poles of
Inaccessibility. To be precise, we will look at monthly average temperatures
at these locations from January 1994 to December 1997.

In a book on data analysis, we would assume that the data are already in
a form that can be conveniently loaded into statistical software, and the
emphasis would be on how to analyze these data. However, that is not the
focus of this book. Here, we are interested in all of the steps that must be
taken before the data can be conveniently loaded into statistical software.

As anyone who has worked with data knows, it often takes more time and
effort to get the data ready than it takes to perform the data analysis. And
yet there are many more books on how to analyze data than there are on
how to prepare data for analysis. This book aims to redress that balance.

In our example, the main data collection has already occurred; the data are
measurements made by instruments on NASA satellites. However, we still
need to collect the data from NASA’s Live Access Server. We will do this
initially by entering the appropriate parameters on the Live Access Server
web site. Figure 1.2 shows the first few lines of data that the Live Access
Server returns for the surface temperature at Point Nemo.

The first thing we should always do with a new data set is take a look at
the raw data. Viewing the raw data is an important first step in becoming
familiar with the data set. We should never automatically assume that the
data are reliable or correct. We should always check with our own eyes. In
this case, we are already in for a bit of a shock.

Anyone who expects temperatures to be in degrees Celsius will find values
like 278.9 something of a shock. Even if we expect temperatures on the
Fahrenheit scale, 278.9 is hotter than the average summer’s day.

The problem of course is that these are scientific measurements, so the scale
being used is Kelvin; the temperature scale where zero really means zero.
278.9 K is 5.8◦C or 42◦F, which is a cool, but entirely believable, surface
temperature value. When planning a visit to Point Nemo, it would be a
good idea to pack a sweater.

Looking at the raw data, we also see a lot of other information besides the
surface temperatures. There are longitude and latitude values, dates, and
a description of the variable that has been measured, including the units
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VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 48 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 1.2: The first few lines of plain text output from the Live Access Server

for the surface temperature at Point Nemo.

of measurement. This metadata is very important because it provides us
with a proper understanding of the data set. For example, the metadata
makes it clear that the temperature values are on the Kelvin scale. The
metadata also tells us that the longitude and latitude values, 123.8 W and
48.8 S, are not exactly what we asked for. It turns out that the values
provided by NASA in this data set have been averaged over a large area, so
this is as good as we are going to get.

Before we go forward, we should take a step back and acknowledge the fact
that we are able to read the data at all. This is a benefit of the storage
format that the data are in; in this case, it is a plain text format. If
the data had been in a more sophisticated binary format, we would need
something more specialized than a common web browser to be able to view
our data. In Chapter 5 we will spend a lot of time looking at the advantages
and disadvantages of different data storage formats.

Having had a look at the raw data, the next step in familiarizing ourselves
with the data set should be to look at some numerical summaries and plots.
The Live Access Server does not provide numerical summaries and, although
it will produce some basic plots, we will need a bit more flexibility. Thus,
we will save the data to our own computer and load it into a statistical
software package.

The first step is to save the data. The Live Access Server will provide
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an ASCII file for us, or we can just copy-and-paste the data into a text
editor and save it from there. Again, we should appreciate the fact that
this step is quite straightforward and is likely to work no matter what sort
of computer or operating system we are using. This is another feature of
having data in a plain text format.

Now we need to get the data into our statistical software. At this point,
we encounter one of the disadvantages of a plain text format. Although we,
as human readers, can see that the surface temperature values start on the
ninth line and are the last value on each row (see Figure 1.2), there is no
way that statistical software can figure this out on its own. We will have to
describe the format of the data set to our statistical software.

In order to read the data into statistical software, we need to be able to
express the following information: “skip the first 8 lines”; and “on each row,
the values are separated by whitespace (one or more spaces or tabs)”; and
“on each row, the date is the first value and the temperature is the last value
(ignore the other three values)”. Here is one way to do this for the statistical
software package R (Chapter 9 has much more to say about working with
data in R):

read.table("PointNemo.txt", skip=8,
colClasses=c("character",

"NULL", "NULL", "NULL",
"numeric"),

col.names=c("date", "", "", "", "temp"))

This solution may appear complex, especially for anyone not experienced in
writing computer code. Partly that is because this is complex information
that we need to communicate to the computer and writing code is the best
or even the only way to express that sort of information. However, the
complexity of writing computer code gains us many benefits. For example,
having written this piece of code to load in the data for the Pacific Pole of
Inaccessibility, we can use it again, with only a change in the name of the
file, to read in the data for the Eurasian Pole of Inaccessibility. That would
look like this:

read.table("Eurasia.txt", skip=8,
colClasses=c("character",

"NULL", "NULL", "NULL",
"numeric"),

col.names=c("date", "", "", "", "temp"))

Imagine if we wanted to load in temperature data in this format from several
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hundred other locations around the world. Loading in such volumes of data
would now be trivial and fast using code like this; performing such a task
by selecting menus and filling in dialog boxes hundreds of times does not
bear thinking about.

Going back a step, if we wanted to download the data for hundreds of
locations around the world, would we want to fill in the Live Access Server
web form hundreds of times? Most people would not. Here again, we can
write code to make the task faster, more accurate, and more bearable.

As well as the web interface to the Live Access Server, it is also possible
to make requests by writing code to communicate with the Live Access
Server. Here is the code to ask for the temperature data from the Pacific
Pole of Inaccessibility:

lasget.pl \
-x -123.4 -y -48.9 -t 1994-Jan-1:2001-Sep-30 \
-f txt \
http://mynasadata.larc.nasa.gov/las-bin/LASserver.pl \
ISCCPMonthly_avg_nc ts

Again, that may appear complex, and there is a “start-up” cost involved in
learning how to write such code. However, this is the only sane method to
obtain large amounts of data from the Live Access Server. Chapters 7 and
9 look at extracting data sets from complex systems and automating tasks
that would otherwise be tedious or impossible if performed by hand.

Writing code, as we have seen above, is the only accurate method of commu-
nicating even mildly complex ideas to a computer, and even for very simple
ideas, writing code is the most efficient method of communication. In this
book, we will always communicate with the computer by writing code. In
Chapter 2 we will discuss the basic ideas of how to write computer code
properly and we will encounter a number of different computer languages
throughout the remainder of the book.

At this point, we have the tools to access the Point Nemo data in a form
that is convenient for conducting the data analysis, but, because this is not
a book on data analysis, this is where we stop. The important points for our
purposes are how the data are stored, accessed, and processed. These are
the topics that will be expanded upon and discussed at length throughout
the remainder of this book.
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Summary

This book is concerned with the issues and technologies involved with the stor-
age and handling of data sets.

We will focus on the ways in which these technologies can help us to perform
tasks more efficiently and more accurately.

We will emphasize the appropriate use of these technologies, in particular, the
importance of performing tasks by writing computer code.
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Writing Computer Code

There are two aims for this chapter: learning how to write computer code
and learning a computer language to write code in.

First, we need to learn how to write computer code. Several of the com-
puter technologies that we encounter will involve writing computer code in
a particular computer language, so it is essential that we learn from the
start how to produce computer code in the right way.

Learning how to write code could be very dull if we only discussed code
writing in abstract concepts, so the second aim of this chapter is to learn a
computer language, with which to demonstrate good code writing.

The language that we will learn in this chapter is the Hypertext Markup
Language, HTML.

As most people know, HTML is the language that describes web pages on
the world wide web. In the world wide web of today, web pages are used
by almost everyone for almost any purpose—sharing videos, online sales,
banking, advertising, the list goes on and on—and web pages consist of
much more than just plain HTML.

However, the original motivation for HTML was a simple, intuitive platform
that would allow researchers from all over the world to publish and share
their ideas, data, and results.

The primary inventor of HTML was Tim Berners-Lee, the father of several
fundamental technologies underlying the world wide web. His original work
was driven by a number of important requirements: it should be simple to
create web pages; web pages should work on any computer hardware and
software; and web pages should be able to link to each other, so that infor-
mation can be related and cross-referenced, but remain distributed around
the world. It was also an early intention to provide a technology that could
be processed and understood by computers as well as viewed by human
eyes.

This history and these requirements make HTML an appropriate starting
point for learning about computer languages for the management of research
data.

9
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10 Introduction to Data Technologies

HTML is simple, so it is a nice easy way to start writing computer code.
HTML began as an open technology and remains an open standard, which
is precisely the sort of technology we are most interested in. We require
only a web browser to view web pages and these are widely available on any
modern desktop computer. We will also, later in this chapter, observe a
resonance with the idea that HTML documents simply point to each other
rather than require a copy of every piece of information on every computer.
In Chapter 9, we will return to the importance of being able to automatically
process HTML.

Finally, although HTML is now used for all sorts of commercial and private
purposes, it still remains an important technology for publishing and sharing
research output.

The aim of this chapter is to elucidate the process of writing, checking,
and running computer code and to provide some guidelines for carrying out
these tasks effectively and efficiently.

How this chapter is organized

This chapter begins with an example of a simple web page and gives a quick
introduction to how HTML computer code relates to the web pages that
we see in a web browser such as Firefox. The main point is to demonstrate
that computer code can be used to control what the computer does.

In Section 2.2, we will emphasize the idea that computer languages have
strict rules that must be followed. Computer code must be exactly correct
before it can be used to control the computer. The specific rules for HTML
code are introduced in this section.

Section 2.3 addresses the issue of what computer code means. What in-
structions do we have to use in order to make the computer do what we
want? This section looks in a bit more detail at some examples of HTML
code and shows how each piece of code relates to a specific feature of the
resulting web page.

Section 2.4 looks at the practical aspects of writing computer code. We will
discuss the software that should be used for writing code and emphasize the
importance of writing tidy and well-organized code.

Sections 2.5 and 2.6 look at getting our computer code to work properly.
Sections 2.5 focuses on the task of checking that computer code is correct—
that it follows the rules of the computer language—and Section 2.6 focuses
on how to run computer code. We will look at some tools for checking that
HTML code is correct and we will briefly discuss the software that produces
web pages from HTML code. We will also discuss the process of fixing
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problems when they occur.

Section 2.7 introduces some more ideas about how to organize code and work
efficiently. The Cascading Style Sheets language is introduced to provide
some simple demonstrations.

2.1 Case study: Point Nemo (continued)

Figure 2.1 shows a simple web page that contains a very brief statistical
report on the Poles of Inaccessibility data from Chapter 1. The report con-
sists of paragraphs of text and an image (a plot), with different formatting
applied to various parts of the text. The report heading is bold and larger
than the other text, and the table of numerical summaries is displayed with
a monospace font. Part of the heading and part of the supplementary ma-
terial at the bottom of the page are italicized and also act as hyperlinks;
a mouse click on the underlined text in the heading will navigate to the
Wikipedia page on the Poles of Inaccessibility and a click on the underlined
text at the bottom of the page will navigate to NASA’s Live Access Server
home page.

The entire web page in Figure 2.1 is described using HTML. The web page
consists of a simple text file called inaccessibility.html that contains
HTML code. The HTML code is shown in Figure 2.2.

We do not need to worry about the details of this HTML code yet. What
is important is to notice that all of this code is just text. Some of it is the
text that makes up the content of the report, and other parts are special
HTML keywords that “mark up” the content and describe the nature and
purpose of each part of the report. The keywords can be distinguished as
the text that is surrounded by angled brackets. For example, the heading at
the top of the page consists of two keywords, <h3> and </h3> surrounding
the actual text of the heading (see lines 7 to 12).

The HTML code is just text, so the overall document is just a text file. We
will explore the differences between different sorts of files in more detail in
Chapter 5. For now, it is just important to note that HTML code, and any
other computer code that we write, should be written using software that
creates plain text files. For example, do not write computer code using a
word processor, such as Microsoft Word. We will return to this point in
Section 2.4.1.

Another feature of the code in Figure 2.2 is that it has a clear structure.
For example, for every start tag, there is an end tag; the <head> start
tag on line 3 is matched by the </head> closing tag on line 5. This rigid
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Figure 2.1: A simple web page that displays information about the surface tem-

perature data for the Pacific and Eurasian Poles of Inaccessibility (viewed with

the Firefox web browser on Windows XP).
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structure is an important feature of computer languages and reflects the fact
that there are strict rules to follow for any computer language. It is vital
that we observe this structure, but the discipline required will help us to
be accurate, clear, and logical in how we think about tasks and in how we
communicate our instructions to the computer. As we will see later in this
chapter, it is also important that this structure is reflected in the layout of
our code (as has been done in Figure 2.2).

In this chapter we will learn the basics of HTML, with a focus on how the
code itself is written and with an emphasis on the correct way to write
computer code.

2.2 Syntax

The first thing we need to learn about a computer language is the correct
syntax for the language.

Syntax is essentially the punctuation and grammar rules for a computer
language. Certain characters and words have special meanings and must
appear in a particular order for the computer code to make any sense.

A simple example from line 3 in Figure 2.2 is the piece of HTML code
<head>. The < character is special in HTML because it indicates the start
of a keyword in HTML. The > character is also special; it marks the end
of the keyword. Also, this particular keyword, <head>, must appear at the
very start of a piece of HTML code.

These rules and special meanings for specific characters and words make up
the syntax for a computer language.

Computers are extremely fussy when it comes to syntax, so computer code
will have to have all syntax rules perfectly correct before the code will work.

The next section describes the basic syntax rules for the HTML language.

2.2.1 HTML syntax

HTML has a very simple syntax.

HTML code consists of two basic components: elements, which are special
HTML keywords, and content, which is just normal everyday text.

There are a few elements that have to go in every HTML document—Figure
2.3 shows the smallest possible HTML document—and then it is up to the
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1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Poles of Inaccessibility</title>

5 </head>

6 <body>

7 <h3>

8 Temperatures at the Pacific and Eurasian

9 <a href="http://wikipedia.org/wiki/Pole_of_inaccessibility"

10 style="font-style: italic">

11 Poles of Inaccessibility</a>

12 </h3>

13

14 <hr>

15 <p>

16 The Eurasion Pole of Inaccessibility experiences a much

17 wider range of temperatures than the Pacific Pole of

18 Inaccessibility.

19 </p>

20

21 <pre>

22 pacific eurasian

23 min 276 252

24 max 283 307

25 </pre>

26

27 <p>

28 This reflects the fact that large bodies of water tend to

29 absorb and release heat more slowly compared to large

30 land masses.

31 Temperatures also depend on the time of the year and which

32 hemisphere the pole is located in.

33 </p>

34

35 <img src="poleplot.png">

36

37 <hr>

38 <p>

39 Source: NASA's

40 <a href="http://mynasadata.larc.nasa.gov/LASintro.html"

41 style="font-style: italic">

42 Live Access Server</a>.

43 </p>

44 </body>

45 </html>

Figure 2.2: The file inaccessibility.html, which contains the HTML code be-

hind the web page in Figure 2.1. The line numbers (in grey) are just for reference.
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<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title></title>

</head>

<body>

</body>

</html>

Figure 2.3: A minimal HTML document. This is the basic code that must appear

in any HTML document. The main content of the web page is described by adding

further HTML elements within the body element.

author to decide on the main contents of the web page.

An HTML element consists of a start tag, an end tag and some content
in between.

As an example, we will look closely at the title element from line 4 of
Figure 2.2.

<title>Poles of Inaccessibility</title>

This code is broken down into its separate components below, with one
important component labeled and highlighted (underlined) on each row.

start tag: <title>Poles of Inaccessibility</title>
content: <title>Poles of Inaccessibility</title>
end tag: <title>Poles of Inaccessibility</title>

The greater-than and less-than signs have a special meaning in HTML code;
they mark the start and end of HTML tags. All of the characters with a
special meaning in this title element are highlighted below.

special characters: <title>Poles of Inaccessibility</title>

Some HTML elements may be empty, which means that they only consist
of a start tag (no end tag and no content). An example is the img (short for
“image”) element from Figure 2.2, which inserts the plot in the web page.

<img src="poleplot.png">

The entire img element consists of this single tag.
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There is a fixed set of valid HTML elements and only those elements can
be used within HTML code. We will encounter several important elements
in this chapter and a more comprehensive list is provided in Chapter 3.

Attributes

HTML elements can have one or more attributes, which provide more in-
formation about the element. An attribute consists of the attribute name,
an equals sign, and the attribute value, which is surrounded by double-
quotes. Attributes only appear in the start tag of an element. We have
just seen an example in the img element above. The img element has an
attribute called src that describes the location of a file containing the pic-
ture to be drawn on the web page. In the example above, the attribute is
src="poleplot.png".

The components of this HTML element are shown below.

HTML tag: <img src="poleplot.png">
element name: <img src="poleplot.png">

attribute: <img src="poleplot.png">
attribute name: <img src="poleplot.png">
attribute value: <img src="poleplot.png">

Again, some of the characters in this code are part of the HTML syntax.
These special characters are highlighted below.

special characters: <img src="poleplot.png">

Many attributes are optional, and if they are not specified, a default value
is provided.

Element order

HTML tags must be ordered properly. All elements must nest cleanly and
some elements are only allowed inside specific other elements. For example,
a title element can only be used inside a head element, and the title
element must start and end within the head element. The following HTML
code is invalid because the title element does not finish within the head
element.
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<head>
<title>
Poles of Inaccessibility

</head>
</title>

To be correct, the title element must start and end within the head ele-
ment, as in the code below.

<head>
<title>
Poles of Inaccessibility
</title>

</head>

Finally, there are a few elements that must occur in an HTML document:
there must be a DOCTYPE declaration, which states what computer language
we are using; there must be a single html element, with a single head element
and a single body element inside; and the head element must contain a single
title element. Figure 2.3 shows a minimal HTML document.

HTML is defined by a standard, so there is a single, public specification
of HTML syntax. Unfortunately, as is often the case, there are several
different versions of HTML, each with its own standard, so it is necessary
to specify exactly which version of HTML we are working with. We will
focus on HTML version 4.01 in this book. This is specified in the DOCTYPE
declaration used in all examples.

These are the basic syntax rules of HTML. With these rules, we can write
correct HTML code. In Section 2.3 we will look at the next step, which is
what the code will do when we give it to the computer to run.

2.2.2 Escape sequences

As we have seen in HTML, certain words or characters have a special mean-
ing within the language. These are sometimes called keywords or reserved
words to indicate that they are reserved by the language for special use and
cannot be used for their normal natural-language purpose.

This means that some words or characters can never be used for their nor-
mal, natural-language meaning when writing in a formal computer language
and a special code must be used instead.

For example, the < character marks the start of a tag in HTML, so this
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cannot be used for its normal meaning of “less than”.

If we need to have a less-than sign within the content of an HTML element,
we have to type &lt; instead. This is an example of what is called an
escape sequence.

Another special character in HTML is the greater-than sign, >. To produce
one of these in the content of an HTML element, we must type &gt;.

In HTML, there are several escape sequences of this form that all start
with an ampersand, &. This means of course that the ampersand is itself
a special character, with its own escape sequence, &amp;. A larger list of
special characters and escape sequences in HTML is given in Section 3.1.2.

We will meet this idea of escape sequences again in the other computer
languages that we encounter later in the book.

Recap

Computer code is just text, but with certain characters or words having
special meanings.

The punctuation and grammar rules of a computer language are called
the syntax of the language.

Computer code must have all syntax rules correct before it can be
expected to work properly.

An escape sequence is a way of getting the normal meaning for a char-
acter or word that has a special meaning in the language.

HTML consists of elements, which consist of a start tag and an end
tag, with content in between.

HTML elements may also have attributes within the start tag.

2.3 Semantics

When we write code in a computer language, we call the meaning of the
code—what the computer will do when the code is run—the semantics of
the code. Computer code has no defined semantics until it has a correct
syntax, so we should always check that our code is free of errors before
worrying about whether it does what we want.
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Computer languages tend to be very precise, so as long as we get the syntax
right, there should be a clear meaning for the code. This is important
because it means that we can expect our code to produce the same result
on different computers and even with different software.

2.3.1 HTML semantics

In HTML, tags are used to mark up and identify different parts of a docu-
ment. When the HTML is viewed in a web browser, different parts of the
document are displayed in different ways. For example, headings are typi-
cally drawn larger and bolder than normal text and paragraphs are typeset
so that the text fills the space available, but with visual gaps from one
paragraph to the next.

The HTML 4.01 specification defines a fixed set of valid HTML elements
and describes the meaning of each of those elements in terms of how they
should be used to create a web page.

In this section, we will use the simple HTML page shown at the start of
this chapter to demonstrate some of the basic HTML elements. Chapter 3
provides a larger list.

Figure 2.1 shows what the web page looks like and 2.2 shows the underlying
HTML code.

The main part of the HTML code in Figure 2.2 is contained within the
body element (lines 6 to 44). This is the content of the web page—the
information that will be displayed by the web browser.

In brief, this web page consists of: an h3 element to produce a heading;
several p elements that produce paragraphs of text; two hr elements that
produce horizontal lines; an img element that generates the plot; and a pre
element that produces the table of numerical summaries.

The first element we encounter within the body is an h3 element (lines 7
to 12). The contents of this element provide a title for the page, which is
indicated by drawing the relevant text bigger and bolder than normal text.
There are several such heading elements in HTML, from h1 to h6, where the
number indicates the heading“level”, with 1 being the top level (biggest and
boldest) and 6 the lowermost level. Note that this element does two things:
it describes the structure of the information in the web page and it controls
the appearance for the information—how the text should be displayed. The
structure of the document is what we should focus on; we will discuss the
appearance of the web page in more depth in Section 2.7.1.
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The next element in our code is an hr (horizontal rule) element (line 14).
This produces a horizontal line across the page, just below the heading.

Next is a p (paragraph) element (lines 15 to 19). The p tags indicate that
the contents should be arranged as a paragraph of text. The important
thing to notice about this element is that the web browser decides where
to break the lines of text; the line breaks and whitespace within the HTML
code are ignored.

The next element in our code is a pre (preformatted text) element (lines 21
to 25). This element is used to display text exactly as it is entered, using
a monospace font, with all spaces faithfully reproduced. This is in contrast
to the previous p element, where the layout of the text in the HTML code
bore no relation to the layout within the web page.

The next element is another paragraph of text (lines 27 to 33), and then we
have an img (image) element (line 35). One difference with this element is
that it has an attribute. The src attribute specifies the location of the file
for the image.

At the bottom of the page we have another hr element (line 37), followed
by a final paragraph (p element) of text (lines 38 to 43).

Part of the text in the final paragraph is also a hyperlink. The a (anchor)
element around the text “Live Access Server” (lines 9 and 11) means that
this text is highlighted and underlined. The href attribute specifies that
when the text is clicked, the browser will navigate to the home page of
NASA’s Live Access Server.

These are some of the simple HTML elements that can be used to create
web pages. Learning the meaning of these HTML keywords allows us to
produce HTML code that is not only correct, but also produces the web
page that we want.

There are many more HTML elements that can be used to create a variety
of different effects and Chapter 3 describes a few more of these.

Recap

The meaning of keywords in a computer language is called the semantics
of the language.

A web page is described by placing HTML tags around the content of
the page.
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2.4 Writing code

Up to this point, we have only looked at HTML code that has already been
written. We will now turn our attention to writing new HTML code.

There are three important steps: we must learn how to write the code in
the first place; we must be able to check the syntax of the code; and we
must learn how to run the code to produce the desired end result (in the
case of HTML, a web page).

For each step, we will discuss what software we need to do the job as well
as provide guidelines and advice on the right way to perform each task.

In this section, we look at the task of writing computer code.

2.4.1 Text editors

The act of writing code is itself dependent on computer tools. We use
software to record and manage our keystrokes in an effective manner. This
section discusses what sort of tool should be used to write computer code
effectively.

An important feature of computer code is that it is just plain text. There
are many software packages that allow us to enter text, but some are more
appropriate than others.

For many people, the most obvious software program for entering text is
a word processor, such as Microsoft Word or Open Office Writer. These
programs are not a good choice for editing computer code. A word processor
is a good program for making text look pretty with lots of fancy formatting
and wonderful fonts. However, these are not things that we want to do with
our raw computer code.

The programs that we use to run our code expect to encounter only plain
text, so we must use software that creates only text documents, which means
we must use a text editor.

2.4.2 Important features of a text editor

For many people, the most obvious program for creating a document that
only contains text is Microsoft Notepad. This program has the nice feature
that it saves a file as pure text, but its usefulness ends there.

When we write computer code, a good choice of text editor can make us
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much more accurate and efficient. The following facilities are particularly
useful for writing computer code:

automatic indenting
As we will see in Section 2.4.3, it is important to arrange code in a
neat fashion. A text editor that helps to indent code (place empty
space at the start of a line) makes this easier and faster.

parenthesis matching
Many computer languages use special symbols, e.g., { and }, to mark
the beginning and end of blocks of code. Some text editors provide
feedback on such matching pairs, which makes it easier to write code
correctly.

syntax highlighting
All computer languages have special keywords that have a special
meaning for the language. Many text editors automatically color such
keywords, which makes it easier to read code and easier to spot simple
mistakes.

line numbering
Some text editors automatically number each line of computer code
(and in some cases each column or character as well) and this makes
navigation within the code much easier. This is particularly important
when trying to find errors in the code (see Section 2.5).

In the absence of everything else, Notepad is better than using a word
processor. However, many useful (and free) text editors exist that do a
much better job. Some examples are Crimson Editor on Windows1 and
Kate on Linux.2

Figure 2.4 demonstrates some of these ideas by showing the same code in
Notepad and Crimson Editor.

2.4.3 Layout of code

There are two important audiences to consider when writing computer code.
The obvious one is the computer; it is vitally important that the computer
understands what we are trying to tell it to do. This is mostly a matter of
getting the syntax of our code right.

1http://www.crimsoneditor.com/
2http://kate-editor.org/

http://www.crimsoneditor.com/
http://kate-editor.org/
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Figure 2.4: The HTML code from Figure 2.2 viewed in Crimson Editor (top)

and Microsoft Notepad (bottom). Crimson Editor provides assistance for writing

computer code by providing syntax highlighting (the HTML keywords are high-

lighted) and by providing information about which row and column the cursor is

on (in the status bar at the bottom of the window).
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The other audience for code consists of humans. While it is important that
code works (that the computer understands it), it is also essential that the
code is comprehensible to people. And this does not just apply to code
that is shared with others, because the most important person who needs
to understand a piece of code is the original author of the code! It is very
easy to underestimate the probability of having to reuse a piece of code
weeks, months, or even years after it was initially written, and in such cases
it is common for the code to appear much less obvious on a second viewing,
even to the original author.

Other people may also get to view a piece of code. For example, other
researchers will want to see our code so that they know what we did to our
data. All code should be treated as if it is for public consumption.

One simple but important way that code can be improved for a human
audience is to format the code so that it is easy to read and easy to navigate.

For example, the following two code chunks are identical HTML code, as far
as the computer is concerned. However, they are vastly different to a human
reader. Try finding the “title” part of the code. Even without knowing
anything about HTML, this is a ridiculously easy task in the second layout,
and annoyingly difficult in the first.

<html><head><title>A Minimal HTML
Document</title></head><body>
The content goes here!</body>

<html>
<head>

<title>A Minimal HTML Document</title>
</head>
<body>

The content goes here!
</body>

This demonstrates the basic idea behind laying out code. The changes are
entirely cosmetic, but they are extremely effective. It also demonstrates one
important layout technique: indenting.

2.4.4 Indenting code

The idea of indenting code is to expose the structure of the code. What
this means will vary between computer languages, but in the case of HTML
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code, a simple rule is to indent the contents of an element.

The following code provides a simple example, where a title element is the
content of a head element. The title element is indented (shifted to the
right) with respect to the head element.

<head>
<title>A Minimal HTML Document</title>

</head>

The amount of indenting is a personal choice. The examples here have used
4 spaces, but 2 spaces or even 8 spaces are also common. Whatever indenta-
tion is chosen, it is essential that the indenting rule is applied consistently,
especially when more than one person might modify the same piece of code.

Exposing structure of code by indenting is important because it makes it
easy for someone reading the code to navigate within the code. It is easy
to identify different parts of the code, which makes it easier to see what the
code is doing.

Another useful result of indenting is that it provides a basic check on the
correctness of code. Look again at the simple HTML code example. Does
anything look wrong?

<html>
<head>

<title>A Minimal HTML Document</title>
</head>
<body>

The content goes here!
</body>

Even without knowing anything about HTML, the lack of symmetry in the
layout suggests that there is something missing at the bottom of this piece
of code. In this case, indenting has alerted us to the fact that there is no
end </html> tag.

2.4.5 Long lines of code

Another situation where indenting should be applied is when a line of com-
puter code becomes very long. It is a bad idea to have a single line of code
that is wider than the screen on which the code is being viewed (so that we
have to scroll across the window to see all of the code). When this happens,
the code should be split across several lines (most computer languages do
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not notice the difference). Here is an example of a line of HTML code that
is too long.

<img src="poleplot.png" alt="A plot of temperatures over time">

Here is the code again, split across several lines. It is important that the
subsequent lines of code are indented so that they are visually grouped with
the first line.

<img src="poleplot.png"
alt="A plot of temperatures over time">

In the case of a long HTML element, a reasonable approach is to left-align
the start of all attributes within the same tag (as shown above).

2.4.6 Whitespace

Whitespace refers to empty gaps in computer code. Like indenting, white-
space is useful for making code easy for humans to read, but it has no effect
on the semantics of the code. Wouldyouwriteinyournativelanguagewithout-
puttingspacesbetweenthewords?

Indenting is a form of whitespace that always appears at the start of a line,
but whitespace is effective within and between lines of code as well. For
example, the following code is too dense and therefore is difficult to read.

<table border="1"width="100%"bgcolor="#CCCCCC">

This modification of the code, with extra spaces, is much easier on the eye.

<table border="1" width="100%" bgcolor="#CCCCCC">

Figure 2.5 shows two code chunks that demonstrate the usefulness of blank
lines between code blocks to help expose the structure, particularly in large
pieces of code.

Again, exactly when to use spaces or blank lines depends on personal style.

2.4.7 Documenting code

In Section 2.5.3, we discuss the importance of being able to read documen-
tation about a computer language. In this section, we consider the task of
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<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html>

<head>

<title>Poles of Inaccessibility</title>

</head>

<body>

<h3>

Temperatures at the Pacific and Eurasian

Poles of Inaccessibility

</h3>

<hr>

<p>

The Eurasion Pole of Inaccessibility experiences

a much wider range of temperatures than the

Pacific Pole of Inaccessibility.

</p>

<pre>

pacific eurasian

min 276 252

max 283 307

</pre>

<p>

This reflects the fact that large bodies of

water tend to absorb and release heat more

slowly compared to large land masses.

Temperatures also depend on the time of the year

and which hemisphere the pole is located in.

</p>

<img src="poleplot.png">

<hr>

<p style="font-style: italic">

Source: NASA's

<a href="http://mynasadata.larc.nasa.gov/">

Live Access Server</a>.

</p>

</body>

</html>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<html>

<head>

<title>Poles of Inaccessibility</title>

</head>

<body>

<h3>

Temperatures at the Pacific and Eurasian

Poles of Inaccessibility

</h3>

<hr>

<p>

The Eurasion Pole of Inaccessibility experiences

a much wider range of temperatures than the

Pacific Pole of Inaccessibility.

</p>

<pre>

pacific eurasian

min 276 252

max 283 307

</pre>

<p>

This reflects the fact that large bodies of

water tend to absorb and release heat more

slowly compared to large land masses.

Temperatures also depend on the time of the year

and which hemisphere the pole is located in.

</p>

<img src="poleplot.png">

<hr>

<p style="font-style: italic">

Source: NASA's

<a href="http://mynasadata.larc.nasa.gov/">

Live Access Server</a>.

</p>

</body>

</html>

Figure 2.5: These two code chunks contain exactly the same code; all that differs

is the use of several blank lines (whitespace) in the code on the right, which help

to expose the structure of the code for a human reader.
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writing documentation for our own code.

As with the layout of code, the purpose of documentation is to communicate.
The obvious target of this communication is other people, so that they know
what we did. A less obvious, but no less important, target is the code author.
It is essential that when we return to a task days, weeks, or even months
after we first performed the task, we are able to pick up the task again, and
pick it up quickly.

Most of what we will have to say about documentation will apply to writing
comments—messages written in plain language, embedded in the code,
and which the computer ignores.

2.4.8 HTML comments

Here is how to include a comment within HTML code.

<!-- This is a comment -->

Anything between the start <!-- and end -->, including HTML tags, is
completely ignored by the computer. It is only there to edify a human
reader.

Having no comments in code is generally a bad idea, and it is usually the
case that people do not add enough comments to their code. However, it
can also be a problem if there are too many comments. If there are too
many comments, it can become a burden to ensure that the comments are
all correct if the code is ever modified. It can even be argued that too many
comments make it hard to see the actual code!

Comments should not just be a repetition of the code. Good uses of com-
ments include: providing a conceptual summary of a block of code; ex-
plaining a particularly complicated piece of code; and explaining arbitrary
constant values.

Recap

Computer code should be written using a text editor.

Code should be written tidily so that it is acceptable for a human audi-
ence. Code should be indented, lines should not be too long, and there
should be plenty of whitespace.

Code should include comments, which are ignored by the computer but
explain the purpose of the code to a human reader.
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2.5 Checking code

Knowing how to write the correct syntax for a computer language is not
a guarantee that we will write the correct syntax for a particular piece of
code. One way to check whether we have our syntax correct is to stare at
it and try to see any errors. However, in this book, such a tedious, manual,
and error-prone approach is discouraged because the computer is so much
better at this sort of task.

In general, we will enlist the help of computer software to check that the
syntax of our code is correct.

In the case of HTML code, there are many types of software that can check
the syntax. Some web browsers provide the ability to check HTML syntax,
but in general, just opening the HTML document in a browser is not a good
way to check syntax.

The software that we will use to demonstrate HTML syntax checking is a
piece of software called HTML Tidy.

2.5.1 Checking HTML code

HTML Tidy is a program for checking the syntax of HTML code. It can
be downloaded from Source Forge3 or it can be used via one of the online
services provided by the World Wide Web Consortium (W3C).4

In order to demonstrate the use of HTML Tidy, we will check the syntax of
the following HTML, which contains one deliberate mistake. This code has
been saved in a file called broken.html.

For simple use of HTML Tidy, the only thing we need to know is the name
of the HTML document and where that file is located. For example, the
online services provide a button to select the location of an HTML file.
To run HTML Tidy locally, the following command would be entered in a
command window or terminal.

tidy broken.html

HTML Tidy checks the syntax of HTML code, reports any problems that it
finds, and produces a suggestion of what the correct code should look like.

Figure 2.7 shows part of the output from running HTML Tidy on the simple
HTML code in Figure 2.6.

3http://tidy.sourceforge.net/
4http://cgi.w3.org/cgi-bin/tidy, http://validator.w3.org/

http://tidy.sourceforge.net/
http://cgi.w3.org/cgi-bin/tidy
http://validator.w3.org/
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1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>A Minimal HTML Document

5 </head>

6 <body>

7 </body>

8 </html>

Figure 2.6: An HTML document that contains one deliberate mistake on line 4

(missing <\title> tag). The line numbers (in grey) are just for reference.

Parsing "broken.html"

line 5 column 5 - Warning: missing </title> before </head>

Info: Doctype given is "-//W3C//DTD HTML 4.01 Transitional//EN"

Info: Document content looks like HTML 4.01 Transitional

1 warning, 0 errors were found!

Figure 2.7: Part of the output from running HTML Tidy on the HTML code in

Figure 2.6.

An important skill to develop for writing computer code is the ability to
decipher warning and error messages that the computer displays. In this
case, there is one error message.

2.5.2 Reading error information

The error (or warning) information provided by computer software is often
very terse and technical. Reading error messages is a skill that improves with
experience, and it is important to seek out any piece of useful information
in a message. Even if the message as a whole does not make sense, if the
message can only point us to the correct area within the code, our mistake
may become obvious.

In general, when the software checking our code encounters a series of errors,
it is possible for the software to become confused. This can lead to more
errors being reported than actually exist. It is always a good idea to tackle
the first error first, and it is usually a good idea to recheck code after fixing
each error. Fixing the first error will sometimes eliminate or at least modify
subsequent error messages.
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The error from HTML Tidy in Figure 2.7 is this:

line 5 column 5 - Warning: missing </title> before </head>

To an experienced eye, the problem is clear, but this sort of message can
be quite opaque for people who are new to writing computer code. A good
first step is to make use of the information that is supplied about where the
problem has occurred. In this case, we need to find the fifth character on
line 5 of our code.

The line of HTML code in question is shown below.

</head>

Column 5 on this line is the < at the start of the closing head tag.

Taken in isolation, it is hard to see what is wrong with this code. However,
error messages typically occur only once the computer is convinced that
something has gone wrong. In many cases, the error will actually be in the
code somewhere in front of the exact location reported in the error message.
It is usually a good idea to look in the general area specified by the error
message, particularly on the lines immediately preceding the error.

Here is the location of the error message in a slightly broader context.

<title>A Minimal HTML Document
</head>
<body>

The error message mentions both title and head, so we might guess that
we are dealing with these elements. In this case, this case just confirms that
we are looking at the right place in our code.

The message is complaining that the </title> tag is missing and that the
tag should appear before the </head> tag. From the code, we can see that
we have started a title element with a <title> start tag, but we have
failed to complete the element; there is no </title> end tag.

In this case, the solution is simple; we just need to add the missing tag and
check the code with HTML Tidy again, and everything will be fine.

Unfortunately, not all syntax errors can be resolved as easily as this. When
the error is not as obvious, we may have to extract what information we
can from the error message and then make use of another important skill:
reading the documentation for computer code.
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2.5.3 Reading documentation

The nice thing about learning a computer language is that the rules of
grammar are usually quite simple, there are usually very few of them, and
they are usually very consistent.

Unfortunately, computer languages are similar to natural languages in terms
of vocabulary. The time-consuming part of learning a computer language
involves learning all of the special words in the language and their meanings.

What makes this task worse is the fact that the reference material for com-
puter languages, much like the error messages, can be terse and technical.
As for reading error messages, practice and experience are the only known
cures.

This book provides reference chapters for each of the computer languages
that we encounter. Chapter 3 provides a reference for HTML.

These reference chapters are shorter and simpler than the official language
documentation, so they should provide a good starting point for finding out
a few more details about a language. When this still does not provide the
answer, there are pointers to more thorough documentation at the end of
each reference chapter.

Recap

Computer code should be checked for correctness of syntax before it
can be expected to run.

Understanding computer error messages and understanding the docu-
mentation for a computer language are important skills in themselves
that take practice and experience to master.

2.6 Running code

We have now discussed how to write code and how to check that the syntax
of the code is correct. The final step is to run the code and have the
computer produce the result that we want.

As with syntax checking, we need to use software to run the code that we
have written.

In the case of HTML, there are many software programs that will run the
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code, but the most common type is a web browser, such as Internet Explorer
or Firefox.

2.6.1 Running HTML code

All that we need to do to run our HTML code is to open the file containing
our code with a web browser. The file does not have to be on another
computer on the internet. In most browsers, there is a File menu with an
option to open an HTML file on the local computer. We can then see
whether the code has produced the result that we want.

Web browsers tend to be very lenient with HTML syntax. If there is a
syntax error in HTML code, most web browsers try to figure out what the
code should do (rather than reporting an error). Unfortunately, this can
lead to problems where two different web browsers will produce different
results from exactly the same code.

Another problem arises because most web browsers do not completely im-
plement the HTML standards. This means that some HTML code will not
run correctly on some browsers.

The solution to these problems, for this book, has two parts: we will not
use a browser to check our HTML syntax (we will use HTML Tidy instead;
see Section 2.5), and we will use a single browser (Firefox5) to define what
a piece of HTML code should do. Furthermore, because we will only be
using a simple subset of the HTML language, the chance of encountering
ambiguous behavior is small.

If we run HTML code and the result is what we want, we are finished.
However, more often than not, the result is not what we want. The next
section looks at how to resolve problems in our code.

2.6.2 Debugging code

When we have code that has correct syntax and runs, but does not behave
correctly, we say that there is a bug in our code. The process of fixing our
code so that it does what we want it to is called debugging the code.

It is often the case that debugging code takes much longer than writing the
code in the first place, so it is an important skill to acquire.

The source of common bugs varies enormously with different computer lan-

5http://www.mozilla.com/en-US/products/firefox/

http://www.mozilla.com/en-US/products/firefox/
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guages, but there are some common steps we should take when fixing any
sort of code:

Do not blame the computer:
There are two possible sources of problems: our code is wrong or
the computer (or software used to run our code) is wrong. It will
almost always be the case that our code is wrong. If we are completely
convinced that our code is correct and the computer is wrong, we
should go home, have a sleep, and come back the next day. The
problem in our code will usually then become apparent.

Recheck the syntax:
Whenever a change is made to the code, check the syntax again before
trying to run the code again. If the syntax is wrong, there is no hope
that the code will run correctly.

Develop code incrementally:
Do not try to write an entire web page at once. Write a small piece
of code and get that to work, then add more code and get that to
work. When things stop working, it will be obvious which bit of code
is broken.

Do one thing at a time:
Do not make more than one change to the code at a time. If several
changes are made, even if the problem is cured, it will be difficult to
determine which change made the difference. A common problem is
introducing new problems as part of a fix for an old problem. Make
one change to the code and see if that corrects the behavior. If it does
not, then revert that change before trying something else.

Read the documentation:
For all of the computer languages that we will deal with in this book,
there are official documents plus many tutorials and online forums
that contain information and examples for writing code. Find them
and read them.

Ask for help:
In addition to the copious manuals and tutorials on the web, there
are many forums for asking questions about computer languages. The
friendliness of theses forums varies and it is important to read the
documentation before taking this step.

Chapter 3 provides some basic information about common HTML elements
and Section 3.3 provides some good starting points for detailed documenta-
tion about HTML.
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We will discuss specific debugging tools for some languages as we meet them.

Recap

Computer code should be tested to ensure that it not only works but
also that it produces the right result.

If code does not produce the right result, the code should be modified
in small, disciplined, and deliberate stages to approach the right result.

2.7 The DRY principle

One of the purposes of this book is to introduce and explain various tech-
nologies for working with data. We have already met one such technology,
HTML, for producing reports on the world wide web.

Another purpose of this book is to promote the correct approach, or “best
practice”, for using these technologies. An example of this is the emphasis
on writing code using computer languages rather than learning to use dialog
boxes and menus in a software application.

In this section, we will look at another example of best practice, called the
DRY principle,6 which has important implications for how we manage
the code that we write.

DRY stands for Don’t Repeat Yourself and the principle is that there
should only ever be one copy of any important piece of information.

The reason for this principle is that one copy is much easier to maintain
than multiple copies; if the information needs to be changed, there is only
one place to change it. In this way the principle promotes efficiency. Fur-
thermore, if we lapse and allow several copies of a piece of information, then
it is possible for the copies to diverge or for one copy to get out of date.
From this perspective, having only one copy improves our accuracy.

To understand the DRY principle, consider what happens when we move to a
new address. One of the many inconveniences of changing addresses involves
letting everyone know our new address. We have to alert schools, banks,
insurance companies, doctors, friends, etc. The DRY principle suggests that
we should have only one copy of our address stored somewhere (e.g., at the

6“The Pragmatic Programmer”, Andy Hunt and Dave Thomas (1999), Addison-
Wesley.
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post office) and everyone else should refer to that address. That way, if
we change addresses, we only have to tell the post office the new address
and everyone will see the change. In the current situation, where there are
multiple copies of our address, it is easy for us to forget to update one of
the copies when we change address. For example, we might forget to tell
the bank, so all our bank correspondence will be sent to the wrong address!

The DRY principle will be very important when we discuss the storage of
data (Chapter 5), but it can also be applied to computer code that we
write. In the next section, we will look at one example of applying the DRY
principle to writing computer code.

2.7.1 Cascading Style Sheets

Cascading Style Sheets (CSS) is a language that is used to describe how
to display information. It is commonly used with HTML to control the
appearance of a web page. In fact, the preferred way to produce a web page
is to use HTML to indicate the structure of the information and CSS to
specify the appearance.

We will give a brief introduction to CSS and then go on to show how the
proper use of CSS demonstrates the DRY principle.

CSS syntax

We have actually seen two examples of CSS already in the HTML code
from the very start of this chapter. The CSS code occurs on lines 10 and
41 of Figure 2.2; these lines, plus their surrounding context, are reproduced
below.

<a href="http://wikipedia.org/wiki/Pole_of_inaccessibility"
style="font-style: italic">

Poles of Inaccessibility</a>

<a href="http://mynasadata.larc.nasa.gov/LASintro.html"
style="font-style: italic">

Live Access Server</a>.

In both cases, the CSS code occurs within the start tag of an HTML anchor
(a) element. The anchor element has an attribute called style, and the
value of that attribute is a CSS property.
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font-style: italic

This property has the name font-style and the value italic; the effect
in both cases is to make the text of the hyperlink italic.

One component of the CSS language is this idea of properties. The appear-
ance of an element is specified by setting one or more CSS properties for
that element. There are a number of different properties to control things
like the font used for text, colors, and borders and shading.

One way to use CSS is to add CSS properties as attributes of individual
HTML elements, as in the above example. However, this has the disadvan-
tage of requiring us to add a CSS property to every HTML element that we
want to control the appearance of.

Figure 2.8 shows another way to use CSS properties; this is a small modi-
fication of the HTML code from Figure 2.2. The result in a web browser is
exactly the same; all that has changed is how the CSS code is provided.

The important differences in Figure 2.8 are that there is a style element
in the head of the HTML code (lines 5 to 7) and the anchor elements (lines
12 and 13) no longer have a style attribute.

The new style element in the head of the HTML code is reproduced below.

<style type="text/css">
a { font-style: italic; }

</style>

One important point is that this CSS code no longer just consists of a
CSS property. This CSS code is a complete CSS rule, which consists of a
selector, plus one or more properties.

The components of this CSS rule are shown below.

selector: a { font-style: italic; }
open bracket: a { font-style: italic; }

property name: a { font-style: italic; }
colon: a { font-style: italic; }

property value: a { font-style: italic; }
semi-colon: a { font-style: italic; }

close bracket: a { font-style: italic; }

The brackets, the colon, and the semi-colon will be the same for any CSS
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1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Poles of Inaccessibility</title>

5 <style type="text/css">

6 a { font-style: italic; }

7 </style>

8 </head>

9 <body>

10 <h3>

11 Temperatures at the Pacific and Eurasian

12 <a href="http://wikipedia.org/wiki/Pole_of_inaccessibility">

13 Poles of Inaccessibility</a>

14 </h3>

15 <hr>

16 <p>

17 The Eurasion Pole of Inaccessibility experiences a much

18 wider range of temperatures than the Pacific Pole of

19 Inaccessibility.

20 </p>

21 <pre>

22 pacific eurasian

23 min 276 252

24 max 283 307

25 </pre>

26 <p>

27 This reflects the fact that large bodies of water tend to

28 absorb and release heat more slowly compared to large

29 land masses.

30 Temperatures also depend on the time of the year and which

31 hemisphere the pole is located in.

32 </p>

33 <img src="poleplot.png">

34 <hr>

35 <p>

36 Source: NASA's

37 <a href="http://mynasadata.larc.nasa.gov/LASintro.html">

38 Live Access Server</a>.

39 </p>

40 </body>

41 </html>

Figure 2.8: The file inaccessibilitystyle.html. This HTML code will produce

the same web page as Figure 2.1 when viewed in a web browser. This code is

similar to the code in Figure 2.2 except that the CSS code is within a style

element in the head element, rather than being within a style attribute within

the anchor element.
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rule.

The selector part of the CSS rule specifies the elements within the HTML
document that the properties part of the rule is applied to.

In this case, the selector is just a, which means that this rule applies to all
anchor elements within the HTML document.

This is one demonstration of how CSS supports the DRY principle. Instead
of adding CSS code in a style attribute to every element within an HTML
document, we can just add CSS code to a single style element at the top
of the HTML document and the rules within that CSS code will be applied
to all relevant elements within the document.

This is good, but we can do even better.

A third way to use CSS code is to create a separate text file containing just
the CSS code and refer to that file from the HTML document.

Figure 2.9 shows a modification of the code in Figure 2.8 that makes use of
this approach.

The important difference this time is that there is a link element in the head
element (lines 5 and 6) rather than a style element. This new link element
is reproduced below. Most of this element is standard for referencing a file
of CSS code; the only piece that is specific to this example is the href
attribute, which specifies the name of the file that contains the CSS code.

<link rel="stylesheet" href="reportstyle.css"
type="text/css">

This link element tells a web browser to load the CSS code from the file
reportstyle.css and apply the rules in that file. The contents of that file
are shown in Figure 2.10.

A CSS file can contain one or more CSS rules. In this case, there is just one
rule, which applies to anchor elements and says that the text for hyperlinks
should be italic.

The advantage of having a separate file of CSS code like this is that now
we can apply the CSS rule not just to all anchor elements in the HTML
document inaccessibility.html, but to all anchor elements in any other
HTML document as well. For example, if we want this style for all statistical
reports that we write, then we can simply include a link element that refers
to reportstyle.css in the HTML document for each report. This is a
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1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

2 <html>

3 <head>

4 <title>Poles of Inaccessibility</title>

5 <link rel="stylesheet" href="reportstyle.css"

6 type="text/css">

7 </head>

8 <body>

9 <h3>

10 Temperatures at the Pacific and Eurasian

11 <a href="http://wikipedia.org/wiki/Pole_of_inaccessibility">

12 Poles of Inaccessibility</a>

13 </h3>

14 <hr>

15 <p>

16 The Eurasion Pole of Inaccessibility experiences a much

17 wider range of temperatures than the Pacific Pole of

18 Inaccessibility.

19 </p>

20 <pre>

21 pacific eurasian

22 min 276 252

23 max 283 307

24 </pre>

25 <p>

26 This reflects the fact that large bodies of water tend to

27 absorb and release heat more slowly compared to large

28 land masses.

29 Temperatures also depend on the time of the year and which

30 hemisphere the pole is located in.

31 </p>

32 <img src="poleplot.png">

33 <hr>

34 <p>

35 Source: NASA's

36 <a href="http://mynasadata.larc.nasa.gov/LASintro.html">

37 Live Access Server</a>.

38 </p>

39 </body>

40 </html>

Figure 2.9: The file inaccessibilitycss.html. This HTML code will produce

the same web page as Figure 2.1 when viewed in a web browser. This code is

similar to the code in Figure 2.8 except that the CSS code is within a separate

text file called reportstyle.css and there is a link element (rather than a style

element) in the head element that refers to the file of CSS code.
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1 a {
2 font-style: italic;
3 }

Figure 2.10: The file reportstyle.css, which contains CSS code to control the

appearance of anchor elements within HTML documents. The line numbers (in

grey) are just for reference.

further example of the DRY principle as it applies to computer code; we
have one copy of code that can be reused in many different places.

Other CSS rules

As mentioned previously, there are many other CSS properties for control-
ling other aspects of the appearance of elements within a web page. Some
of these are described in Chapter 4.

Chapter 4 also describes some more advanced ideas about the selectors
within CSS rules. For example, there are ways to specify a selector so that
a CSS rule only applies to some anchor elements within an HTML document,
rather than all anchor elements within the document.

Recap

The DRY principle states that there should be only one copy of impor-
tant information.

Cascading style sheets control the appearance of HTML documents.

By having separate HTML and CSS files, it is easy and efficient to have
several different HTML documents with the same general appearance.

2.8 Further reading

Code Complete
by Steve McConnell
2nd edition (2004) Microsoft Press.
Exhaustive discussion of ways of writing good computer code. Includes
languages and advanced topics way beyond the scope of this book.
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Summary

Writing computer code should be performed with a text editor to produce a
plain text file.

Code should first be checked for correct syntax (spelling and grammar).

Code that has correct syntax can then be run to determine whether it performs
as intended.

Code should be written for human consumption as well as for correctness.

Comments should be included in code and the code should be arranged neatly
so that the structure of the code is obvious to human eyes.

HTML is a simple language for describing the structure of the content of web
pages. It is a useful cross-platform format for producing reports.

CSS is a language for controlling the appearance of the content of web pages.

The separation of code for a web page into HTML and CSS helps to avoid
duplication of code (an example of the DRY principle in action).

HTML and CSS code can be run in any web browser.
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3
HTML Reference

HTML is a computer language used to create web pages. HTML code can
be run by opening the file containing the code with any web browser.

The information in this chapter describes HTML 4.01, which is a W3C
Recommendation.

3.1 HTML syntax

HTML code consists of HTML elements.

An element consists of a start tag, followed by the element content, fol-
lowed by an end tag. A start tag is of the form <elementName> and an end
tag is of the form </elementName>. The example code below shows a title
element; the start tag is <title>, the end tag is </title>, and the content
is the text: Poles of Inaccessibility.

<title>Poles of Inaccessibility</title>

start tag: <title>Poles of Inaccessibility</title>
content: <title>Poles of Inaccessibility</title>
end tag: <title>Poles of Inaccessibility</title>

Some elements are empty, which means that they consist of only a start
tag (no content and no end tag). The following code shows an hr element,
which is an example of an empty element.

<hr>

An element may have one or more attributes. Attributes appear in the
start tag and are of the form attributeName="attributeValue". The code
below shows the start tag for an img element, with an attribute called src.
The value of the attribute in this example is "poleplot.png".

<img src="poleplot.png">

43
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<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<title></title>

</head>

<body>

</body>

</html>

Figure 3.1: A minimal HTML document. This is the basic code that must appear

in any HTML document. The main content of the web page is described by adding

further HTML elements within the body element.

HTML tag: <img src="poleplot.png">
element name: <img src="poleplot.png">

attribute: <img src="poleplot.png">
attribute name: <img src="poleplot.png">
attribute value: <img src="poleplot.png">

There is a fixed set of valid HTML elements (Section 3.2.1 provides a list
of some common elements) and each element has its own set of possible
attributes.

Certain HTML elements are compulsory. An HTML document must include
a DOCTYPE declaration and a single html element. Within the html element
there must be a single head element and a single body element. Within the
head element there must be a title element. Figure 3.1 shows a minimal
piece of HTML code.

Section 3.2.1 describes each of the common elements in a little more detail,
including any important attributes and which elements may be placed inside
which other elements.

3.1.1 HTML comments

Comments in HTML code are anything within <!-- and -->. All characters,
including HTML tags, lose their special meaning within an HTML comment.
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Table 3.1: Some common HTML entities.

Character Description Entity
< less-than sign &lt;
> greater-than sign &gt;
& ampersand &amp;
π Greek letter pi &pi;
µ Greek letter mu &mu;
e Euro symbol &euro;
£ British pounds &pound;
© copyright symbol &copy;

3.1.2 HTML entities

The less-than and greater-than characters used in HTML tags are special
characters and must be escaped to obtain their literal meaning. These
escape sequences in HTML are called entities. All entities start with an
ampersand so the ampersand is also special and must be escaped. Entities
provide a way to include some other special characters and symbols within
HTML code as well. Table 3.1 shows some common HTML entities.

3.2 HTML semantics

The primary purpose of HTML tags is to specify the structure of a web
page.

Elements are either block-level or inline. A block-level element is like a
paragraph; it is a container that can be filled with other elements. Most
block-level elements can contain any other sort of element. An inline element
is like a word within a paragraph; it is a small component that is arranged
with other components inside a container. An inline element usually only
contains text.

The content of an element may be other elements or plain text. There is a
limit on which elements may be nested within other elements (see Section
3.2.1).
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3.2.1 Common HTML elements

This section briefly describes the important behavior, attributes, and rules
for each of the common HTML elements.

<html>
The html element must contain exactly one head element followed by
exactly one body element.

<head>
The head element is only allowed within the html element. It must
contain exactly one title element. It may also contain link elements
to refer to external CSS files and/or style elements for inline CSS
rules. It has no attributes of interest.

<title>
The title element must be within the head element and must only
contain text. This element provides information for the computer to
use to identify the web page rather than for display, though it is often
displayed in the title bar of the browser window. It has no attributes.

<link>
This is an empty element that must reside in the head element. It can
be used to specify an external CSS file, in which case the important
attributes are: rel, which should have the value "stylesheet"; href,
which specifies the location of a file containing CSS code (can be a
URL); and type, which should have the value "text/css". The media
attribute may also be used to distinguish between a style sheet for
display on "screen" as opposed to display in "print".

An example of a link element is shown below.

<link rel="stylesheet" href="csscode.css"
type="text/css">

Other sorts of links are also possible, but are beyond the scope of this
book.

<body>
The body element is only allowed within the html element. It should
only contain one or more block-level elements, but most browsers will
also allow inline elements. Various appearance-related attributes are
possible, but CSS should be used instead.

<p>
This is a block-level element that can appear within most other block-
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level elements. It should only contain inline elements (words and im-
ages). The content is automatically typeset as a paragraph (i.e., the
browser automatically decides where to break lines).

<img>
This is an empty, inline element (i.e., images are treated like words in a
sentence). It can be used within almost any other element. Important
attributes are src, to specify the file containing the image (this may
be a URL, i.e., an image anywhere on the web), and alt to specify
alternative text for non-graphical browsers.

<a>
The a element is known as an anchor. It is an inline element that can
go inside any other element. It can contain any other inline element
(except another anchor). Its important attributes are: href, which
means that the anchor is a hypertext link and the value of the attribute
specifies a destination (when the content of the anchor is clicked on,
the browser navigates to this destination); and name, which means
that the anchor is the destination for a hyperlink.

The value of an href attribute can be: a URL, which specifies a sep-
arate web page to navigate to; something of the form #target, which
specifies an anchor within the same document that has an attribute
name="target"; or a combination, which specifies an anchor within a
separate document. For example, the following URL specifies the top
of the W3C page for HTML 4.01.

href="http://www.w3.org/TR/html401/"

The URL below specifies the table of contents further down that web
page.

href="http://www.w3.org/TR/html401/#minitoc"

<h1> ... <h6>
These are block-level elements that denote that the contents are a
section heading. They can appear within almost any other block-level
element, but can only contain inline elements. They have no attributes
of interest.

These elements should be used to indicate the section structure of a
document, not for their default display properties. CSS should be
used to achieve the desired weight and size of the text in general.

<table>, <tr>, and <td>
A table element contains one or more tr elements, each of which con-
tains one or more td elements (so td elements can only appear within
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tr elements, and tr elements can only appear within a table element).
A table element may appear within almost any other block-level el-
ement. In particular, a table can be nested within the td element of
another table.

The table element has a summary attribute to describe the table for
non-graphical browsers. There are also attributes to control borders,
background colors, and widths of columns, but CSS is the preferred
way to control these features.

The tr element has attributes for the alignment of the contents of
columns, including aligning numeric values on decimal points. The
latter is important because it has no corresponding CSS property.

The td element also has alignment attributes for the contents of a
column for one specific row, but these can be handled via CSS in-
stead. However, there are several attributes specific to td elements, in
particular, rowspan and colspan, which allow a single cell to spread
across more than one row or column.

Unless explicit dimensions are given, the table rows and columns are
automatically sized to fit their contents.

It is tempting to use tables to arrange content on a web page, but it is
recommended to use CSS for this purpose instead. Unfortunately, the
support for CSS in web browsers tends to be worse than the support
for table elements, so it may not always be possible to use CSS for
arranging content. This warning also applies to controlling borders
and background colors via CSS.

The code below shows an example of a table with three rows and three
columns and the image below the code shows what the result looks
like in a web browser.

<table border="1">
<tr>

<td></td> <td>pacific</td> <td>eurasian</td>
</tr>
<tr>

<td>min</td> <td>276</td> <td>258</td>
</tr>
<tr>

<td>max</td> <td>283</td> <td>293</td>
</tr>

</table>
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It is also possible to construct more complex tables with separate
thead, tbody, and tfoot elements to group rows within the table
(i.e., these three elements can go inside a table element, with tr
elements inside them).

<hr>
This is an empty element that produces a horizontal line. It can
appear within almost any block-level element. It has no attributes of
interest.

This entire element can be replaced by CSS control of borders.

<br>
This is an empty element that forces a new line or line-break. It can
be put anywhere. It has no attributes of interest.

This element should be used sparingly. In general, text should be
broken into lines by the browser to fit the available space.

<ul>, <ol>, and <li>
These elements create lists. The li element generates a list item and
appears within either a ul element, for a bullet-point list, or an ol
element, for a numbered list.

Anything can go inside an li element (i.e., you can make a list of text
descriptions, a list of tables, or even a list of lists).

These elements have no attributes of interest. CSS can be used to
control the style of the bullets or numbering and the spacing between
items in the list.

The code below shows an ordered list with two items and the image
below the code shows what the result looks like in a web browser.
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<ol>
<li>
<p>
Large bodies of water tend to
absorb and release heat more slowly
compared to large land masses.
</p>
</li>

<li>
<p>
Temperatures vary differently over time
depending on which hemisphere the pole
is located in.
</p>
</li>

</ol>

It is also possible to produce “definition” lists, where each item has a
heading. Use a dl element for the overall list with a dt element to
give the heading and a dd element to give the definition for each item.

<pre>
This is a block-level element that displays any text content exactly
as it appears in the source code. It is useful for displaying computer
code or computer output. It has no attributes of interest.

It is possible to have other elements within a pre element. Like the
hr element, this element can usually be replaced by CSS styling.

<div> and <span>
These are generic block-level and inline elements (respectively). They
have no attributes of interest.

These can be used as “blank” elements with no predefined appearance
properties. Their appearance can then be fully specified via CSS. In
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theory, any other HTML element can be emulated using one of these
elements and appropriate CSS properties. In practice, the standard
HTML elements are more convenient for their default behavior and
these elements are used for more exotic situations.

3.2.2 Common HTML attributes

Almost all elements may have a class attribute, so that a CSS style specified
in the head element can be associated with that element. Similarly, all
elements may have an id attribute, which can be used to associate a CSS
style. The value of all id attributes within a piece of HTML code must be
unique.

All elements may also have a style attribute, which allows “inline” CSS
rules to be specified within the element’s start tag.

3.3 Further reading

The W3C HTML 4.01 Specification
http://www.w3.org/TR/html401/
The formal and official definition of HTML. Quite technical.

Getting started with HTML
by Dave Raggett
http://www.w3.org/MarkUp/Guide/
An introductory tutorial to HTML by one of the original designers of
the language.

The Web Design Group’s HTML 4 web site
http://htmlhelp.com/reference/html40/
A more friendly, user-oriented description of HTML.

The w3schools HTML Tutorial
http://www.w3schools.com/html/
A quick, basic tutorial-based introduction to HTML.

HTML Tidy
http://www.w3.org/People/Raggett/tidy/
A description of HTML Tidy, including links to online versions.

The W3C Validation Service
http://validator.w3.org/
A more sophisticated validation service than HTML Tidy.

http://www.w3.org/TR/html401/
http://www.w3.org/MarkUp/Guide/
http://htmlhelp.com/reference/html40/
http://www.w3schools.com/html/
http://www.w3.org/People/Raggett/tidy/
http://validator.w3.org/
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4
CSS Reference

Cascading Style Sheets (CSS) is a language used to specify the appearance
of web pages—fonts, colors, and how the material is arranged on the page.

CSS is run when it is linked to some HTML code (see Section 4.3) and that
HTML code is run.

The information in this chapter describes CSS level 1, which is a W3C
Recommendation.

4.1 CSS syntax

CSS code consists of one or more rules.

Each CSS rule consists of a selector and, within brackets, one or more
properties.

The selector specifies which HTML elements the rule applies to and the
properties control the way that those HTML elements are displayed. An
example of a CSS rule is shown below:

a {
color: white;

}

The code a is the selector and the property is color, with the value white.

selector: a {
property name: color: white;
property value: color: white;

}

Just as for HTML, it is important to check CSS code for correct syntax.
Most browsers will silently ignore errors in CSS code. For example, if a CSS
property is not spelled correctly, it will just appear not to be working in the
browser. The W3C provides an online validation service (see Section 4.5).

53
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4.2 CSS semantics

There are a number of ways to specify the CSS selector, which determines
the HTML elements that will be affected by a specific rule.

4.2.1 CSS selectors

Within a CSS rule, the selector specifies which HTML elements will be
affected by the rule.

Element selectors:
The selector is just the name of an HTML element. All elements of
this type in the linked HTML code will be affected by the rule. An
example is shown below:

a {
color: white;

}

This rule will apply to all anchor (a) elements within the linked HTML
code.

The same rule may be applied to more than one type of element at
once, by specifying several element names, separated by commas. For
example, the following rule would apply to both a elements and p
elements.

p, a {
color: white;

}

Contextual selectors:
The selector is several element names, separated by spaces. This allows
a CSS rule to be applied to an element only when the element is
contained within another type of element. For example, the following
rule will only apply to anchors that are within paragraphs (not, for
example, to anchors that are within headings).

p a {
color: white;

}

Contrast this to the previous CSS specifier where the element names
are separated by a comma.
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Class selectors:
The selector contains a full stop (.) and the part after the full stop
describes the name of a class. All elements that have a class at-
tribute with the appropriate value will be affected by the rule. An
example is shown below:

p.footer {
font-style: italic;

}

This rule will apply to any paragraph (p) element that has the at-
tribute class="footer". It will not apply to other p elements. It will
not apply to other HTML elements, even if they have the attribute
class="footer".

If no HTML element name is specified, the rule will apply to all HTML
elements with the appropriate class. An example is shown below:

.figure {
margin-left: auto;
margin-right: auto;

}

This rule will apply to any HTML element that has the attribute
class="figure".

ID selectors:
The selector contains a hash character (#). The rule will apply to all
elements that have an appropriate id attribute. This type of rule can
be used to control the appearance of exactly one element. An example
is shown below:

p#footer {
font-style: italic;

}

This rule will apply to the paragraph (p) element that has the attribute
id="footer". There can only be one such element within a piece of
HTML code because the id attribute must be unique for all elements.
This means that the HTML element name is redundant and can be
left out. The rule below has the same effect as the previous rule:

#footer {
font-style: italic;

}
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It is possible for CSS rules to conflict, i.e., for there to be more than one
rule for the same element.

In general, a more specific rule, e.g., a class selector, will override a less
specific one. Otherwise, the rule that is specified last wins. For example,
if two CSS files are linked in the header of an HTML document and they
both contain rules with the same selector, then the rule in the second file
will override the rule in the first file.

Rules are also usually inherited, except where it would not make sense. For
example, if there is a rule that makes the text italic for the body of an HTML
document, then all p elements within the body will have italic text, unless
another rule specifies otherwise. However, a rule controlling the margins of
the body would not be applied to the margins of the p elements (i.e., the
body would be indented within the page, but the paragraphs would not be
indented within the body as well, unless they specified margins themselves).

4.2.2 CSS properties

This section describes some of the common CSS properties, including the
values that each property can take.

font-family:
This property controls the overall font family (the general style) for
text within an element. The value can be a generic font type, for
example, monospace or serif, or it can be a specific font family name,
for example, Courier or Times. If a specific font is specified, it is
usually a good idea to also include (after a comma) a generic font as
well in case the person viewing the result does not have the specific
font on their computer. An example is shown below:

font-family: Times, serif

This means that a Times font will be used if it is available; otherwise,
the browser will choose a serif font that is available.

font-style:, font-weight:, and font-size:
These properties control the detailed appearance of text. The style
can be normal or italic, the weight can be normal or bold, and the
size can be large or small.

There are a number of relative values for size (they go down to xx-small
and up to xx-large), but it is also possible to specify an absolute size,
such as 24pt.
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color: and background-color:
These properties control the foreground color (e.g., for displaying
text), and the background color for an element.

For specifying the color value, there are a few basic color names, e.g.,
black, white, red, green, and blue, but for anything else it is nec-
essary to specify a red-green-blue (RGB) triplet. This consists of
an amount of red, an amount of green, and an amount of blue. The
amounts can be specified as percentages so that, for example, rgb(0%,
0%, 0%) is black and rgb(100%, 100%, 100%) is white, and Ferrari
red is rgb(83%, 13%, 20%).

text-align:
This property controls the alignment of text within an element, with
possible values left, right, center, or justify. This property only
makes sense for block-level elements.

width: and height:
These properties provide explicit control of the width or height of an
element. By default, these are the amount of space required for the
element. For example, a paragraph of text expands to fill the width
of the page and uses as many lines as necessary, while an image has
an intrinsic size (number of pixels in each direction).

Explicit widths or heights can be either percentages (of the parent
element) or an absolute value. Absolute values must include a unit,
e.g., in for inches, cm for centimeters, or px for pixels. For example,
within a web page that is 800 pixels wide on a screen that has a
resolution of 100 dots-per-inch (dpi), to make a paragraph of text half
the width of the page, the following three specifications are identical:

p { width: 50% }

p { width: 4in }

p { width: 400px }

border-width:, border-style:, and border-color:
These properties control the appearance of borders around an element.
Borders are only drawn if the border-width is greater than zero. Valid
border styles include solid, double, and inset (which produces a fake
3D effect).

These properties affect all borders, but there are other properties that
affect only the top, left, right, or bottom border of an element. For
example, it is possible to produce a horizontal line at the top of a
paragraph by using just the border-top-width property.
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margin:
This property controls the space around the outside of the element
(between this element and neighboring elements). The size of margins
can be expressed using units, as for the width and height properties.
This property affects all margins (top, left, right, and bottom). There
are properties, e.g., margin-top, for controlling individual margins
instead.

padding:
This property controls the space between the border of the element
and the element’s contents. Values are specified as they are for mar-
gins. There are also specific properties, e.g., padding-top, for indi-
vidual control of the padding on each side of the element.

display:
This property controls how the element is arranged relative to other
elements. A value of block means that the element is like a self-
contained paragraph (typically, with an empty line before it and an
empty line after it). A value of inline means that the element is
just placed beside whatever was the previous element (like words in a
sentence). The value none means that the element is not displayed at
all.
Most HTML elements are either intrinsically block-level or inline, so
some uses of this property will not make sense.

whitespace:
This property controls how whitespace in the content of an element
is treated. By default, any amount of whitespace in HTML code
collapses down to just a single space when displayed, and the browser
decides when a new line is required. A value of pre for this property
forces all whitespace within the content of an element to be displayed
(especially all spaces and all new lines).

float:
This property can be used to allow text (or other inline elements) to
wrap around another element (such as an image). The value right
means that the element (e.g., image) “floats” to the right of the web
page and other content (e.g., text) will fill in the gap to the left. The
value left works analogously.

clear:
This property controls whether floating elements are allowed beside
an element. The value both means that the element will be placed
below any previous floating elements. This can be used to have the
effect of turning off text wrapping.
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4.3 Linking CSS to HTML

CSS code can be linked to HTML code in one of three ways. These are
described below in increasing order of preference.

Inline CSS:
The simplest approach is to include CSS code within the style at-
tribute of an HTML element. An example is shown below:

<p style="font-style: italic">

Here, CSS is used to control the appearance of text within this para-
graph only.

This approach is actively discouraged because it leads to many copies
of the same CSS code within a single piece of HTML code.

Embedded CSS:
It is also possible to include CSS code within a style element within
the head element of HTML code. An example of this is shown below:

<html>
<head>

<style>
p {

font-style: italic;
}

</style>
...

In this case, the appearance of text within all paragraphs is controlled
with a single CSS rule.

This approach is better because rules are not attached to each indi-
vidual HTML element. However, this is still not ideal because any
reuse of the CSS code with other HTML code requires copying the
CSS code (which violates the DRY principle).

External CSS:
The third approach is to write CSS code in a separate file and refer to
the CSS file from the HTML code, using a link element within the
head element. An example is shown below:

<link rel="stylesheet" href="csscode.css"
type="text/css">
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This line would go within a file of HTML code and it refers to CSS
code within a file called csscode.css.

This approach allows, for example, control over the appearance of text
within all paragraphs for multiple HTML files at once.

4.4 CSS tips

In some cases, it is not immediately obvious how to perform some basic
formatting tasks with CSS. This section provides pointers for a few of the
most common of these situations.

Indenting:
In HTML, whitespace and line breaks in the HTML source are gener-
ally ignored, so adding spaces or tabs at the start of the line in HTML
code has no effect on the output.

Indenting text away from the left hand edge of the page can be
achieved with CSS using either margin or padding properties.

Centering:
An element may be centered on the page (more precisely, within its
containing element) by setting both the margin-left and margin-right
properties to auto.

Floating text:
It is easy to start having text flow around another element, such as
an image, by specifying something like float: right for the image
element. However, it is not as obvious how to stop elements from
floating next to each other.

This is what the clear property is useful for. In particular, clear:
both is useful to turn off all floating for subsequent elements.

Another way to get nice results is to make use of other people’s CSS code.
For example, the Yahoo! User Interface Library (YUI)1 provides a variety
of page layouts via CSS, though there is still the learning curve of how to
use YUI itself.

1http://developer.yahoo.com/yui/

http://developer.yahoo.com/yui/
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4.5 Further reading

The W3C CSS Level 1 Specification
http://www.w3.org/TR/CSS1
The formal and official definition of CSS (level 1). Quite technical.

Adding a Touch of Style
by Dave Raggett
http://www.w3.org/MarkUp/Guide/Style.html
An introductory tutorial to CSS by one of the original designers of
HTML.

The Web Design Group’s CSS web site
http://htmlhelp.com/reference/css/
A more friendly, user-oriented description of CSS.

The w3schools CSS Tutorial
http://www.w3schools.com/css/
A tutorial-based introduction to CSS.

The W3C CSS Validation Service
http://jigsaw.w3.org/css-validator/
A syntax checker for CSS code.

CSS Zen Garden
http://www.csszengarden.com/
A web site that demonstrates and evangelizes the flexibility and power
of CSS beautifully.

http://www.w3.org/TR/CSS1
http://www.w3.org/MarkUp/Guide/Style.html
http://htmlhelp.com/reference/css/
http://www.w3schools.com/css/
http://jigsaw.w3.org/css-validator/
http://www.csszengarden.com/
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Data Storage

Chapter 2 dealt with the ideas and tools that are necessary for producing
computer code. In Chapter 2, we were concerned with how we communicate
our instructions to the computer.

In this chapter, we move over to the computer’s view of the world for a
while and investigate how the computer takes information and stores it.

There are several good reasons why researchers need to know about data
storage options. One is that we may not have control over the format in
which data is given to us. For example, data from NASA’s Live Access
Server is in a format decided by NASA and we are unlikely to be able to
convince NASA to provide it in a different format. This says that we must
know about different formats in order to gain access to data.

Another common situation is that we may have to transfer data between
different applications or between different operating systems. This effec-
tively involves temporary data storage, so it is useful to understand how to
select an appropriate storage format.

It is also possible to be involved in deciding the format for archiving a data
set. There is no overall best storage format; the correct choice will depend
on the size and complexity of the data set and what the data set will be
used for. It is necessary to gain an overview of the relative merits of all of
the data storage options in order to be able to make an informed decision
for any particular situation.

In this chapter, we will see a number of different data storage options and
we will discuss the strengths and weaknesses of each.

How this chapter is organized

This chapter begins with a case study that is used to introduce some of
the important ideas and issues that arise when data is stored electronically.
The purpose of this section is to begin thinking about the problems that
can arise and to begin establishing some criteria that we can use to compare
different data storage options.

The remaining sections each describe one possible approach to data storage:
Section 5.2 discusses plain text formats, Section 5.3 discusses binary formats,

63
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Section 5.4 looks briefly at the special case of spreadsheets, Section 5.5
describes XML, and Section 5.6 addresses relational databases.

In each case, there is an explanation of the relevant technology, including a
discussion of how to use the technology in an appropriate way, and there is
a discussion of the strengths and weaknesses of each storage option.

5.1 Case study: YBC 7289

YBC 7289. Photo by Bill Casselman.

Some of the earliest known examples of recorded information come from
Mesopotamia, which roughly corresponds to modern-day Iraq, and date
from around the middle of the fourth millenium BC. The writing is called
cuneiform, which refers to the fact that marks were made in wet clay with
a wedge-shaped stylus.

A particularly famous mathematical example of cuneiform is the clay tablet
known as YBC 7289.

This tablet is inscribed with a set of numbers using the Babylonian sexages-
imal (base-60) system. In this system, an angled symbol, <, represents the
value 10 and a vertical symbol, |, represents the value 1. For example, the
value 30 is written (roughly) like this: <<<. This value can be seen along
the top-left edge of YBC 7289 (see Figure 5.1).

The markings across the center of YBC 7289 consist of four digits: |,
<<||||, <<<<<|, and <. Historians have suggested that these markings
represent an estimate of the length of the diagonal of a unit square, which
has a true value of

√
2 = 1.41421356 (to eight decimal places). The decimal

interpretation of the sexagesimal digits is 1+ 24
60 + 51

3600 + 10
216000 = 1.41421296,

which is amazingly close to the true value, considering that YBC 7289 has
been dated to around 1600 BC.
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Figure 5.1: Clay tablet YBC 7289 with an overlay to emphasize the markings on

its surface. The cuneiform inscriptions demonstrate the derivation of the square

root of 2.

Storing YBC 7289

What we are going to do with this ancient clay tablet is to treat it as
information that needs to be stored electronically.

The choice of a clay tablet for recording the information on YBC 7289 was
obviously a good one in terms of the durability of the storage medium. Very
few electronic media today have an expected lifetime of several thousand
years. However, electronic media do have many other advantages.

The most obvious advantage of an electronic medium is that it is very easy
to make copies. The curators in charge of YBC 7289 would no doubt love
to be able to make identical copies of such a precious artifact, but truly
identical copies are only really possible for electronic information.

This leads us to the problem of how we produce an electronic record of the
tablet YBC 7289. We will consider a number of possibilities in order to
introduce some of the issues that will be important when discussing various
data storage alternatives throughout this chapter.

A straightforward approach to storing the information on this tablet would
be to write a simple textual description of the tablet.
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YBC 7289 is a clay tablet with various cuneiform marks on it
that describe the relationship between the length of the
diagonal and the length of the sides of a square.

This approach has the advantages that it is easy to create and it is easy
for a human to access the information. However, when we store electronic
information, we should also be concerned about whether the information
is easily accessible for computer software. This essentially means that we
should supply clear labels so that individual pieces of information can be
retrieved easily. For example, the label of the tablet is something that might
be used to identify this tablet from all other cuneiform artifacts, so the label
information should be clearly identified.

label: YBC 7289
description: A clay tablet with various cuneiform marks on it
that describe the relationship between the length of the
diagonal and the length of the sides of a square.

Thinking about what sorts of questions will be asked of the data is a good
way to guide the design of data storage. Another sort of information that
people might go looking for is the set of cuneiform markings that occur on
the tablet.

The markings on the tablet are numbers, but they are also symbols, so it
would probably be best to record both numeric and textual representations.
There are three sets of markings and three values to record for each set; a
common way to record this sort of information is with a row of information
per set of markings, with three columns of values on each row.

<<< 30 30
| <<|||| <<<<<| < 1 24 51 10 1.41421296

<<<<|| <<||||| <<<||||| 42 25 35 42.4263889

When storing the lines of symbols and numbers, we have spaced out the
information so that it is easy, for a human, to see where one sort of value
ends and another begins. Again, this information is even more important
for the computer. Another option is to use a special character, such as a
comma, to indicate the start/end of separate values.
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values:
cuneiform,sexagesimal,decimal
<<<,30,30
| <<|||| <<<<<| <,1 24 51 10,1.41421296
<<<<|| <<||||| <<<|||||,42 25 35,42.4263889

Something else we should add is information about how the values relate to
each other. Someone who is unfamiliar with Babylonian history may have
difficulty realizing how the three values on each line actually correspond
to each other. This sort of encoding information is essential metadata—
information about the data values.

encoding: In cuneiform, a '<' stands for 10 and
a '|' stands for 1. Sexagesimal values are base 60, with
a sexagesimal point after the first digit; the first digit
represents ones, the second digit is sixtieths, the third
is three-thousand six-hundredths, and the fourth is two
hundred and sixteen thousandths.

The position of the markings on the tablet and the fact that there is also
a square, with its diagonals inscribed, are all important information that
contribute to a full understanding of the tablet. The best way to capture
this information is with a photograph.

In many fields, data consist not just of numbers, but also pictures, sounds,
and video. This sort of information creates additional files that are not easily
incorporated together with textual or numerical data. The problem becomes
not only how to store each individual representation of the information, but
also how to organize the information in a sensible way. Something that we
could do in this case is include a reference to a file containing a photograph
of the tablet.

photo: ybc7289.png

Information about the source of the data may also be of interest. For ex-
ample, the tablet has been dated to sometime between 1800 BC and 1600
BC. Little is known of its rediscovery, except that it was acquired in 1912
AD by an agent of J. P. Morgan, who subsequently bequeathed it to Yale
University. This sort of metadata is easy to record as a textual description.

medium: clay tablet
history: Created between 1800 BC and 1600 BC, purchased by
J.P. Morgan 1912, bequeathed to Yale University.
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The YBC in the tablet’s label stands for the Yale Babylonian Collection.
This tablet is just one item within one of the largest collections of cuneiforms
in the world. In other words, there are a lot of other sources of data very
similar to this one.

This has several implications for how we should store information about
YBC 7298. First of all, we should store the information about this tablet in
the same way that information is stored for other tablets in the collection so
that, for example, a researcher can search for all tablets created in a certain
time period. We should also think about the fact that some of the infor-
mation that we have stored for YBC 7289 is very likely to be in common
with all items in the collection. For example, the explanation of the sexa-
gesimal system will be the same for other tablets from the same era. With
this in mind, it does not make sense to record the encoding information for
every single tablet. It would make sense to record the encoding information
once, perhaps in a separate file, and just refer to the appropriate encoding
information within the record for an individual tablet.

A complete version of the information that we have recorded so far might
look like this:

label: YBC 7289
description: A clay tablet with various cuneiform marks on it
that describe the relationship between the length of the
diagonal and the length of the sides of a square.
photo: ybc7289.png
medium: clay tablet
history: Created between 1800 BC and 1600 BC, purchased by
J.P. Morgan 1912, bequeathed to Yale University.
encoding: sexagesimal.txt
values:
cuneiform,sexagesimal,decimal
<<<,30,30
| <<|||| <<<<<| <,1 24 51 10,1.41421296
<<<<|| <<||||| <<<|||||,42 25 35,42.4263889

Is this the best possible way to store information about YBC 7289? Almost
certainly not. Some problems with this approach include the fact that
storing information as text is often not the most efficient approach and the
fact that it would be difficult and slow for a computer to extract individual
pieces of information from a free-form text format like this. However, the
choice of an appropriate format also depends on how the data will be used.

The options discussed so far have only considered a couple of the possible
text representations of the data. Another whole set of options to consider
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is binary formats. For example, the photograph and the text and numeric
information could all be included in a single file. The most likely solu-
tion in practice is that this information resides in a relational database of
information that describes the entire Yale Babylonian Collection.

This chapter will look at the decisions involved in choosing a format for
storing information, we will discuss a number of standard data storage for-
mats, and we will acquire the technical knowledge to be able to work with
the different formats.

We start in Section 5.2 with plain text formats. This is followed by a
discussion of binary formats in Section 5.3, and in Section 5.4, we look at
the special case of spreadsheets. In Section 5.5, we look at XML, a computer
language for storing data, and in Section 5.6, we discuss relational databases.

5.2 Plain text formats

The simplest way to store information in computer memory is as a single
file with a plain text format.

Plain text files can be thought of as the lowest common denominator of stor-
age formats; they might not be the most efficient or sophisticated solution,
but we can be fairly certain that they will get the job done.

The basic conceptual structure of a plain text format is that the data are
arranged in rows, with several values stored on each row.

It is common for there to be several rows of general information about the
data set, or metadata, at the start of the file. This is often referred to as
a file header.

A good example of a data set in a plain text format is the surface tempera-
ture data for the Pacific Pole of Inaccessibility (see Section 1.1). Figure 5.2
shows how we would normally see this sort of plain text file if we view it in
a text editor or a web browser.

This file has 8 lines of metadata at the start, followed by 48 lines of the core
data values, with 2 values, a date and a temperature, on each row.

There are two main sub-types of plain text format, which differ in how
separate values are identified within a row:

Delimited formats:
In a delimited format, values within a row are separated by a special
character, or delimiter. For example, it is possible to view the file
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VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 48 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 5.2: The first few lines of the plain text output from the Live Access Server

for the surface temperature at Point Nemo. This is a reproduction of Figure 1.2.

in Figure 5.2 as a delimited format, where each line after the header
consists of two fields separated by a colon (the character ‘:’ is the
delimiter). Alternatively, if we used whitespace (one or more spaces
or tabs) as the delimiter, there would be five fields, as shown below.

 1 6 − J A N − 1 9 9 4  0 0  /   1 :   2 7 8 . 9

 1 6 − F E B − 1 9 9 4  0 0  /   2 :   2 8 0 . 0

 1 6 − M A R − 1 9 9 4  0 0  /   3 :   2 7 8 . 9

field 1 2 3 4 5

Fixed-width formats:
In a fixed-width format, each value is allocated a fixed number of

characters within every row. For example, it is possible to view the
file in Figure 5.2 as a fixed-width format, where the first value uses
the first 20 characters and the second value uses the next 8 characters.
Alternatively, there are five values on each row using 12, 3, 2, 6, and
5 characters respectively, as shown in the diagram below.

 1 6 − J A N − 1 9 9 4  0 0  /   1 :   2 7 8 . 9

 1 6 − F E B − 1 9 9 4  0 0  /   2 :   2 8 0 . 0
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At the lowest level, the primary characteristic of a plain text format is that
all of the information in the file, even numeric information, is stored as text.

We will spend the next few sections at this lower level of detail because it
will be helpful in understanding the advantages and disadvantages of plain
text formats for storing data, and because it will help us to differentiate
plain text formats from binary formats later on in Section 5.3.

The first things we need to establish are some fundamental ideas about
computer memory.

5.2.1 Computer memory

The most fundamental unit of computer memory is the bit. A bit can be
a tiny magnetic region on a hard disk, a tiny dent in the reflective material
on a CD or DVD, or a tiny transistor on a memory stick. Whatever the
physical implementation, the important thing to know about a bit is that,
like a switch, it can only take one of two values: it is either “on” or “off”.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

byte bit

word

A collection of 8 bits is called a byte and (on the majority of computers
today) a collection of 4 bytes, or 32 bits, is called a word.

5.2.2 Files and formats

A file is simply a block of computer memory.

A file can be as small as just a few bytes or it can be several gigabytes in
size (thousands of millions of bytes).

A file format is a way of interpreting the bytes in a file. For example, in
the simplest case, a plain text format means that each byte is used to
represent a single character.

In order to visualize the idea of file formats, we will display a block of
memory in the format shown below. This example shows the first 24 bytes
from the PDF file for this book.
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0 : 00100101 01010000 01000100 01000110 | %PDF
4 : 00101101 00110001 00101110 00110100 | -1.4
8 : 00001010 00110101 00100000 00110000 | .5 0
12 : 00100000 01101111 01100010 01101010 | obj
16 : 00001010 00111100 00111100 00100000 | .<<
20 : 00101111 01010011 00100000 00101111 | /S /

This display has three columns. On the left is a byte offset that indicates the
memory location within the file for each row. The middle column displays
the raw memory contents of the file, which is just a series of 0’s and 1’s.
The right hand column displays an interpretation of the bytes. This display
is split across several rows just so that it will fit onto the printed page. A
block of computer memory is best thought of as one long line of 0’s and 1’s.

In this example, we are interpreting each byte of memory as a single charac-
ter, so for each byte in the middle column, there is a corresponding character
in the right-hand column. As specific examples, the first byte, 00100101,
is being interpreted as the percent character, %, and and the second byte,
01010000, is being interpreted as the letter P.

In some cases, the byte of memory does not correspond to a printable char-
acter, and in those cases we just display a full stop. An example of this is
byte number nine (the first byte on the third row of the display).

Because the binary code for computer memory takes up so much space, we
will also sometimes display the central raw memory column using hexadeci-
mal (base 16) code rather than binary. In this case, each byte of memory is
just a pair of hexadecimal digits. The first 24 bytes of the PDF file for this
book are shown again below, using hexadecimal code for the raw memory.

0 : 25 50 44 46 2d 31 2e 34 0a 35 20 30 | %PDF-1.4.5 0
12 : 20 6f 62 6a 0a 3c 3c 20 2f 53 20 2f | obj.<< /S /

5.2.3 Case study: Point Nemo (continued)

We will now look at a low level at the surface temperature data for the
Pacific Pole of Inaccessibility (see Section 1.1), which is in a plain text
format. To emphasize the format of this information in computer memory,
the first 48 bytes of the file are displayed below. This display should be
compared with Figure 5.2, which shows what we would normally see when
we view the plain text file in a text editor or web browser.
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0 : 20 20 20 20 20 20 20 20 20 20 20 20 |
12 : 20 56 41 52 49 41 42 4c 45 20 3a 20 | VARIABLE :
24 : 4d 65 61 6e 20 54 53 20 66 72 6f 6d | Mean TS from
36 : 20 63 6c 65 61 72 20 73 6b 79 20 63 | clear sky c

This display clearly demonstrates that the Point Nemo information has
been stored as a series of characters. The empty space at the start of the
first line is a series of 13 spaces, with each space stored as a byte with the
hexadecimal value 20. The letter V at the start of the word VARIABLE has
been stored as a byte with the value 56.

To further emphasize the character-based nature of a plain text format,
another part of the file is shown below as raw computer memory, this time
focusing on the part of the file that contains the core data—the dates and
temperature values.

336 : 20 31 36 2d 4a 41 4e 2d 31 39 39 34 20 30 30 | 16-JAN-1994 00

351 : 20 2f 20 20 31 3a 20 20 32 37 38 2e 39 0d 0a | / 1: 278.9..

366 : 20 31 36 2d 46 45 42 2d 31 39 39 34 20 30 30 | 16-FEB-1994 00

381 : 20 2f 20 20 32 3a 20 20 32 38 30 2e 30 0d 0a | / 2: 280.0..

The second line of this display shows that the number 278.9 is stored in
this file as five characters—the digits 2, 7, 8, followed by a full stop, then
the digit 9—with one byte per character. Another small detail that may
not have been clear from previous views of these data is that each line starts
with a space, represented by a byte with the value 20.

We will contrast this sort of format with other ways of storing the informa-
tion later in Section 5.3. For now, we just need to be aware of the simplicity
of the memory usage in such a plain text format and the fact that everything
is stored as a series of characters in a plain text format.

The next section will look at why these features can be both a blessing and
a curse.

5.2.4 Advantages and disadvantages

The main advantage of plain text formats is their simplicity: we do not
require complex software to create or view a text file and we do not need
esoteric skills beyond being able to type on a keyboard, which means that
it is easy for people to view and modify the data.

The simplicity of plain text formats means that virtually all software pack-
ages can read and write text files and plain text files are portable across
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different computer platforms.

The main disadvantage of plain text formats is also their simplicity. The
basic conceptual structure of rows of values can be very inefficient and in-
appropriate for data sets with any sort of complex structure.

The low-level format of storing everything as characters, with one byte per
character, can also be very inefficient in terms of the amount of computer
memory required.

Consider a data set collected on two families, as depicted in Figure 5.3.
What would this look like as a plain text file, with one row for all of the
information about each person in the data set? One possible fixed-width
format is shown below. In this format, each row records the information
for one person. For each person, there is a column for the father’s name
(if known), a column for the mother’s name (if known), the person’s own
name, his or her age, and his or her gender.

John 33 male
Julia 32 female

John Julia Jack 6 male
John Julia Jill 4 female
John Julia John jnr 2 male

David 45 male
Debbie 42 female

David Debbie Donald 16 male
David Debbie Dianne 12 female

This format for storing these data is not ideal for two reasons. Firstly,
it is not efficient; the parent information is repeated over and over again.
This repetition is also undesirable because it creates opportunities for errors
and inconsistencies to creep in. Ideally, each individual piece of information
would be stored exactly once; if more than one copy exists, then it is possible
for the copies to disagree. The DRY principle (Section 2.7) applies to data
as well as code.

The second problem is not as obvious, but is arguably much more important.
The fundamental structure of most plain text file formats means that each
line of the file contains exactly one record or case in the data set. This works
well when a data set only contains information about one type of object,
or, put another way, when the data set itself has a “flat” structure.

The data set of family members does not have a flat structure. There is
information about two different types of object, parents and children, and
these objects have a definite relationship between them. We can say that
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John
33

male

Julia
32

female

Jack
6

male

Jill
4

female

John jnr
2

male

David
45

male

Debbie
42

female

Donald
16

male

Dianne
12

female

Figure 5.3: An example of hierarchical data: a family tree containing data on

parents (grey) and children (white).

the data set is hierarchical or multi-level or stratified (as is obvious
from the view of the data in Figure 5.3). Any data set that is obtained
using a non-trivial study design is likely to have a hierarchical structure like
this.

In other words, a plain text file format does not allow for sophisticated data
models. A plain text format is unable to provide an appropriate represen-
tation of a complex data structure. Later sections will provide examples of
storage formats that are capable of storing complex data structures.

Another major weakness of free-form text files is the lack of information
within the file itself about the structure of the file. For example, plain text
files do not usually contain information about which special character is
being used to separate fields in a delimited file, or any information about
the widths of fields with a fixed-width format. This means that the computer
cannot automatically determine where different fields are within each row
of a plain text file, or even how many fields there are.

A fixed-width format avoids this problem, but enforcing a fixed length for
fields can create other difficulties if we do not know the maximum possible
length for all variables. Also, if the values for a variable can have very
different lengths, a fixed-width format can be inefficient because we store
lots of empty space for short values.

The simplicity of plain text files make it easy for a computer to read a file as
a series of characters, but the computer cannot easily distinguish individual
data values from the series of characters. Even worse, the computer has no
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way of telling what sort of data is stored in each field. Does the series of
characters represent a number, or text, or some more complex value such
as a date?

In practice, a human must supply additional information about a plain text
file before the computer can successfully determine where the different fields
are within a plain text file and what sort of value is stored in each field.

5.2.5 CSV files

The Comma-Separated Value (CSV) format is a special case of a plain text
format. Although not a formal standard, CSV files are very common and are
a quite reliable plain text delimited format that at least solves the problem
of where the fields are in each row of the file.

The main rules for the CSV format are:

Comma-delimited:
Each field is separated by a comma (i.e., the character , is the delim-
iter).

Double-quotes are special:
Fields containing commas must be surrounded by double-quotes (i.e.,
the " character is special).

Double-quote escape sequence:
Fields containing double-quotes must be surrounded by double-quotes
and each embedded double-quote must be represented using two double-
quotes (i.e., within double-quotes, "" is an escape sequence for a literal
double-quote).

Header information
There can be a single header line containing the names of the fields.

CSV files are a common way to transfer data from a spreadsheet to other
software.

Figure 5.4 shows what the Point Nemo temperature data might look like in
a CSV format. Notice that most of the metadata cannot be included in the
file when using this format.

5.2.6 Line endings

A common feature of plain text files is that data values are usually arranged
in rows, as we have seen in Figures 5.2 and 5.4.

We also know that plain text files are, at the low level of computer memory,
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date,temp

16-JAN-1994,278.9

16-FEB-1994,280

16-MAR-1994,278.9

16-APR-1994,278.9

16-MAY-1994,277.8

16-JUN-1994,276.1

...

Figure 5.4: The first few lines of the plain text output from the Live Access

Server for the surface temperature at Point Nemo in Comma-Separated Value

(CSV) format. On each line, there are two data values, a date and a temperature

value, separated from each other by a comma. The first line provides a name for

each column of data values.

just a series of characters.

How does the computer know where one line ends and the next line starts?

The answer is that the end of a line in a text file is indicated by a special
character (or two special characters). Most software that we use to view
text files does not explicitly show us these characters. Instead, the software
just starts a new line.

To demonstrate this idea, two lines from the file pointnemotemp.txt are
reproduced below (as they appear when viewed in a text editor or web
browser).

16-JAN-1994 00 / 1: 278.9
16-FEB-1994 00 / 2: 280.0

The section of computer memory used to store these two lines is shown
below.

336 : 20 31 36 2d 4a 41 4e 2d 31 39 39 34 20 30 30 | 16-JAN-1994 00

351 : 20 2f 20 20 31 3a 20 20 32 37 38 2e 39 0d 0a | / 1: 278.9..

366 : 20 31 36 2d 46 45 42 2d 31 39 39 34 20 30 30 | 16-FEB-1994 00

381 : 20 2f 20 20 32 3a 20 20 32 38 30 2e 30 0d 0a | / 2: 280.0..

The feature to look for is the section of two bytes immediately after each
temperature value. These two bytes have the values 0d and 0a, and this is
the special byte sequence that is used to indicate the end of a line in a plain
text file.
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As mentioned above, these bytes are not explicitly shown by most software
that we use to view the text file. The software detects this byte sequence
and starts a new line in response.

So why do we need to know about the special byte sequence at all? Because,
unfortunately, this is not the only byte sequence used to signal the end of
the line. The sequence 0d 0a is common for plain text files that have been
created on a Windows system, but for plain text files created on a Mac OS
X or Linux system, the sequence is likely to be just 0a.

Many computer programs will allow for this possibility and cope automat-
ically, but it can be a source of problems. For example, if a plain text file
that was created on Linux is opened using Microsoft Notepad, the entire
file is treated as if it is one long row, because Notepad expects to see 0d 0a
for a line ending and the file will only contain 0a at the end of each line.

5.2.7 Text encodings

We have identified two features of plain text formats so far: all data is stored
as a series of characters and each character is stored in computer memory
using a single byte.

The second part, concerning how a single character is stored in computer
memory, is called a character encoding.

Up to this point we have only considered the simplest possible character
encoding. When we only have the letters, digits, special symbols, and punc-
tuation marks that appear on a standard (US) English keyboard, then we
can use a single byte to store each character. This is called an ASCII en-
coding (American Standard Code for Information Interchange).

An encoding that uses a single byte (8 bits) per character can cope with
up to 256 (28) different characters, which is plenty for a standard English
keyboard.

Many other languages have some characters in common with English but
also have accented characters, such as é and ö. In each of these cases, it
is still possible to use an encoding that represents each possible character
in the language with a single byte. However, the problem is that different
encodings may use the same byte value for a different character. For ex-
ample, in the Latin1 encoding, for Western European languages, the byte
value f1 represents the character ñ, but in the Latin2 encoding, for Eastern
European languages, the byte value f1 represents the character ń. Because
of this ambiguity, it is important to know what encoding was used when the
text was stored.
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The situation is much more complex for written languages in some Asian
and Middle Eastern countries that use several thousand different characters
(e.g., Japanese Kanji ideographs). In order to store text in these languages,
it is necessary to use a multi-byte encoding scheme where more than one
byte is used to store each character.

UNICODE is an attempt to allow computers to work with all of the char-
acters in all of the languages of the world. Every character has its own
number, called a “code point”, often written in the form U+xxxxxx, where
every x is a hexadecimal digit. For example, the letter ‘A’ is U+000041 and
the letter ‘ö’ is U+0000F6.

There are two main “encodings” that are used to store a UNICODE code
point in memory. UTF-16 always uses two bytes per character of text and
UTF-8 uses one or more bytes, depending on which characters are stored.
If the text is only ASCII, UTF-8 will only use one byte per character.

For example, the text “just testing” is shown below saved via Microsoft’s
Notepad with a plain text format, but using three different encodings:
ASCII, UTF-16, and UTF-8.

0 : 6a 75 73 74 20 74 65 73 74 69 6e 67 | just testing

The ASCII format contains exactly one byte per character.

0 : ff fe 6a 00 75 00 73 00 74 00 20 00 | ..j.u.s.t. .
12 : 74 00 65 00 73 00 74 00 69 00 6e 00 | t.e.s.t.i.n.
24 : 67 00 | g.

The UTF-16 format differs from the ASCII format in two ways. For every
byte in the ASCII file, there are now two bytes, one containing the hexadec-
imal code we saw before followed by a byte containing all zeroes. There are
also two additional bytes at the start. These are called a byte order mark
(BOM) and indicate the order of the two bytes that make up each letter
in the text, which is used by software when reading the file.

0 : ef bb bf 6a 75 73 74 20 74 65 73 74 | ...just test
12 : 69 6e 67 | ing

The UTF-8 format is mostly the same as the ASCII format; each letter
has only one byte, with the same binary code as before because these are
all common English letters. The difference is that there are three bytes at
the start to act as a BOM. Notepad writes a BOM like this at the start of
UTF-8 files, but not all software does this.
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In summary, a plain text format always stores all data values as a series of
characters. However, the number of bytes used to store each character in
computer memory depends on the character encoding that is used.

This encoding is another example of additional information that may have
to be provided by a human before the computer can read data correctly from
a plain text file, although many software packages will cope with different
encodings automatically.

5.2.8 Case study: The Data Expo

The TIROS Operational Vertical Sounder (TOVS)
instruments have been used to collect atmospheric data
aboard National Oceanic and Atmospheric Administra-
tion (NOAA) satellites since 1978.

The American Statistical Association (ASA) holds an annual conference
called the Joint Statistical Meetings (JSM).

One of the events sometimes held at this conference is a Data Exposition,
where contestants are provided with a data set and must produce a poster
demonstrating a comprehensive analysis of the data. For the Data Expo at
the 2006 JSM,1 the data were geographic and atmospheric measures that
were obtained from NASA’s Live Access Server (see Section 1.1).

The variables in the data set are: elevation, temperature (surface and air),
ozone, air pressure, and cloud cover (low, mid, and high). With the excep-
tion of elevation, all variables are monthly averages, with observations for
January 1995 to December 2000. The data are measured at evenly spaced
geographic locations on a very coarse 24 by 24 grid covering Central America
(see Figure 5.5).

The data were downloaded from the Live Access Server in a plain text
format with one file for each variable, for each month; this produced 72 files
per atmospheric variable, plus 1 file for elevation, for a total of 505 files.
Figure 5.6 shows the start of one of the surface temperature files.

This data set demonstrates a number of advantages and limitations of a plain
text format for storing data. First of all, the data is very straightforward
to access because it does not need sophisticated software. It is also easy for

1http://stat-computing.org/dataexpo/2006/

http://stat-computing.org/dataexpo/2006/
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Figure 5.5: The geographic locations at which Live Access Server atmospheric

data were obtained for the 2006 JSM Data Expo.
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VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_dsets/data/

SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)

TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W ...

27 28 29 30 31 32 33 ...

36.2N / 51: 272.7 270.9 270.9 269.7 273.2 275.6 277.3 ...

33.8N / 50: 279.5 279.5 275.0 275.6 277.3 279.5 281.6 ...

31.2N / 49: 284.7 284.7 281.6 281.6 280.5 282.2 284.7 ...

28.8N / 48: 289.3 286.8 286.8 283.7 284.2 286.8 287.8 ...

26.2N / 47: 292.2 293.2 287.8 287.8 285.8 288.8 291.7 ...

23.8N / 46: 294.1 295.0 296.5 286.8 286.8 285.2 289.8 ...

...

Figure 5.6: The first few lines of output from the Live Access Server for the

surface temperature of the earth for January 1995, over a coarse 24 by 24 grid of

locations covering Central America.

a human to view the data and understand what is in each file.

However, the file format provides a classic demonstration of the typical lack
of standardized structure in plain text files. For example, the raw data
values only start on the eighth line of the file, but there is no indication
of that fact within the file itself. This is not an issue for a human viewing
the file, but a computer has no chance of detecting this structure automat-
ically. Second, the raw data are arranged in a matrix, corresponding to a
geographic grid of locations, but again there is no inherent indication of this
structure. For example, only a human can tell that the first 11 characters
on each line of raw data are row labels describing latitude.

The “header” part of the file (the first seven lines) contains metadata, in-
cluding information about which variable is recorded in the file and the units
used for those measurements. This is very important and useful informa-
tion, but again it is not obvious (for a computer) which bits are labels and
which bits are information, let alone what sort of information is in each bit.

Finally, there is the fact that the data reside in 505 separate files. This is
essentially an admission that plain text files are not suited to data sets with
anything beyond a simple two-dimensional matrix-like structure. In this
case, the temporal dimension—the fact that data are recorded at multiple
time points—and the multivariate nature of the data—the fact that multiple
variables are recorded—leads to there being separate files for each variable
and for each time point. Having the data spread across many files creates
issues in terms of the naming of files, for example, to ensure that all files
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from the same date, but containing different variables, can be easily located.
There is also a reasonable amount of redundancy, with metadata and labels
repeated many times over in different files.

We will look at another way to store this information in Section 5.6.5.

Recap

A plain text format is a simple, lowest-common-denominator storage
format.

Data in a plain text format are usually arranged in rows, with several
values on each row.

Values within a row are separated from each other by a delimiter or
each value is allocated a fixed number of characters within a row.

The CSV format is a comma-delimited format.

All data values in a plain text file are stored as a series of characters.
Even numbers are stored as characters.

Each character is stored in computer memory as one or two bytes.

The main problem with plain text files is that the file itself contains
no information about where the data values are within the file and no
information about whether the data values represent numbers or text,
or something more complex.

5.3 Binary formats

In this section we will consider the option of storing data using a binary
format. The purpose of this section is to understand the structure of binary
formats and to consider the benefits and drawbacks of using a binary format
to store data.

A binary format is a more complex storage solution than a plain text format,
but it will typically provide faster and more flexible access to the data and
use up less memory.

A file with a binary format is simply a block of computer memory, just
like a file with a plain text format. The difference lies in how the bytes of
computer memory are used.

In order to understand the difference, we need to learn a bit more about
how computer memory works.
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5.3.1 More on computer memory

We already know that one way to use a byte of computer memory is to
interpret it as a character. This is what plain text formats do.

However, there are many other ways that we can make use of a byte of
memory. One particularly straightforward use is to interpret the byte as an
integer value.

A sequence of memory bits can be interpreted as a binary (base 2) number.
For example, the byte 00000001 can represent the value 1, 00000010 can
represent the value 2, 00000011 the value 3, and so on.

With 8 bits in a byte, we can store 256 (28) different integers (e.g., from 0
up to 255).

This is one way that binary formats can differ from plain text formats. If
we want to store the value 48 in a plain text format, we must use two bytes,
one for the digit 4 and one for the digit 8. In a binary format, we could
instead just use one byte and store the binary representation of 48, which
is 00110000.

One limitation of representing a number in computer memory this way is
that we cannot store large integers, so in practice, a binary format will store
an integer value using two bytes (for a maximum value of 216 = 65, 535) or
four bytes (maximum of 232 = 4, 294, 967, 295). If we need to store negative
numbers, we can use 1 bit for the sign. For example, using two bytes per
integer, we can get a range of -32,767 to 32,767 (±215 − 1).

Another way to interpret a byte of computer memory is as a real number.
This is not as straightforward as for integers, but we do retain the basic
idea that each pattern of bits corresponds to a different number.

In practice, a minimum of 4 bytes is used to store real numbers. The follow-
ing example of raw computer memory shows the bit patterns corresponding
to the numbers 0.1 to 0.5, where each number is stored as a real number
using 4 bytes per number.

0 : 11001101 11001100 11001100 00111101 | 0.1
4 : 11001101 11001100 01001100 00111110 | 0.2
8 : 10011010 10011001 10011001 00111110 | 0.3
12 : 11001101 11001100 11001100 00111110 | 0.4
16 : 00000000 00000000 00000000 00111111 | 0.5

The correspondence between the bit patterns and the real numbers being
stored is far from intuitive, but this is another common way to make use of
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bytes of memory.

As with integers, there is a maximum real number that can be stored using
four bytes of memory. In practice, it is common to use eight bytes per real
number, or even more. With 8 bytes per real number, the range is a little
over ±10307.

However, there is another problem with storing real numbers this way. Re-
call that, for integers, the first state can represent 0, the second state can
represent 1, the third state can represent 2, and so on. With k bits, we can
only go as high as the integer 2k − 1, but at least we know that we can
account for all of the integers up to that point.

Unfortunately, we cannot do the same thing for real numbers. We could say
that the first state represents 0, but what does the second state represent?
0.1? 0.01? 0.00000001? Suppose we chose 0.01, so the first state represents
0, the second state represents 0.01, the third state represents 0.02, and so
on. We can now only go as high as 0.01× (2k − 1), and we have missed all
of the numbers between 0.01 and 0.02 (and all of the numbers between 0.02
and 0.03, and infinitely many others).

This is another important limitation of storing information on a computer:
there is a limit to the precision that we can achieve when we store real
numbers this way. Most real values cannot be stored exactly on a computer.
Examples of this problem include not only exotic values such as transcen-
dental numbers (e.g., π and e), but also very simple everyday values such
as 1

3 or even 0.1. Fortunately, this is not as dreadful as it sounds, because
even if the exact value cannot be stored, a value very very close to the true
value can be stored. For example, if we use eight bytes to store a real num-
ber, then we can store the distance of the earth from the sun to the nearest
millimeter.

In summary, when information is stored in a binary format, the bytes of
computer memory can be used in a variety of ways. To drive the point
home even further, the following displays show exactly the same block of
computer memory interpreted in three different ways.

First, we treat each byte as a single character.

0 : 74 65 73 74 | test

Next, we interpret the memory as two, two-byte integers.

0 : 74 65 73 74 | 25972 29811

Finally, we can also interpret the memory as a single, four-byte real number.
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0 : 74 65 73 74 | 7.713537e+31

Which one of these is the correct interpretation? It depends on which par-
ticular binary format has been used to store the data.

The characteristic feature of a binary format is that there is not a simple
rule for determining how many bits or how many bytes constitute a basic
unit of information.

It is necessary for there to be a description of the rules for the binary format
that states what information is stored and how many bits or bytes are used
for each piece of information.

Binary formats are consequently much harder to write software for, which
results in there being less software available to do the job.

Given that a description is necessary to have any chance of reading a bi-
nary format, proprietary formats, where the file format description is kept
private, are extremely difficult to deal with. Open standards become more
important than ever.

The main point is that we require specific software to be able to work with
data in a binary format. However, on the positive side, binary formats are
generally more efficient and faster than text-based formats. In the next sec-
tion, we will look at an example of a binary format and use it to demonstrate
some of these ideas.

5.3.2 Case study: Point Nemo (continued)

In this example, we will use the Point Nemo temperature data (see Section
1.1) again, but this time with the data stored in a binary format called
netCDF.

The first 60 bytes of the netCDF format file are shown in Figure 5.7, with
each byte interpreted as a single character.

We will learn more about this format below. For now, the only point to
make is that, while we can see that some of the bytes in the file appear to
be text values, it is not clear from this raw display of the data, where the
text data starts and ends, what values the non-text bytes represent, and
what each value is for.

Compared to a plain text file, this is a complete mess and we need software
that understands the netCDF format in order to extract useful values from
the file.
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0 : 43 44 46 01 00 00 00 00 00 00 00 0a | CDF.........
12 : 00 00 00 01 00 00 00 04 54 69 6d 65 | ........Time
24 : 00 00 00 30 00 00 00 00 00 00 00 00 | ...0........
36 : 00 00 00 0b 00 00 00 02 00 00 00 04 | ............
48 : 54 69 6d 65 00 00 00 01 00 00 00 00 | Time........

Figure 5.7: The first 60 bytes of the netCDF format file that contains the surface

temperatures at Point Nemo. The data are shown here as unstructured bytes to

demonstrate that, without knowledge of the structure of the binary format, there

is no way to determine where the different data values reside or what format the

values have been stored in (apart from the fact that there is obviously some text

values in the file).

5.3.3 NetCDF

The Point Nemo temperature data set has been stored in a format called
network Common Data Form (netCDF).2 In this section, we will learn a
little bit about the netCDF format in order to demonstrate some general
features of binary formats.

NetCDF is just one of a huge number of possible binary formats. It is a
useful one to know because it is widely used and it is an open standard.

The precise bit patterns in the raw computer memory examples shown in
this section are particular to this data set and the netCDF data format.
Any other data set and any other binary format would produce completely
different representations in memory. The point of looking at this example
is that it provides a concrete demonstration of some useful general features
of binary formats.

The first thing to note is that the structure of binary formats tends to be
much more flexible than a text-based format. A binary format can use any
number of bytes, in any order.

Like most binary formats, the structure of a netCDF file consists of header
information, followed by the raw data itself. The header information in-
cludes information about how many data values have been stored, what
sorts of values they are, and where within the file the header ends and the
data values begin.

Figure 5.8 shows a structured view of the start of the netCDF format for

2http://www.unidata.ucar.edu/software/netcdf/

http://www.unidata.ucar.edu/software/netcdf/
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0 : 43 44 46 | CDF

3 : 01 | 1

4 : 00 00 00 00 00 00 00 0a | 0 10
12 : 00 00 00 01 00 00 00 04 | 1 4

20 : 54 69 6d 65 | Time

Figure 5.8: The start of the header information in the netCDF file that contains

the surface temperatures at Point Nemo, with the structure of the netCDF format

revealed so that separate data fields can be observed. The first three bytes are

characters, the fourth byte is a single-byte integer, the next sixteen bytes are

four-byte integers, and the last four bytes are characters. This structured display

should be compared to the unstructured bytes shown in Figure 5.7.

the Point Nemo temperature data. This should be contrasted with the
unstructured view in Figure 5.7.

The netCDF file begins with three bytes that are interpreted as characters,
specifically the three characters ‘C’, ‘D’, and ‘F’. This start to the file indi-
cates that this is a netCDF file. The fourth byte in the file is a single-byte
integer and specifies which version of netCDF is being used, in this case,
version 1, or the “classic” netCDF format. This part of the file will be the
same for any (classic) netCDF file.

The next sixteen bytes in the file are all four-byte integers and the four
bytes after that are each single-byte characters again. This demonstrates
the idea of binary formats, where values are packed into memory next to
each other, with different values using different numbers of bytes.

Another classic feature of binary formats is that the header information con-
tains pointers to the location of the raw data within the file and information
about how the raw data values are stored. This information is not shown
in Figure 5.8, but in this case, the raw data is located at byte 624 within
the file and each temperature value is stored as an eight-byte real number.

Figure 5.9 shows the raw computer memory starting at byte 624 that con-
tains the temperature values within the netCDF file. These are the first
eight temperature values from the Point Nemo data set in a binary format.

In order to emphasize the difference in formats, the display below shows
the raw computer memory from the plain text format of the Point Nemo
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624 : 40 71 6e 66 66 66 66 66 | 278.9
632 : 40 71 80 00 00 00 00 00 | 280.0
640 : 40 71 6e 66 66 66 66 66 | 278.9
648 : 40 71 6e 66 66 66 66 66 | 278.9
656 : 40 71 5c cc cc cc cc cd | 277.8
664 : 40 71 41 99 99 99 99 9a | 276.1
672 : 40 71 41 99 99 99 99 9a | 276.1
680 : 40 71 39 99 99 99 99 9a | 275.6

...

Figure 5.9: The block of bytes within the Point Nemo netCDF file that contains

the surface temperature values. Each temperature values is an eight-byte real

number.

data set. Compare these five bytes, which store the number 278.9 as five
characters, with the first eight bytes in Figure 5.9, which store the same
number as an eight-byte real number.

359 : 32 37 38 2e 39 | 278.9

The section of the file shown in Figure 5.9 also allows us to discuss the issue
of speed of access to data stored in a binary format.

The fundamental issue is that it is possible to calculate the location of a data
value within the file. For example, if we want to access the fifth temperature
value, 277.8, within this file, we know with certainty, because the header
information has told us, that this value is 8 bytes long and it starts at
byte number 656: the offset of 624, plus 4 times 8 bytes (the size of each
temperature value).

Contrast this simple calculation with finding the fifth temperature value in
a text-based format like the CSV format for the Point Nemo temperature
data. The raw bytes representing the first few lines of the CSV format are
shown in Figure 5.10.

The fifth temperature value in this file starts at byte 98 within the file, but
there is no simple way to calculate that fact. The only way to find that value
is to start at the beginning of the file and read one character at a time until
we have counted six commas (the field separators in a CSV file). Similarly,
because not all data values have the same length, in terms of number of
bytes of memory, the end of the data value can only be found by continuing
to read characters until we find the end of the line (in this file, the byte 0a).
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0 : 64 61 74 65 2c 74 65 6d 70 0a 20 | date,temp.
11 : 31 36 2d 4a 41 4e 2d 31 39 39 34 | 16-JAN-1994
22 : 2c 32 37 38 2e 39 0a 20 31 36 2d | ,278.9. 16-
33 : 46 45 42 2d 31 39 39 34 2c 32 38 | FEB-1994,28
44 : 30 0a 20 31 36 2d 4d 41 52 2d 31 | 0. 16-MAR-1
55 : 39 39 34 2c 32 37 38 2e 39 0a 20 | 994,278.9.
66 : 31 36 2d 41 50 52 2d 31 39 39 34 | 16-APR-1994
77 : 2c 32 37 38 2e 39 0a 20 31 36 2d | ,278.9. 16-
88 : 4d 41 59 2d 31 39 39 34 2c 32 37 | MAY-1994,27
99 : 37 2e 38 0a 20 31 36 2d 4a 55 4e | 7.8. 16-JUN
110 : 2d 31 39 39 34 2c 32 37 36 2e 31 | -1994,276.1

Figure 5.10: A block of bytes from the start of the Point Nemo CSV file that

contains the surface temperature values. Each character in the file occupies one

byte.

The difference is similar to finding a particular scene in a movie on a DVD
disc compared to a VHS tape.

In general, it is possible to jump directly to a specific location within a
binary format file, whereas it is necessary to read a text-based format from
the beginning and one character at a time. This feature of accessing binary
formats is called random access and it is generally faster than the typical
sequential access of text files.

This example is just provided to give a demonstration of how it is possible
for access to be faster to data stored in a binary file. This does not mean
that access speeds are always faster and it certainly does not mean that
access speed should necessarily be the deciding factor when choosing a data
format. In some situations, a binary format will be a good choice because
data can be accessed quickly.

5.3.4 PDF documents

It is worthwhile briefly mentioning Adobe’s Portable Document Format
(PDF) because so many documents, including research reports, are now
published in this binary format.

While PDF is not used directly as a data storage format, it is common for a
report in PDF format to contain tables of data, so this is one way in which
data may be received.
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Unfortunately, extracting data from a table in a PDF document is not
straightforward. A PDF document is primarily a description of how to
display information. Any data values within a PDF document will be hope-
lessly entwined with information about how the data values should be dis-
played.

One simple way to extract the data values from a PDF document is to use
the text selection tool in a PDF viewer, such as Adobe Reader, to cut-
and-paste from the PDF document to a text format. However, there is no
guarantee that data values extracted this way will be arranged in tidy rows
and columns.

5.3.5 Other types of data

So far, we have seen how numbers and text values can be stored in computer
memory. However, not all data values are simple numbers or text values.

For example, consider the date value March 1st 2006. How should that be
stored in memory?

The short answer is that any value can be converted to either a number
or a piece of text and we already know how to store those sorts of values.
However, the decision of whether to use a numeric or a textual representation
for a data value is not always straightforward.

Consider the problem of storing information on gender. There are (usually)
only two possible values: male and female.

One way to store this information would be as text: “male” and “female”.
However, that approach would take up at least 4 to 6 bytes per observation.
We could do better, in terms of the amount of memory used, by storing
the information as an integer, with 1 representing male and 2 representing
female, thereby only using as little as one byte per observation. We could do
even better by using just a single bit per observation, with“on” representing
male and “off” representing female.

On the other hand, storing the text value“male” is much less likely to lead
to confusion than storing the number 1 or by setting a bit to “on”; it is much
easier to remember or intuit that the text “male” corresponds to the male
gender.

An ideal solution would be to store just the numbers, so that we use up less
memory, but also record the mapping that relates the value 1 to the male
gender.
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Dates

The most common ways to store date values are as either text, such as
“March 1 2006”, or as a number, for example, the number of days since the
first day of January, 1970.

The advantage of storing a date as a number is that certain operations,
such as calculating the number of days between two dates, becomes trivial.
The problem is that the stored value only makes sense if we also know the
reference date.

Storing dates as text avoids the problem of having to know a reference date,
but a number of other complications arise.

One problem with storing dates as text is that the format can differ be-
tween different countries. For example, the second month of the year is
called February in English-speaking countries, but something else in other
countries. A more subtle and dangerous problem arises when dates are writ-
ten in formats like this: 01/03/06. In some countries, that is the first of
March 2006, but in other countries it is the third of January 2006.

The solution to these problems is to use the international standard for ex-
pressing dates, ISO 8601. This standard specifies that a date should con-
sist of four digits indicating the year, followed by two digits indicating the
month, followed by two digits indicating the day, with dashes in between
each component. For example, the first day of March 2006 is written: 2006-
03-01.

Dates (a particular day) are usually distinguished from date-times, which
specify not only a particular day, but also the hour, second, and even frac-
tions of a second within that day. Date-times are more complicated to work
with because they depend on location; mid-day on the first of March 2006
happens at different times for different countries (in different time zones).
Daylight savings time just makes things worse.

ISO 8601 includes specifications for adding time information, including a
time zone, to a date. As with simple dates, it is also common to store date-
times as numbers, for example, as the number of seconds since the beginning
of 1970.

Money

There are two major issues with storing monetary values. The first is that
the currency should be recorded; NZ$1.00 is very different from US$1.00.
This issue applies, of course, to any value with a unit, such as temperature,
weight, and distances.
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The second issue with storing monetary values is that values need to be
recorded exactly. Typically, we want to keep values to exactly two decimal
places at all times. Monetary data may be stored in a special format to
allow for this emphasis on accuracy.

Metadata

In most situations, a single data value in isolation has no inherent meaning.
We have just seen several explicit examples: a gender value stored as a
number only makes sense if we also know which number corresponds to
which gender; a date stored as a number of days only makes sense if we
know the reference date to count from; monetary values, temperatures,
weights, and distances all require a unit to be meaningful.

The information that provides the context for a data value is an example of
metadata.

Other examples of metadata include information about how data values
were collected, such as where data values were recorded and who recorded
them.

How should we store this information about the data values?

The short answer is that each piece of metadata is just itself a data value,
so, in terms of computer memory, each individual piece of metadata can be
stored as either a number or as text.

The larger question is how to store the metadata so that it is somehow
connected to the raw data values. Deciding what data format to use for a
particular data set should also take into account whether and how effectively
metadata can be included alongside the core data values.

Recap

A block of bytes in computer memory can be interpreted in many ways.
A binary format specifies how each byte or set of bytes in a file should
be interpreted.

Extremely large numbers cannot be stored in computer memory using
standard representations, and there is a limit to the precision with which
real numbers can be stored.

Binary formats tend to use up less memory and provide faster access to
data compared to text-based formats.

It is necessary to have specific software to work with a binary format,
so it can be more expensive and it can be harder to share data.
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5.4 Spreadsheets

It is important to mention spreadsheets as a storage option because spread-
sheets are very widely used. However, it is also important to make a distinc-
tion between spreadsheet software, such as Microsoft Excel, and a spread-
sheet format that is used to store a spreadsheet in computer memory, such
as a Microsoft Excel workbook.

Spreadsheet software can be a very useful tool for viewing and exploring
data, but using a spreadsheet format as the primary storage format for a
data set is often not the best option.

5.4.1 Spreadsheet formats

One problem with spreadsheet formats is that they are specific to a partic-
ular piece of software.

For many people, a spreadsheet means a Microsoft Excel workbook. Until
recently, Excel workbooks used a proprietary binary format, which implied
that the Microsoft Excel software was necessary to make use of an Excel
workbook. In practice, the Excel binary format was decoded and imple-
mented by a number of different projects and the specification of the Mi-
crosoft Excel binary format is now publicly available, so Excel spreadsheets,
particularly simple spreadsheets that contain only data, can be opened by
a number of different software programs.

The latest versions of Excel store workbooks in an XML-based format called
Open Office XML (OOXML), which promises a greater potential for working
with Excel spreadsheets using other software. However, there is considerable
controversy over the format and, at the time of writing it is not clear whether
Excel workbooks in this format will be useable with software other than
Microsoft Office products.

Excel is by far the most common spreadsheet software, but many other
spreadsheet programs exist, notably the Open Office Calc software, which
is an open source alternative and stores spreadsheets in an XML-based open
standard format called Open Document Format (ODF). This allows the data
to be accessed by a wider variety of software.

However, even ODF is not ideal as a storage format for a research data set
because spreadsheet formats contain not only the data that is stored in the
spreadsheet, but also information about how to display the data, such as
fonts and colors, borders and shading.



i
i

“itdt” — 2012/7/30 — 8:05 — page 95 — #121 i
i

i
i

i
i

Data Storage 95

Another problem with storing a data set in a spreadsheet is that a lot of
unnecessary additional information is stored in the file. For example, infor-
mation about the borders and shading of cells is also stored in a spreadsheet
file. The spreadsheet may also include formulas to calculate cell values, im-
ages (charts), and more. Storing a data set in a Microsoft Excel workbook
format is almost as bad as writing computer code using Microsoft Word (see
Section 2.4.1).

In these ways, a spreadsheet format is less appropriate than a plain text
or binary data format because it contains information that is not relevant
to the data set and because the data can only be accessed using specific
software.

In some spreadsheet formats, there are also limits on the numbers of columns
and rows, so very large data sets simply cannot be accommodated.

5.4.2 Spreadsheet software

Spreadsheet software is useful because it displays a data set in a nice rect-
angular grid of cells. The arrangement of cells into distinct columns shares
the same benefits as fixed-width format text files: it makes it very easy for
a human to view and navigate within the data.

Most spreadsheet software also offers useful standard tools for manipulating
the data. For example, it is easy to sort the data by a particular column. It
is also possible to enter formulas into the cells of a spreadsheet so that, for
example, sums and averages of columns may be obtained easily. In Excel,
pivot tables (complex, interactive cross-tabulations) are a popular tool.

However, because most spreadsheet software provides facilities to import a
data set from a wide variety of formats, these benefits of the spreadsheet
software can be enjoyed without have to suffer the negatives of using a
spreadsheet format for data storage. For example, it is possible to store the
data set in a CSV format and use spreadsheet software to view or explore
the data.

Furthermore, while spreadsheet software is very powerful and flexible, it is
also quite lenient; it imposes very little discipline on the user. This tends
to make it easy to introduce errors into a spreadsheet. We will see a more
rigorous approach that provides powerful data manipulations in Section 5.6
on relational databases.

Finally, data exploration in spreadsheet software is typically conducted via
menus and dialog boxes, which leaves no record of the steps taken. In
chapter 9, we will look at writing computer code to explore data sets instead.
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5.4.3 Case study: Over the limit

The Lada Riva is one of the highest-selling car
models of all time and the only model to be found
on every continent in the world.

A study conducted by researchers from the Psychology Department at the
University of Auckland3 looked at whether informative road signs had any
effect on the speed at which vehicles travelled along a busy urban road in
Auckland.

Data were collected for several days during a baseline period and for several
days when each of five different signs were erected beside the road, for a
total of six experimental stages. At each stage, the vehicle speeds were also
collected for traffic travelling in the opposite direction along the road, to
provide a set of “control” observations.

The data were collected by the Waitakere City Council via detectors buried
in the road and were delivered to the researchers in the form of Excel spread-
sheets. Figure 5.11 shows a section of one of these spreadsheets.

As we have discussed, spreadsheets are not an ideal data storage format, but
this is an example where the researchers had no control over the format in
which data are provided. This is why it is important to have some knowledge
of a variety of data storage formats.

This figure demonstrates the fact that spreadsheet software displays the
spreadsheet cells in a rectangular grid, which is very convenient for viewing
the raw values in the data set. While it is not a replacement for proper data
validation, taking a look at the raw values within a data set is never a bad
thing.

Figure 5.11 also shows that it is straightforward to include metadata in a
spreadsheet (cells A1 to A3) because each cell in the spreadsheet can contain
any sort of value. On the other hand, just like in plain text formats, there is
no way to indicate the special role of these cells; nothing in the file indicates
where the real data begin.

Spreadsheets inherently provide a rows-and-columns view of the data, which,
as we saw with plain text files, is not the most efficient way to represent
data with a hierarchical structure.

3Wrapson, W., Harré, N, Murrell, P. (2006) Reductions in driver speed using posted
feedback of speeding information: Social comparison or implied surveillance? Accident
Analysis and Prevention. 38, 1119–1126.
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A B C D E F G H I J K
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Parrs Cross Road from Seymour Road, Daily Speed
Monday 13/03/00
Speed  (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 0 1 14 26 15 2 0 0 0 0
 2:00 0 1 7 13 5 2 0 0 0 0
 3:00 0 0 1 2 5 1 2 0 0 0
 4:00 0 0 3 2 2 2 1 0 0 0
 5:00 0 0 5 4 2 0 1 0 0 0
 6:00 0 2 8 28 17 3 0 0 0 0
 7:00 0 4 45 110 39 3 1 0 0 0
 7:15 2 2 37 78 17 1 0 0 0 0
 7:30 0 2 65 84 26 0 0 0 0 0
 7:45 1 0 53 160 16 0 0 0 0 0
 8:00 2 13 43 125 45 2 0 0 0 0
 7− 8 5 17 198 447 104 3 0 0 0 0
 8:15 0 20 44 151 35 1 0 0 0 0
 8:30 0 3 69 154 28 0 0 0 0 0
 8:45 3 4 81 164 12 0 0 0 0 0
 9:00 2 7 106 160 9 0 0 0 0 0
 8− 9 5 34 300 629 84 1 0 0 0 0

10:00 0 12 225 460 80 6 0 0 0 1
11:00 3 13 128 313 68 4 1 2 0 0
12:00 6 18 180 353 62 1 0 0 0 1
13:00 6 11 133 383 84 3 0 0 1 0
14:00 12 16 196 329 55 3 0 0 0 0
15:00 5 28 156 351 74 1 0 0 0 0

Figure 5.11: Part of the vehicle speed data, as it was delivered, in a spreadsheet

format.

In this case, the rows of the spreadsheet represent different times of the day
and the columns represent different speed ranges. The actual data values
are counts of the number of vehicles travelling within each speed range,
within each time period. The spreadsheet shown in Figure 5.11 represents
data from a single day of the study on one side of the road. How are the
data for other days and data from the other side of the road stored?

Another nice feature of most spreadsheet formats is that they allow for
multiple sheets within a document. This effectively provides a 3-dimensional
cube of data cells, rather than just a 2-dimensional table of cells. The vehicle
speed study made use of this feature to store the data from each day on a
separate sheet, so that all of the data from one stage of the experiment and
on one side of the road are stored in a single spreadsheet.

Figure 5.12 shows three sheets, representing three days’ worth of data,
within one of the spreadsheet files.

However, each experimental stage of the study was stored in a separate
spreadsheet file, for a total of 12 spreadsheets. Once a data set becomes split
across multiple files like this, there are issues of ensuring that all files retain
the same structure, and there are issues with expressing the relationships
between the separate files. For example, how do we know which files relate
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A B C D E F G H I J K
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
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22
23
24
25
26
27
28

Parrs Cross Road from Seymour Road, Daily Speed
Monday 13/03/00
Speed  (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 0 1 14 26 15 2 0 0 0 0
 2:00 0 1 7 13 5 2 0 0 0 0
 3:00 0 0 1 2 5 1 2 0 0 0
 4:00 0 0 3 2 2 2 1 0 0 0
 5:00 0 0 5 4 2 0 1 0 0 0
 6:00 0 2 8 28 17 3 0 0 0 0
 7:00 0 4 45 110 39 3 1 0 0 0
 7:15 2 2 37 78 17 1 0 0 0 0
 7:30 0 2 65 84 26 0 0 0 0 0
 7:45 1 0 53 160 16 0 0 0 0 0
 8:00 2 13 43 125 45 2 0 0 0 0
 7− 8 5 17 198 447 104 3 0 0 0 0
 8:15 0 20 44 151 35 1 0 0 0 0
 8:30 0 3 69 154 28 0 0 0 0 0
 8:45 3 4 81 164 12 0 0 0 0 0
 9:00 2 7 106 160 9 0 0 0 0 0
 8− 9 5 34 300 629 84 1 0 0 0 0

10:00 0 12 225 460 80 6 0 0 0 1
11:00 3 13 128 313 68 4 1 2 0 0
12:00 6 18 180 353 62 1 0 0 0 1
13:00 6 11 133 383 84 3 0 0 1 0
14:00 12 16 196 329 55 3 0 0 0 0
15:00 5 28 156 351 74 1 0 0 0 0

A B C D E F G H I J K
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4
5
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7
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12
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Parrs Cross Road from Seymour Road, Daily Speed
Tuesday 14/03/00
Speed  (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 0 1 24 26 12 0 0 0 0 0
 2:00 0 0 5 14 3 0 0 0 0 0
 3:00 0 2 1 8 4 0 0 0 0 0
 4:00 0 0 8 6 4 1 1 0 0 0
 5:00 0 1 4 7 7 0 0 0 0 0
 6:00 0 5 9 26 12 3 0 0 0 0
 7:00 0 3 46 97 35 3 0 0 0 0
 7:15 0 7 80 60 7 0 0 0 0 0
 7:30 0 3 86 82 8 0 0 0 0 0
 7:45 0 7 97 109 10 0 0 0 0 0
 8:00 1 10 106 124 4 0 0 0 0 0
 7− 8 1 27 369 375 29 0 0 0 0 0
 8:15 0 0 83 156 11 0 0 0 0 0
 8:30 7 10 122 124 7 0 0 0 0 0
 8:45 0 8 147 131 7 0 0 0 0 0
 9:00 4 20 157 123 3 0 0 0 0 0
 8− 9 11 38 509 534 28 0 0 0 0 0

10:00 1 28 327 474 44 0 0 0 0 0
11:00 2 14 160 376 52 1 1 0 0 0
12:00 5 18 195 378 38 0 0 0 0 0
13:00 0 10 130 404 99 6 0 1 0 0
14:00 0 24 182 379 73 2 1 0 0 1
15:00 1 11 172 406 112 11 0 0 0 0

A B C D E F G H I J K
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Parrs Cross Road from Seymour Road, Daily Speed
Wednesday 15/03/00
Speed  (KPH)
 Hour End 0 − 30 30 − 40 40 − 50 50 − 60 60 − 70 70 − 80 80 − 90 90−100 100−110 110−200

 1:00 1 0 17 42 11 1 0 1 0 0
 2:00 0 1 12 14 5 0 1 0 0 0
 3:00 0 1 2 11 0 1 0 0 0 0
 4:00 0 0 3 5 3 0 1 0 0 0
 5:00 0 1 7 6 6 1 0 0 0 0
 6:00 1 3 7 28 17 2 1 0 0 0
 7:00 0 2 55 124 25 3 0 0 0 0
 7:15 0 0 51 89 13 0 0 1 0 0
 7:30 0 2 77 116 8 0 0 0 0 0
 7:45 0 6 113 118 7 0 0 0 0 0
 8:00 1 15 72 130 17 0 0 0 0 0
 7− 8 1 23 313 453 45 0 0 1 0 0
 8:15 0 21 117 130 5 0 0 0 0 0
 8:30 0 8 121 117 11 3 0 0 0 0
 8:45 19 42 122 74 9 0 0 0 0 0
 9:00 56 64 118 82 5 0 0 0 0 0
 8− 9 75 135 478 403 30 3 0 0 0 0

10:00 70 30 304 364 35 1 0 0 0 0
11:00 4 45 228 305 33 1 0 0 0 0
12:00 5 29 210 346 35 0 0 0 0 0
13:00 2 9 227 360 72 6 0 0 0 0
14:00 2 11 128 402 94 11 0 0 0 0
15:00 5 40 221 370 46 1 0 0 0 0

Figure 5.12: Three of the sheets in the vehicle speed data spreadsheet. Each

sheet records speed data for one side of the road, for one day of the experiment.

to the same side of the road?

In this case, the names of the files can be used to differentiate between the
side of the road and the experimental stage, but this naming scheme needs
to be documented and explained somewhere. The problem is that there is
no formal support for the person storing the data to express the structure
of the data set. We will see better ways to resolve this problem in the next
section on relational databases.

Another important problem is that spreadsheet cells are able to act inde-
pendently of each other. Although the data in Figure 5.11 appear to have a
useful structure, with each data value clearly associated with a time period
and a speed range, this is in fact an illusion. The spreadsheet software does
not, by default, place any significance on the fact that the values in row 6
all correspond to the time period from midnight to 1:00 a.m. Every cell in
the spreadsheet is free to take any value regardless of which row or column
it resides in.

This problem can be seen by looking at the time values in column A. To
the human observer, it is clear that this column of values (apart from the
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first three rows) corresponds to time intervals. However, the spreadsheet
data model does not enforce any such constraint on the data, as the value
in row 17 clearly shows. All of the values up to that point (rows 6 through
16) have been time values, but row 17 contains the value 7-8. To human
eyes this is clearly the time period 7:00 a.m. to 8:00 a.m., but any software
trying to read this column of values will almost certainly fail to make that
intuitive leap.

This particular problem is a feature of this particular data set, but the
general problem pertaining to all spreadsheets is that the flexible value-per-
cell data model allows this sort of thing to happen and the consequence
is that additional data cleaning is necessary before the raw data in the
spreadsheet can be used for analysis.

It is a little unfair to point out these problems with a spreadsheet format
example because most of these problems also exist for plain text files. The
main point is that the spreadsheet format does not provide a great deal
beyond much simpler format options and it introduces new problems of its
own.

Recap

Spreadsheet software is a useful tool for viewing and exploring data.

A spreadsheet storage format does allow for a 3-dimensional cube of
data rather than just a 2-dimensional table of data, but it requires
specific software and is less efficient because it stores extraneous infor-
mation.

5.5 XML

One of the main problems with plain text formats is that there is no infor-
mation within the file itself to describe the location of the data values.

One solution to this problem is to provide a recognizable label for each data
value within the file.

This section looks at the eXtensible Markup Language, XML, which
provides a formal way to provide this sort of labeling or “markup” for data.

Data stored in an XML document is stored as characters, just like in a plain
text format, but the information is organized within the file in a much more
sophisticated manner.
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As a simple example to get us started, Figure 5.13 shows the surface tem-
perature data at the Pacific Pole of Inaccessibility (see Section 1.1) in two
different formats: an XML format and the original plain text format.

The major difference between these two storage formats is that, in the XML
version, every single data value is distinctly labeled. This means that, for ex-
ample, even without any background explanation of this data set, we could
easily identify the “temperature” values within the XML file. By contrast,
the same task would be impossible with the plain text format, unless addi-
tional information is provided about the data set and the arrangement of
the values within the file. Importantly, the XML format allows a computer
to perform this task completely automatically because it could detect the
values with a label of temperature within the XML file.

One fundamental similarity between these formats is that they are both just
text. This is an important and beneficial property of XML; we can read it
and manipulate it without any special skills or any specialized software.

XML is a storage format that is still based on plain text but does not suffer
from many of the problems of plain text files because it adds flexibility,
rigor, and standardization.

Many of the benefits of XML arise from the fact that it is a computer
language. When we store a data set in XML format, we are writing computer
code that expresses the data values to the computer. This is a huge step
beyond free-form plain text files because we are able to communicate much
more about the data set to the computer. However, the cost is that we need
to learn the rules of XML so that we can communicate the data correctly.

In the next few sections, we will focus on the details of XML. In Section
5.5.1, we will look briefly at the syntax rules of XML, which will allow us
to store data correctly in an XML format. We will see that there is a great
degree of choice when using XML to store a data set, so in Sections 5.5.2
and 5.5.3, we will discuss some ideas about how to store data sensibly in an
XML format—some uses of XML are better than others. In Section 5.5.5
we will return to a more general discussion of how XML formats compare
to other storage formats.

The information in this section will be useful whether we are called upon to
create an XML document ourselves or whether we just have to work with a
data set that someone else has chosen to store in an XML format.
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<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>48 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 48 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 5.13: The first few lines of the surface temperature at Point Nemo in two

formats: an XML format (top) and the original plain text format (bottom).



i
i

“itdt” — 2012/7/30 — 8:05 — page 102 — #128 i
i

i
i

i
i

102 Introduction to Data Technologies

5.5.1 XML syntax

As we saw in Chapter 2, the first thing we need to know about a computer
language are the syntax rules, so that we can write code that is correct.

We will use the XML format for the Point Nemo temperature data (Figure
5.13) to demonstrate some of the basic rules of XML syntax.

The XML format of the data consists of two parts: XML markup and
the actual data itself. For example, the information about the latitude at
which these data were recorded is stored within XML tags, <latitude> and
</latitude>. The combination of tags and content is together described
as an XML element.

<latitude>48.8S</latitude>

element: <latitude>48.8S</latitude>
start tag: <latitude>48.8S</latitude>

data value: <latitude>48.8S</latitude>
end tag: <latitude>48.8S</latitude>

Each temperature measurement in the XML file is contained within a case
element, with the date and temperature data recorded as attributes of the
element. The values of attributes must be contained within double-quotes.

<case date="16-JAN-1994"
temperature="278.9" />

element name: <case date="16-JAN-1994"
attribute name: <case date="16-JAN-1994"
attribute value: <case date="16-JAN-1994"
attribute name: temperature="278.9" />
attribute value: temperature="278.9" />

This should look very familiar because these are exactly the same notions
of elements and attributes that we saw in HTML documents in Chapter
2. However, there are some important differences between XML syntax and
HTML syntax. For example, XML is case-sensitive so the names in the start
and end tags for an element must match exactly. Some other differences are
detailed below.
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XML document structure

The first line of an XML document must be a declaration that the file is an
XML document and which version of XML is being used.

<?xml version="1.0"?>

The declaration can also include information about the encoding of the XML
document (see Section 5.2.7), which is important for any software that needs
to read the document.

<?xml version="1.0" encoding="UTF-8"?>

Unlike HTML, where there is a fixed set of allowed elements, an XML
document can include elements with any name whatsoever, as long as the
elements are all nested cleanly and there is only one outer element, called
the root element, that contains all other elements in the document.

In the example XML document in Figure 5.13, there is a single temperatures
element, with all other elements, e.g., variable and case elements, nested
within that.

Elements can be empty, which means that they consist only of a start tag
(no content and no end tag), but these empty elements must end with />,
rather than the normal >. The code below shows an example of an empty
case element.

<case date="16-JAN-1994" temperature="278.9" />

Although it is possible to use any element and attribute names in an XML
document, in practice, data sets that are to be shared will adhere to an
agreed-upon set of elements. We will discuss how an XML document can
be restricted to a fixed set of elements later on in Section 5.5.3.

Code layout

Because XML is a computer language, there is a clear structure within the
XML code. As discussed in Section 2.4.3, we should write XML code using
techniques such as indenting so that the code is easy for people to read and
understand.
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Escape sequences

As with HTML, the characters <, >, and & (among others) are special and
must be replaced with special escape sequences, &lt;, &gt;, and &amp;
respectively.

These escape sequences can be very inconvenient when storing data values,
so it is also possible to mark an entire section of an XML document as
“plain text” by placing it within a special CDATA section, within which all
characters lose their special meaning.

As an example, shown below is one of the data values that we wanted to
store for the clay tablet YBC 7289 in Section 5.1. These represent the
markings that are etched into the clay tablet.

| <<|||| <<<<<| <

If we wanted to store this data within an XML document, we would have
to escape every one of the < symbols. The following code shows what the
data would look like within an XML document.

| &lt;&lt;|||| &lt;&lt;&lt;&lt;&lt;| &lt;

The special CDATA syntax allows us to avoid having to use these escape
sequences. The following code shows what the XML code would look like
within an XML document within a CDATA section.

<![CDATA[
| <<|||| <<<<<| <

]]>

Checking XML syntax

There are many software packages that can read XML and most of these
will report any problems with XML syntax.

The W3C Markup Validation Service4 can be used to perform an explicit
check on an XML document online. Alternatively, the libxml software
library5 can be installed on a local computer. This software includes a
command-line tool called xmllint for checking XML syntax. For simple
use of xmllint, the only thing we need to know is the name of the XML

4http://validator.w3.org/
5http://xmlsoft.org/

http://validator.w3.org/
http://xmlsoft.org/
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document and where that file is located. Given an XML document called
xmlcode.xml, the following command could be entered in a command win-
dow or terminal to check the syntax of the XML code in the file.

xmllint xmlcode.xml

There is no general software that “runs” XML code because the code does
not really “do” anything. The XML markup is just there to describe a set of
data. However, we will see how to retrieve the data from an XML document
later in Sections 7.3.1 and 9.7.7.

5.5.2 XML design

Although there are syntax rules that any XML document must follow, we
still have a great deal of flexibility in how we choose to mark up a particular
data set. It is possible to use any element names and any attribute names
that we like.

For example, in Figure 5.13, each set of measurements, a date plus a temper-
ature reading, is stored within a case element, using date and temperature
attributes. The first set of measurements in this format is repeated below.

<case date="16-JAN-1994" temperature="278.9" />

It would still be correct syntax to store these measurements using different
element and attribute names, as in the code below.

<record time="16-JAN-1994" temp="278.9" />

It is important to choose names for elements and attributes that are mean-
ingful, but in terms of XML syntax, there is no single best answer.

When we store a data set as XML, we have to decide which elements and
attributes to use to store the data. We also have to consider how elements
nest within each other, if at all. In other words, we have to decide upon a
design for the XML document.

In this section, we will look at some of these questions and consider some
solutions for how to design an XML document.

Even if, in practice, we are not often faced with the prospect of designing an
XML format, this discussion will be useful in understanding why an XML
document that we encounter has a particular structure. It will also be useful
as an introduction to similar design ideas that we will discuss when we get
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<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<cases>

16-JAN-1994 278.9

16-FEB-1994 280.0

16-MAR-1994 278.9

16-APR-1994 278.9

16-MAY-1994 277.8

16-JUN-1994 276.1

...

</cases>

</temperatures>

Figure 5.14: The first few lines of the surface temperature at Point Nemo in an

alternative XML format. This format should be compared with the XML format

in Figure 5.13.

to relational databases in Section 5.6.

Marking up data

The first XML design issue is to make sure that each value within a data set
can be clearly identified. In other words, it should be trivial for a computer
to extract each individual value. This means that every single value should
be either the content of an element or the value of an attribute. The XML
document shown in Figure 5.13 demonstrates this idea.

Figure 5.14 shows another possible XML representation of the Pacific Pole
of Inaccessibility temperature data.

In this design, the irregular and one-off metadata values are individually
identified within elements or attributes, but the regular and repetitive raw
data values are not. This is not ideal from the point of view of labeling every
individual data value within the file, but it may be a viable option when
the raw data values have a very simple format (e.g., comma-delimited) and
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the data set is very large, in which case avoiding lengthy tags and attribute
names would be a major saving.

The main point is that, as with the selection of element and attribute names,
there is no single best markup strategy for all possible situations.

Things and measurements on things

When presented with a data set, the following questions should guide the
design of the XML format:

Things that have been measured:
What sorts of objects or “things” have been measured? These typi-
cally correspond not only to the subjects in an experiment or survey,
but also to any groupings of subjects, for example, families, neighbor-
hoods, or plots in a field.

Measurements that have been made:
What measurements have been made on each object or“thing”? These
correspond to the traditional idea of responses or dependent variables.

A simple rule of thumb is then to have an element for each object in the
data set (and a different type of element for each different type of object)
and then have an attribute for each measurement in the data set.

For example, consider the family tree data set in Figure 5.15 (this is a repro-
duction of Figure 5.3 for convenience). This data set contains demographic
information about several related people.

In this case, there are obviously measurements taken on people, those mea-
surements being names, ages, and genders. We could distinguish between
parent objects and child objects, so we have elements for each of these.

<parent gender="female" name="Julia" age="32" />
<child gender="male" name="Jack" age="6" />

When a data set has a hierarchical structure, an XML document can be
designed to store the information more efficiently and more appropriately
by nesting elements to avoid repeating values.

For example, there are two distinct families of people, so we could have
elements to represent the different families and nest the relevant people
within the appropriate family element to represent membership of a family.
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John
33

male

Julia
32

female

Jack
6

male

Jill
4

female

John jnr
2

male

David
45

male

Debbie
42

female

Donald
16

male

Dianne
12

female

Figure 5.15: An example of hierarchical data: a family tree containing data on

parents (grey) and children (white). This figure is a reproduction of Figure 5.3.

<family>
<parent gender="male" name="John" age="33" />
<parent gender="female" name="Julia" age="32" />
<child gender="male" name="Jack" age="6" />
<child gender="female" name="Jill" age="4" />
<child gender="male" name="John jnr" age="2" />

</family>
<family>
<parent gender="male" name="David" age="45" />
<parent gender="female" name="Debbie" age="42" />
<child gender="male" name="Donald" age="16" />
<child gender="female" name="Dianne" age="12" />

</family>

Elements versus attributes

Another decision to make is whether to store data values as the values
of attributes of XML elements or as the content of XML elements. For
example, when storing the Point Nemo temperature data, we could store
the temperature values as attributes of a case element as shown in Figure
5.13 and below.

<case temperature="278.9" />
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Alternatively, we could store the temperature values as the content of a
temperature element.

<temperature>278.9</temperature>

As demonstrated so far, one simple solution is to store all measurements as
the values of attributes. Besides its simplicity, this approach also has the
advantage of providing a simple translation between the XML format and
a corresponding relational database design. We will return to this point in
Section 5.6.7.

However, there is considerable controversy on this point. One standard
viewpoint is that the content of elements is data and the attributes are
metadata. Another point against storing data in attributes is that it is not
always possible or appropriate. For example, a data value may have to be
stored as the content of a separate element, rather than as the value of an
attribute in the following cases:

Large values
When the data value contains a lot of information, such as a general
comment consisting of paragraphs of text, the value is better stored
as the content of an element.

Special characters
When the measurement contains lots of special characters, which would
require a lot of escape sequences, the value can be stored much more
easily as the content of an element.

Order of data values
When the order of the measurements matters, storing values as the
content of elements is more appropriate because the order of attributes
is arbitrary, but the order of elements within a document matters.

Complex values
When the measurements are not “simple” values—in other words,
when a measurement is actually a series of measurements on a different
sort of object (e.g., information about a room within a building)—the
values are better stored as the content of an element. This is another
way of saying that the value of an attribute cannot be an XML ele-
ment. Data values that are not atomic (a single value) will generate an
entire XML element, which must be stored as the content of a parent
XML element.
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5.5.3 XML schema

Having settled on a particular design for an XML document, we need to be
able to write down the design in some way.

We need the design written down so that we can check that an XML docu-
ment follows the design that we have chosen and so that we can communi-
cate our design to others so that we can share XML documents that have
this particular format. In particular, we need to write the design down in
such a way that a computer understands the design, so that a computer can
check that an XML document obeys the design.

Yes, we need to learn another computer language.

The way that the XML design can be specified is by creating a schema for
an XML document, which is a description of the structure of the document.
A number of technologies exist for specifying XML schema, but we will focus
on the Document Type Definition (DTD) language.

A DTD is a set of rules for an XML document. It contains element decla-
rations that describe which elements are permitted within the XML docu-
ment, in what order, and how they may be nested within each other. The
DTD also contains attribute declarations that describe what attributes
an element can have, whether attributes are optional or not, and what sort
of values each attribute can have.

5.5.4 Case study: Point Nemo (continued)

Figure 5.16 shows the temperature data at Point Nemo in an XML format
(this is a reproduction of part of Figure 5.13 for convenience).

The structure of this XML document is as follows. There is a single overall
temperatures element that contains all other elements. There are several
elements containing various sorts of metadata: a variable element con-
taining a description of the variable that has been measured; a filename
element and a filepath element containing information about the file from
which these data were extracted; and three elements, subset, longitude,
and latitude, that together describe the temporal and spatial limits of this
data set. Finally, there are a number of case elements that contain the core
temperature data; each case element contains a temperature measurement
and the date of the measurement as attributes.

A DTD describing this structure is shown in Figure 5.17.

The DTD code consists of two types of declarations. There must be an
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<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

Figure 5.16: The first few lines of the surface temperature at Point Nemo in an

XML format. This is a reproduction of part of Figure 5.13.

1 <!ELEMENT temperatures (variable,

2 filename,

3 filepath,

4 subset,

5 longitude,

6 latitude,

7 case*)>

8 <!ELEMENT variable (#PCDATA)>

9 <!ELEMENT filename (#PCDATA)>

10 <!ELEMENT filepath (#PCDATA)>

11 <!ELEMENT subset (#PCDATA)>

12 <!ELEMENT longitude (#PCDATA)>

13 <!ELEMENT latitude (#PCDATA)>

14 <!ELEMENT case EMPTY>

15

16 <!ATTLIST case

17 date ID #REQUIRED

18 temperature CDATA #IMPLIED>

Figure 5.17: A DTD for the XML format used to store the surface temperature

at Point Nemo (see Figure 5.16). The line numbers (in grey) are just for reference.
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<!ELEMENT> declaration for each type of element that appears in the XML
design and there must be an <!ATTLIST> declaration for every element in
the design that has one or more attributes.

The main purpose of the <!ELEMENT> declarations is to specify what is
allowed as the content of a particular type of element. The simplest example
of an <!ELEMENT> declaration is for case elements (line 14) because they
are empty (they have no content), as indicated by the keyword EMPTY. The
components of this declaration are shown below.

keyword: <!ELEMENT case EMPTY>
element name: <!ELEMENT case EMPTY>

keyword: <!ELEMENT case EMPTY>

The keywords ELEMENT and EMPTY will be the same for the declaration of
any empty element. All that will change is the name of the element.

Most other elements are similarly straightforward because their contents
are just text, as indicated by the #PCDATA keyword (lines 8 to 13). These
examples demonstrate that the declaration of the content of the element
is specified within parentheses. The components of the declaration for the
longitude element are shown below.

keyword: <!ELEMENT longitude (#PCDATA)>
element name: <!ELEMENT longitude (#PCDATA)>

parentheses: <!ELEMENT longitude (#PCDATA)>
element content: <!ELEMENT longitude (#PCDATA)>

The temperatures element is more complex because it can contain other
elements. The declaration given in Figure 5.17 (lines 1 to 7) specifies seven
elements (separated by commas) that are allowed to be nested within a
temperatures element. The order of these elements within the declaration
is significant because this order is imposed on the elements in the XML
document. The first six elements, variable to latitude, are compulsory
because there are no modifiers after the element names; exactly one of each
element must occur in the XML document. The case element, by contrast,
has an asterisk, *, after it, which means that there can be zero or more case
elements in the XML document.

The purpose of the <!ATTLIST> declarations in a DTD is to specify which
attributes each element is allowed to have. In this example, only the case
elements have attributes, so there is only one <!ATTLIST> declaration (lines
16 to 18). This declaration specifies three things for each attribute: the



i
i

“itdt” — 2012/7/30 — 8:05 — page 113 — #139 i
i

i
i

i
i

Data Storage 113

name of the attribute, what sort of value the attribute can have, and whether
the attribute is compulsory or optional. The components of this declaration
are shown below.

keyword: <!ATTLIST case
element name: <!ATTLIST case

attribute name: date ID #REQUIRED
attribute value: date ID #REQUIRED

compulsory attribute: date ID #REQUIRED
attribute name: temperature CDATA #IMPLIED>
attribute value: temperature CDATA #IMPLIED>

optional attribute: temperature CDATA #IMPLIED>

The date attribute for case elements is compulsory (#REQUIRED) and the
value must be unique (ID). The temperature attribute is optional (#IMPLIED)
and, if it occurs, the value can be any text (CDATA).

Section 6.2 describes the syntax and semantics of DTD files in more detail.

The rules given in a DTD are associated with an XML document by adding
a Document Type Declaration as the second line of the XML document.
This can have one of two forms:

DTD inline:
The DTD can be included within the XML document. In the Point
Nemo example, it would look like this:

<?xml version="1.0"?>
<!DOCTYPE temperatures [

DTD code
]>
<temperatures>

...

External DTD
The DTD can be in an external file, say pointnemotemp.dtd, and the
XML document can refer to that file:

<?xml version="1.0"?>
<!DOCTYPE temperatures SYSTEM "pointnemotemp.dtd">
<temperatures>

...

The DRY principle suggests that an external DTD is the most sensible
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approach because then the same DTD rules can be applied efficiently to
many XML documents.

An XML document is said to be well-formed if it obeys the basic rules of
XML syntax. If the XML document also obeys the rules given in a DTD,
then the document is said to be valid. A valid XML document has the
advantage that we can be sure that all of the necessary information for a
data set has been included and has the correct structure, and that all data
values have the correct sort of value.

The use of a DTD has some shortcomings, such as a lack of support for
precisely specifying the data type of attribute values or the contents of el-
ements. For example, it is not possible to specify that an attribute value
must be an integer value between 0 and 100. There is also the difficulty that
the DTD language is completely different from XML, so there is another
technology to learn. XML Schema is an XML-based technology for specify-
ing the design of XML documents that solves both of those problems, but
it comes at the cost of much greater complexity. This complexity has led
to the development of further technologies that simplify the XML Schema
syntax, such as Relax NG.

Standard schema

So far we have discussed designing our own XML schema to store data in
an XML document. However, many standard XML schema already exist,
so another option is simply to choose one of those instead and create an
XML document that conforms to the appropriate standard.

These standards have typically arisen in a particular area of research or busi-
ness. For example, the Statistical Data and Metadata eXchange (SDMX)
format has been developed by several large financial institutions for sharing
financial data, and the Data Documentation Initiative (DDI) is aimed at
storing metadata for social science data sets.

One downside is that these standards can be quite complex and may require
expert assistance and specialized software to work with the appropriate
format, but the upside is integration with a larger community of researchers
and compatibility with a wider variety of software tools.

5.5.5 Advantages and disadvantages

We will now consider XML not just as an end in itself, but as one of many
possible storage formats. In what ways is the XML format better or worse
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than other storage options, particularly the typical unstructured plain text
format that we saw in Section 5.2?

A self-describing format

The core advantage of an XML document is that it is self-describing.

The tags in an XML document provide information about where the data
is stored within the document. This is an advantage because it means that
humans can find information within the file easily. That is true of any plain
text file, but it is especially true of XML files because the tags essentially
provide a level of documentation for the human reader. For example, the
XML element shown below not only makes it easy to determine that the
value 48.8S constitutes a single data value within the file, but it also makes
it clear that this value is a north–south geographic location.

<latitude>48.8S</latitude>

The fact that an XML document is self-describing is an even greater ad-
vantage from the perspective of the computer. An XML document provides
enough information for software to determine how to read the file, without
any further human intervention. Look again at the line containing latitude
information.

<latitude>48.8S</latitude>

There is enough information for the computer to be able to detect the
value 48.8S as a single data value, and the computer can also record the
latitude label so that if a human user requests the information on latitude,
the computer knows what to provide.

One consequence of this feature that may not be immediately obvious is that
it is much easier to modify the structure of data within an XML document
compared to a plain text file. The location of information within an XML
document is not so much dependent on where it occurs within the file, but
where the tags occur within the file. As a trivial example, consider reversing
the order of the following lines in the Point Nemo XML file.

<longitude>123.8W(-123.8)</longitude>
<latitude>48.8S</latitude>

If the information were stored in the reverse order, as shown below, the task
of retrieving the information on latitude would be exactly the same. This
can be a huge advantage if larger modifications need to be made to a data
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set, such as adding an entire new variable.

<latitude>48.8S</latitude>
<longitude>123.8W(-123.8)</longitude>

Representing complex data structures

The second main advantage of the XML format is that it can accommodate
complex data structures. Consider the hierarchical data set in Figure 5.15.
Because XML elements can be nested within each other, this sort of data set
can be stored in a sensible fashion with families grouped together to make
parent–child relations implicit and avoid repetition of the parent data. The
plain text representation of these data are reproduced from page 74 below
along with a possible XML representation.

John 33 male
Julia 32 female

John Julia Jack 6 male
John Julia Jill 4 female
John Julia John jnr 2 male

David 45 male
Debbie 42 female

David Debbie Donald 16 male
David Debbie Dianne 12 female

<family>
<parent gender="male" name="John" age="33" />
<parent gender="female" name="Julia" age="32" />
<child gender="male" name="Jack" age="6" />
<child gender="female" name="Jill" age="4" />
<child gender="male" name="John jnr" age="2" />

</family>
<family>
<parent gender="male" name="David" age="45" />
<parent gender="female" name="Debbie" age="42" />
<child gender="male" name="Donald" age="16" />
<child gender="female" name="Dianne" age="12" />

</family>

The XML format is superior in the sense that the information about each
person is only recorded once. Another advantage is that it would be very
easy to represent a wider range of situations using the XML format. For
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example, if we wanted to allow for a family unit to have a third parent
(e.g., a step-parent), that would be straightforward in XML, but it would
be much more awkward in the fixed rows-and-columns plain text format.

Data integrity

Another important advantage of the XML format is that it provides some
level of checking on the correctness of the data file (a check on the data
integrity). First of all, there is the fact that any XML document must
obey the rules of XML, which means that we can use a computer to check
that an XML document at least has a sensible structure.

If an XML document also has a DTD, then we can perform much more
rigid checks on the correctness of the document. If data values are stored
as attribute values, it is possible for the DTD to provide checks that the
data values themselves are valid. The XML Schema language provides even
greater facilities for specifying limits and ranges on data values.

Verbosity

The major disadvantage of XML is that it generates large files. With its
being a plain text format, it is not memory efficient to start with, and with
all of the additional tags around the actual data, files can become extremely
large. In many cases, the tags can take up more room than the actual data!

These issues can be particularly acute for research data sets, where the
structure of the data may be quite straightforward. For example, geographic
data sets containing many observations at fixed locations naturally form a
3-dimensional array of values, which can be represented very simply and
efficiently in a plain text or binary format. In such cases, having highly
repetitive XML tags around all values can be very inefficient indeed.

The verbosity of XML is also a problem for entering data into an XML
format. It is just too laborious for a human to enter all of the tags by
hand, so, in practice, it is only sensible to have a computer generate XML
documents.

Costs of complexity

It should also be acknowledged that the additional sophistication of XML
creates additional costs. Users have to be more educated and the software
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has to be more complex, which means that fewer software packages are able
to cope with data stored as XML.

In summary, the fact that computers can read XML easily and effectively,
plus the fact that computers can produce XML rapidly (verbosity is less
of an issue for a computer), means that XML is an excellent format for
transferring information between different software programs. XML is a
good language for computers to use to talk to each other, with the added
bonus that humans can still easily eavesdrop on the conversation.

Recap

XML is a language for describing a data set.

XML consists of elements and attributes, with data values stored as the
content of elements or as the values of attributes.

The design of an XML document—the choice of elements and
attributes—is important. One approach has an element for each dif-
ferent object that has been measured, with the actual measurements
recorded as attributes of the appropriate element.

The DTD language can be used to formally describe the design of an
XML document.

The major advantage of XML is that XML documents are self-
describing, which means that each data value is unambiguously labeled
within the file, so that a computer can find data values without requiring
additional information about the file.

5.6 Databases

When a data set becomes very large, or even just very complex in its struc-
ture, the ultimate storage solution is a database.

The term“database”can be used generally to describe any collection of infor-
mation. In this section, the term“database”means a relational database,
which is a collection of data that is organized in a particular way.

The actual physical storage mechanism for a database—whether binary
formats or text formats are used, and whether one file or many files are
used—will not concern us. We will only be concerned with the high-level,
conceptual organization of the data and will rely on software to decide how
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ISBN title author gender publisher ctry

---------- ------------------------------------ ---------------- ------ ---------------- ----

0618260307 The Hobbit J. R. R. Tolkien male Houghton Mifflin USA

0908606664 Slinky Malinki Lynley Dodd female Mallinson Rendel NZ

1908606206 Hairy Maclary from Donaldson's Dairy Lynley Dodd female Mallinson Rendel NZ

0393310728 How to Lie with Statistics Darrell Huff male W. W. Norton USA

0908783116 Mechanical Harry Bob Kerr male Mallinson Rendel NZ

0908606273 My Cat Likes to Hide in Boxes Lynley Dodd female Mallinson Rendel NZ

0908606273 My Cat Likes to Hide in Boxes Eve Sutton female Mallinson Rendel NZ

Figure 5.18: Information about a set of books, including the ISBN and title for

the book, the author of the book and the author’s gender, the publisher of the

book, and the publisher’s country of origin.

best to store the information in files.

The software that handles the representation of the data in computer mem-
ory, and allows us to work at a conceptual level, is called a database man-
agement system (DBMS), or in our case, more specifically, a relational
database management system (RDBMS).

The main benefits of databases for data storage derive from the fact that
databases have a formal structure. We will spend much of this section
describing and discussing how databases are designed, so that we can ap-
preciate the benefits of storing data in a database and so that we know
enough to be able to work with data that have been stored in a database.

5.6.1 The database data model

We are not concerned with the file formats that are used to store a database.
Instead, we will deal with the conceptual components used to store data in
a database.

A relational database consists of a set of tables, where a table is concep-
tually just like a plain text file or a spreadsheet: a set of values arranged
in rows and columns. The difference is that there are usually several tables
in a single database, and the tables in a database have a much more formal
structure than a plain text file or a spreadsheet.

In order to demonstrate the concepts and terminology of databases, we will
work with a simple example of storing information about books. The entire
set of information is shown in Figure 5.18, but we will only consider specific
subsets of book information at various stages throughout this section in
order to demonstrate different ideas about databases.

Shown below is a simple example of a database table that contains infor-
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mation about some of the books in our data set. This table has three
columns—the ISBN of the book, the title of the book, and the author of
the book—and four rows, with each row representing one book.

ISBN title author
---------- -------------------------- ----------------
0618260307 The Hobbit J. R. R. Tolkien
0908606664 Slinky Malinki Lynley Dodd
0393310728 How to Lie with Statistics Darrell Huff
0908783116 Mechanical Harry Bob Kerr

Each table in a database has a unique name and each column within a table
has a unique name within that table.

Each column in a database table also has a data type associated with it, so
all values in a single column are the same sort of data. In the book database
example, all values in all three columns are text or character values. The
ISBN is stored as text, not as an integer, because it is a sequence of 10 digits
(as opposed to a decimal value). For example, if we stored the ISBN as an
integer, we would lose the leading 0.

Each table in a database has a primary key. The primary key must be
unique for every row in a table. In the book table, the ISBN provides a
perfect primary key because every book has a different ISBN.

It is possible to create a primary key by combining the values of two or more
columns. This is called a composite primary key. A table can only have
one primary key, but the primary key may be composed from more than
one column. We will see some examples of composite primary keys later in
this chapter.

A database containing information on books might also contain information
on book publishers. Below we show another table in the same database
containing information on publishers.

ID name country
-- ---------------- -------
1 Mallinson Rendel NZ
2 W. W. Norton USA
3 Houghton Mifflin USA

In this table, the values in the ID column are all integers. The other columns
all contain text. The primary key in this table is the ID column.

Tables within the same database can be related to each other using for-
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eign keys. These are columns in one table that specify a value from the
primary key in another table. For example, we can relate each book in the
book_table to a publisher in the publisher_table by adding a foreign key
to the book_table. This foreign key consists of a column, pub, containing
the appropriate publisher ID. The book_table now looks like this:

ISBN title author pub
---------- -------------------------- ---------------- ---
0618260307 The Hobbit J. R. R. Tolkien 3
0908606664 Slinky Malinki Lynley Dodd 1
0393310728 How to Lie with Statistics Darrell Huff 2
0908783116 Mechanical Harry Bob Kerr 1

Notice that two of the books in the book_table have the same publisher,
with a pub value of 1. This corresponds to the publisher with an ID value of
1 in the publisher_table, which is the publisher called Mallinson Rendel.

Also notice that a foreign key column in one table does not have to have
the same name as the primary key column that it refers to in another table.
The foreign key column in the book_table is called pub, but it refers to the
primary key column in the publisher_table called ID.

5.6.2 Database notation

The examples of database tables in the previous section have shown the
contents of each database table. In the next section, on Database Design,
it will be more important to describe the design, or structure, of a database
table—the table schema. For this purpose, the contents of each row are
not important; instead, we are most interested in how many tables there
are and which columns are used to make up those tables.

We can describe a database design simply in terms of the names of tables,
the names of columns, which columns are primary keys, and which columns
are foreign keys.

The notation that we will use is a simple text description, with primary
keys and foreign keys indicated in square brackets. The description of a
foreign key includes the name of the table and the name of the column
that the foreign key refers to. For example, these are the schema for the
publisher_table and the book_table in the book database:

publisher_table ( ID [PK], name, country )
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book_table ( ISBN [PK], title, author,
pub [FK publisher_table.ID] )

The diagram below shows one way that this design could be visualized.
Each “box” in this diagram represents one table in the database, with the
name of the table as the heading in the box. The other names in each box
are the names of the columns within the table; if the name is bold, then
that column is part of the primary key for the table and if the name is italic,
then that column is a foreign key. Arrows are used to show the link between
a foreign key in one table and the primary key in another table.

book_table
ISBN
title
author
pub

publisher_table
ID
name
country

The publisher_table has three columns and the column named ID is the
primary key for the table.

The book_table has four columns. In this table, the primary key is the
ISBN column and the pub column is a foreign key that refers to the ID
column in the publisher_table.

5.6.3 Database design

Like we saw with XML documents in Section 5.5.2, databases allow us to
store information in a variety of ways, which means that there are design
decisions to be made. In this section, we will briefly discuss some of the
issues relating to database design.

The design of a database comes down to three things: how many tables
are required; what information goes in each table; and how the tables are
linked to each other. The remainder of this section provides some rules and
guidelines for determining a solution for each of these steps.

This section provides neither an exhaustive discussion nor a completely
rigorous discussion of database design. The importance of this section is to
provide a basic introduction to some useful ideas and ways to think about
data. A basic understanding of these issues is also necessary for us to be
able to work with data that have been stored in a database.



i
i

“itdt” — 2012/7/30 — 8:05 — page 123 — #149 i
i

i
i

i
i

Data Storage 123

Entities and attributes

One way to approach database design is to think in terms of entities, their
attributes, and the relationships between them.

An entity is most easily thought of as a person, place, or physical object
(e.g., a book); an event; or a concept. An attribute is a piece of information
about the entity. For example, the title, author, and ISBN are all attributes
of a book entity.

In terms of a research data set, each variable in the data set corresponds to
an attribute. The task of designing a database to store the data set comes
down to assigning each variable to a particular entity.

Having decided upon a set of entities and their attributes, a database design
consists of a separate table for each entity and a separate column within
each table for each attribute of the corresponding entity.

Rather than storing a data set as one big table of information, this rule
suggests that we should use several tables, with information about different
entities in separate tables. In the book database example, there is informa-
tion about at least two entities, books and publishers, so we have a separate
table for each of these.

These ideas of entities and attributes are the same ideas that were discussed
for XML design back in Section 5.5.2, just with different terminology.

Relationships

A relationship is an association between entities. For example, a publisher
publishes books and a book is published by a publisher. Relationships are
represented in a database by foreign key–primary key pairs, but the details
depend on the cardinality of the relationship—whether the relationship is
one-to-one, many-to-one, or many-to-many.

For example, a book is published by exactly one publisher, but a publisher
publishes many books, so the relationship between books and publishers is
many-to-one.

This sort of relationship can be represented by placing a foreign key in the
table for books (the “many” side) that refers to the primary key in the table
for publishers (the “one” side). This is the design that we have already seen,
on page 122, where the book_table has a foreign key, pub, that refers to
the primary key, ID, in the publisher_table.
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One-to-one relationships can be handled similarly to many-to-one relation-
ships (it does not matter which table gets the foreign key), but many-to-
many relationships are more complex.

In our book database example, we can identify another sort of entity: au-
thors.

In order to accommodate information about authors in the database, there
should be another table for author information. In the example below, the
table only contains the author’s name, but other information, such as the
author’s age and nationality, could be added.

author_table ( ID [PK], name )

What is the relationship between books and authors? An author can write
several books and a book can have more than one author, so this is an
example of a many-to-many relationship.

A many-to-many relationship can only be represented by creating a new
table in the database.

For example, we can create a table, called the book_author_table, that
contains the relationship between authors and books. This table contains
a foreign key that refers to the author table and a foreign key that refers
to the book table. The representation of book entities, author entities, and
the relationship between them now consists of three tables, as shown below.

author_table ( ID [PK], name )

book_table ( ISBN [PK], title,
pub [FK publisher_table.ID] )

book_author_table ( ID [PK],
book [FK book_table.ISBN],
author [FK author_table.ID] )

The book database design, with author information included, is shown in
the diagram below.
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book_table
ISBN
title
pub

publisher_table
ID
name
country

author_table
ID
name

book_author_table
ID
book
author

The contents of these tables for several books are shown below. The author
table just lists the authors for whom we have information:

ID name
-- -----------
2 Lynley Dodd
5 Eve Sutton

The book_table just lists the books that are in the database:

ISBN title pub
---------- ------------------------------------ ---
0908606664 Slinky Malinki 1
1908606206 Hairy Maclary from Donaldson's Dairy 1
0908606273 My Cat Likes to Hide in Boxes 1

The book_author_table contains the association between books and au-
thors:

ID book author
-- ---------- ------
2 0908606664 2
3 1908606206 2
6 0908606273 2
7 0908606273 5

Notice that author 2 (Lynley Dodd) has written more than one book and
book 0908606273 (My Cat Likes to Hide in Boxes) has more than one
author.
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Designing for data integrity

Another reason for creating a table in a database is for the purpose of
constraining the set of possible values for an attribute. For example, if the
table of authors records the gender of the author, it can be useful to have a
separate table that contains the possible values of gender. The column in the
author table then becomes a foreign key referring to the gender table and,
because a foreign key must match the value of the corresponding primary
key, we have a check on the validity of the gender values in the author table.

The redesigned author table and gender table are described below.

author_table ( ID [PK], name,
gender [FK gender_table.ID] )

gender_table ( ID [PK], gender )

The gender_table only contains the set of possible gender values, as shown
below.

ID gender
-- ------
1 male
2 female

The final book database design, consisting of five tables, is shown in the
diagram below.

book_table
ISBN
title
pub

publisher_table
ID
name
country

author_table
ID
name
gender

book_author_table
ID
book
author

gender_table
ID
gender
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Database normalization

Another way to approach database design is to choose tables and columns
within tables based on whether they satisfy a set of rules called normal
forms.

This, more formal, process of database design is called normalization.

There are several normal forms, but we will only mention the first three
because these will cover most simple situations.

The proper definition of normalization depends on more advanced relational
database concepts that are beyond the scope of this book, so the descriptions
below are just to give a feel for how the process works.

First normal form
First normal form requires that the columns in a table must be atomic,
there should be no duplicative columns, and every table must have
a primary key.

The first part of this rule says that a column in a database table must
only contain a single value. As an example, consider the following
possible design for a table for storing information about books. There
is one column for the title of the book and another column for all
authors of the book.

book_table ( title, authors )

Two rows of this table are shown below.

title authors
----------------------------- -----------------------
Slinky Malinki Lynley Dodd
My Cat Likes to Hide in Boxes Eve Sutton, Lynley Dodd

The first column of this table is acceptable because it just contains
one piece of information: the title of the book. However, the second
column is not atomic because it contains a list of authors for each
book. The book on the second row has two authors recorded in the
authors column. This violates first normal form.

The second part of the rule says that a table cannot have two columns
containing the same information. For example, the following possible
redesign of the book table provides a solution to the previous problem
by having a separate column for each author of the book.

book_table ( title, author1, author2 )
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Two rows from this table are shown below.

title author1 author2
----------------------------- ----------- -----------
Slinky Malinki Lynley Dodd NULL
My Cat Likes to Hide in Boxes Eve Sutton Lynley Dodd

This solves the problem of atomic columns because each column only
contains the name of one author. However, the table has two duplica-
tive columns: author1 and author2. These two columns both record
the same information, author names, so this design also violates first
normal form.

A possible redesign that satisfies the requirement that each column
is atomic and not duplicative is shown below. We now have just one
column for the book title and one column for the names of the authors.

book_table ( title, author )

The contents of this table are shown below. Notice that the second
book now occupies two rows because it has two authors.

title author
----------------------------- -----------
Slinky Malinki Lynley Dodd
My Cat Likes to Hide in Boxes Eve Sutton
My Cat Likes to Hide in Boxes Lynley Dodd

The final part of the first normal form rule says that there must be a
column in the table that has a unique value in every row (or it must
be possible to combine several columns to obtain a unique value for
every row). In other words, every table must have a primary key.

Can we find a primary key in the table above?

Neither the title column nor the author column by itself is any use
as a primary key because some values repeat in each of these columns.

We could combine the two columns to create a composite primary
key. However, it is also important to think about not just the data
that are currently in a table, but also what possible values could be
entered into the table in the future (or even just in theory). In this
case, it is possible that a book could be published in both hard cover
and paperback formats, both of which would have the same title and
author, so while a composite primary key would work for the three
rows shown below, it is not necessarily a smart choice.

As described previously, for the case of information about books, a
great candidate for a primary key is the book’s ISBN because it is
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guaranteed to be unique for a particular book. If we add an ISBN
column to the table, we can finally satisfy first normal form, though
it still has to be a composite primary key involving the combination
of ISBN and author.

book_table ( ISBN [PK],
title,
author [PK] )

The contents of this table are shown below.

ISBN title author
---------- ----------------------------- -----------
0908606664 Slinky Malinki Lynley Dodd
0908606273 My Cat Likes to Hide in Boxes Lynley Dodd
0908606273 My Cat Likes to Hide in Boxes Eve Sutton

This is not an ideal solution for storing this information, but at least it
satisfies first normal form. Consideration of second and third normal
form will help to improve the design.

Second normal form
Second normal form requires that a table must be in first normal form
and all columns in the table must relate to the entire primary key.

This rule formalizes the idea that there should be a table for each
entity in the data set.

As a very basic example, consider the following table that contains
information about authors and publishers. The primary key of this
table is the author ID. In other words, each row of this table only
concerns a single author.

author_table ( ID [PK], name, publisher)

Two rows from this table are shown below.

ID name publisher
-- ----------- ----------------
2 Lynley Dodd Mallinson Rendel
5 Eve Sutton Mallinson Rendel

The name column of this table relates to the primary key (the ID);
this is the name of the author. However, the publisher column does
not relate to the primary key. This is the publisher of a book. In
other words, the information about publishers belongs in a table about
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publishers (or possibly a table about books), not in a table about
authors.

As a more subtle example, consider the table that we ended up with
at the end of first normal form.

book_table ( ISBN [PK],
title,
author [PK] )

ISBN title author
---------- ----------------------------- -----------
0908606664 Slinky Malinki Lynley Dodd
0908606273 My Cat Likes to Hide in Boxes Lynley Dodd
0908606273 My Cat Likes to Hide in Boxes Eve Sutton

The primary key for this table is a combination of ISBN and author
(each row of the table carries information about one author of one
book).

The title column relates to the ISBN; this is the title of the book.
However, the title column does not relate to the author; this is not
the title of the author!

The table needs to be split into two tables, one with the information
about books and one with the information about authors. Shown
below is the book-related information separated into its own table.

book_table ( ISBN [PK],
title )

ISBN title
---------- -----------------------------
0908606664 Slinky Malinki
0908606273 My Cat Likes to Hide in Boxes

It is important to remember that each of the new tables that we create
to satisfy second normal form must also satisfy first normal form. In
this case, it would be wise to add an ID column to act as the primary
key for the table of authors, as shown below, because it is entirely
possible that two distinct authors could share the same name.

author_table ( ID [PK],
author )
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ID author
-- -----------
2 Lynley Dodd
5 Eve Sutton

As this example makes clear, having split a table into two or more
pieces, it is very important to link the pieces together by adding one
or more foreign keys, based on the relationships between the tables.
In this case, the relationship is many-to-many, so the solution requires
a third table to provide a link between books and authors.

book_author_table ( ID [PK],
book [FK book_table.ISBN],
author [FK author_table.ID] )

ID book author
-- ---------- ------
2 0908606664 2
6 0908606273 2
7 0908606273 5

Third normal form
Third normal form requires that a table must be in second normal
form and all columns in the table must relate only to the primary key
(not to each other).

This rule further emphasizes the idea that there should be a sepa-
rate table for each entity in the data set. For example, consider the
following table for storing information about books.

book_table ( ISBN [PK],
title,
publisher,
country )

ISBN title publisher country
---------- ---------------- ---------------- -------
0395193958 The Hobbit Houghton Mifflin USA
0836827848 Slinky Malinki Mallinson Rendel NZ
0908783116 Mechanical Harry Mallinson Rendel NZ

The primary key of this table is the ISBN, which uniquely identifies
a book. The title column relates to the book; this is the title of the
book. Each row of this table is about one book.
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The publisher column also relates to the book; this is the publisher
of the book. However, the country column does not relate directly
to the book; this is the country of the publisher. That obviously is
information about the book—it is the country of the publisher of the
book—but the relationship is indirect, through the publisher.

There is a simple heuristic that makes it easy to spot this sort of prob-
lem in a database table. Notice that the information in the publisher
and country columns is identical for the books published by Mallinson
Rendel. When two or more columns repeat the same information over
and over, it is a sure sign that either second or third normal form is
not being met.

In this case, the analysis of the table suggests that there should be a
separate table for information about the publisher.

Applying the rules of normalization usually results in the creation of multiple
tables in a database. The previous discussion of relationships should be
consulted for making sure that any new tables are linked to at least one
other table in the database using a foreign-key, primary-key pair.

Denormalization

The result of normalization is a well-organized database that should be easy
to maintain. However, normalization may produce a database that is slow
in terms of accessing the data (because the data from many tables has to
be recombined).

Denormalization is the process of deliberately violating normal forms,
typically in order to produce a database that can be accessed more rapidly.

5.6.4 Flashback: The DRY principle

A well-designed database, particularly one that satisfies third normal form,
will have the feature that each piece of information is stored only once. Less
repetition of data values means that a well-designed database will usually
require less memory than storing an entire data set in a näıve single-table
format. Less repetition also means that a well-designed database is easier to
maintain and update, because if a change needs to be made, it only needs
to be made in one location. Furthermore, there is less chance of errors
creeping into the data set. If there are multiple copies of information, then
it is possible for the copies to disagree, but with only one copy there can be
no disagreements.
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VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_dsets/data/

SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)

TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W ...

27 28 29 30 31 32 33 ...

36.2N / 51: 272.7 270.9 270.9 269.7 273.2 275.6 277.3 ...

33.8N / 50: 279.5 279.5 275.0 275.6 277.3 279.5 281.6 ...

31.2N / 49: 284.7 284.7 281.6 281.6 280.5 282.2 284.7 ...

28.8N / 48: 289.3 286.8 286.8 283.7 284.2 286.8 287.8 ...

26.2N / 47: 292.2 293.2 287.8 287.8 285.8 288.8 291.7 ...

23.8N / 46: 294.1 295.0 296.5 286.8 286.8 285.2 289.8 ...

...

Figure 5.19: One of the plain text files from the original format of the Data Expo

data set, which contains data for one variable for one month. The file contains

information on latitude and longitude that is repeated in every other plain text

file in the original format (for each variable and for each month; in total, over 500

times).

These ideas are an expression of the DRY principle from Section 2.7. A
well-designed database is the ultimate embodiment of the DRY principle
for data storage.

5.6.5 Case study: The Data Expo (continued)

The Data Expo data set consists of seven atmospheric variables recorded
at 576 locations for 72 time points (every month for 6 years), plus elevation
data for each location (see Section 5.2.8).

The data were originally stored as 505 plain text files, where each file con-
tains the data for one variable for one month. Figure 5.19 shows the first
few lines from one of the plain text files.

As we have discussed earlier in this chapter, this simple format makes the
data very accessible. However, this is an example where a plain text format
is quite inefficient, because many values are repeated. For example, the
longitude and latitude information for each location in the data set is stored
in every single file, which means that that information is repeated over 500
times! That not only takes up more storage space than is necessary, but it
also violates the DRY principle, with all of the negative consequences that
follow from that.
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In this section, we will consider how the Data Expo data set could be stored
as a relational database.

To start with, we will consider the problem from an entities and attributes
perspective. What entities are there in the data set? In this case, the dif-
ferent entities that are being measured are relatively easy to identify. There
are measurements on the atmosphere, and the measurements are taken at
different locations and at different times. We have information about each
time point (i.e., a date), we have information about each location (longitude
and latitude and elevation), and we have several measurements on the atmo-
sphere. This suggests that we should have three tables: one for atmospheric
measures, one for locations, and one for time points.

It is also useful to look at the data set from a normalization perspective.
For this purpose, we will start with all of the information in a single table
(only 7 rows shown):

date lon lat elv chi cmid clo ozone press stemp temp

---------- ------ ----- --- ---- ---- ---- ----- ------ ----- -----

1995-01-16 -56.25 36.25 0.0 25.5 17.5 38.5 298.0 1000.0 289.8 288.8

1995-01-16 -56.25 33.75 0.0 23.5 17.5 36.5 290.0 1000.0 290.7 289.8

1995-01-16 -56.25 31.25 0.0 20.5 17.0 36.5 286.0 1000.0 291.7 290.7

1995-01-16 -56.25 28.75 0.0 12.5 17.5 37.5 280.0 1000.0 293.6 292.2

1995-01-16 -56.25 26.25 0.0 10.0 14.0 35.0 272.0 1000.0 296.0 294.1

1995-01-16 -56.25 23.75 0.0 12.5 11.0 32.0 270.0 1000.0 297.4 295.0

1995-01-16 -56.25 21.25 0.0 7.0 10.0 31.0 260.0 1000.0 297.8 296.5

In terms of first normal form, all columns are atomic and there are no
duplicative columns, and we can, with a little effort, find a (composite)
primary key: we need a combination of date, lon (longitude), and lat
(latitude) to get a unique value for all rows.

Moving on to second normal form, the column elv (elevation) immediately
fails. The elevation at a particular location clearly relates to the longitude
and latitude of the location, but it has very little to do with the date. We
need a new table to hold the longitude, latitude, and elevation data.

The new table design and the first three rows of data are shown below.

location_table ( longitude [PK],
latitude [PK],
elevation )

lon lat elv
------ ----- ---
-56.25 36.25 0.0
-56.25 33.75 0.0
-56.25 31.25 0.0
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This “location” table is in third normal form. It has a primary key (a
combination of longitude and latitude), and the elv column relates directly
to the entire primary key.

Going back to the original table, the remaining columns of atmospheric
measurements are all related to the primary key; the data in these columns
represent an observation at a particular location at a particular time point.

However, we now have two tables rather than just one, so we must make
sure that the tables are linked to each other, and in order to achieve this,
we need to determine the relationships between the tables.

We have two tables, one representing atmospheric measurements, at various
locations and times, and one representing information about the locations.
What is the relationship between these tables? Each location (each row of
the location table) corresponds to several measurements, but each individual
measurement (each row of the measurement table) corresponds to only one
location, so the relationship is many-to-one.

This means that the table of measurements should have a foreign key that
references the primary key in the location table. The design could be ex-
pressed like this:

location_table ( longitude [PK],
latitude [PK],
elevation )

measure_table ( date [PK],
longitude [PK] [FK location_table.longitude],
latitude [PK] [FK location_table.latitude],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature )

location_table
longitude
latitude
elevation

measure_table
date
longitude

latitude

cloudhigh
cloudmid
cloudlow
ozone
pressure
surftemp
temperature
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Both tables have composite primary keys. The measure_table also has
a composite foreign key, to refer to the composite primary key in the
location_table. Finally, the longitude and latitude columns have roles
in both the primary key and the foreign key of the measure_table.

A possible adjustment to the database design is to consider a surrogate
auto-increment key—a column that just corresponds to the row number in
the table—as the primary key for the location table, because the natural
primary key is quite large and cumbersome. This leads to a final design
that can be expressed as below.

location_table ( ID [PK],
longitude, latitude, elevation )

measure_table ( date [PK],
location [PK] [FK location_table.ID],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature )

location_table
ID
longitude
latitude
elevation

measure_table
date
location

cloudhigh
cloudmid
cloudlow
ozone
pressure
surftemp
temperature

Another adjustment would be to break out the date column into a separate
table. This is partly motivated by the idea of data integrity; a separate
table for dates would ensure that all dates in the measure_table are valid
dates. Also, if the table for dates uses an auto-increment ID column, the
date column in the measure_table can become just a simple integer, rather
than a lengthy date value. Finally, the table of date information can have
the year and month information split into separate columns, which can make
it more useful to work with the date information.
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The final Data Expo database design is shown below.

date_table ( ID [PK], date, month, year )

location_table ( ID [PK],
longitude, latitude, elevation )

measure_table ( date [PK] [FK date_table.ID],
location [PK] [FK location_table.ID],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature )

date_table
ID
date
month
year

location_table
ID
longitude
latitude
elevation

measure_table
date

location

cloudhigh
cloudmid
cloudlow
ozone
pressure
surftemp
temperature

As a final check, we should confirm that these tables all satisfy third normal
form.

Each table has a primary key, all columns are atomic, and there are no
duplicative columns, so first normal form is satisfied. All of the columns
in each table correspond to the primary key of the table—in particular,
each measurement in the measure_table corresponds to a particular com-
bination of date and location—so second normal form is also satisfied. The
tables mostly also satisfy third normal form because columns generally re-
late only to the primary key in the table. However, it could be argued that,
in the date_table, the month and year columns relate to the date column
as well as to the primary key of the table. This is a good demonstration of
a possible justification for denormalization; we have split out these columns
because we anticipate that they will be useful for asking questions of the
database in the future. The ideas of normalization should be used as guides
for achieving a sensible database design, but other considerations may also
come into play.
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5.6.6 Advantages and disadvantages

The previous sections have demonstrated that databases are a lot more
complex than most of the other data storage options in this chapter. In this
section, we will look at what we can gain by using a database to store a
data set and what the costs are compared to other storage formats.

The relatively formal data model of relational databases, and the relatively
complex processes that go into designing an appropriate database structure,
are worthwhile because the resulting structure enforces constraints on the
data in a database, which means that there are checks on the accuracy and
consistency of data that are stored in a database. In other words, databases
ensure better data integrity.

For example, the database structure ensures that all values in a single col-
umn of a table are of the same data type (e.g., they are all numbers). It is
possible, when setting up a database, to enforce quite specific constraints
on what values can appear in a particular column of a table. Section 8.3
provides some information on this topic of the creation of data sets.

Another important structural feature of databases is the existence of for-
eign keys and primary keys. Database software will enforce the rule that a
primary key must be unique for every row in a table, and it will enforce the
rule that the value of a foreign key must refer to an existing primary key
value.

Databases tend to be used for large data sets because, for most DBMS,
there is no limit on the size of a database. However, even when a data
set is not enormous, there are advantages to using a database because the
organization of the data can improve accuracy and efficiency. In particular,
databases allow the data to be organized in a variety of ways so that, for
example, data with a hierarchical structure can be stored in an efficient and
natural way.

Databases are also advantageous because most DBMS provide advanced
features that are far beyond what is provided by the software that is used
to work with data in other formats (e.g., text editors and spreadsheet pro-
grams). These features include the ability to allow multiple people to access
and even modify the data at once and advanced security to control who has
access to the data and who is able to modify the data.

The first cost to consider is monetary. The commercial database systems
offered by Oracle and Microsoft can be very expensive, although open source
options exist (see Section 5.6.9) to relieve that particular burden. However,
there is also the cost of acquiring or hiring the expertise necessary to create,
maintain, and interact with data stored in a database.
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Another disadvantage of using a database as a storage format is that the
data can only be accessed using a specific piece of DBMS software.

Finally, all of the sophistication and flexibility that a database provides may
just not be necessary for small data sets or for data sets that have a simple
structure. For example, a binary format such as netCDF is very well suited
to a geographical data set where observations are made on a regular grid
of locations and at a fixed set of time points and it will outperform a more
general-purpose database solution.

The investment required to create and maintain a database means that it
will not always be an appropriate choice.

5.6.7 Flashback: Database design and XML design

In Section 5.5.2 we discussed some basic ideas for deciding how to represent
a data set in an XML format.

The ideas of database design that we have discussed in Section 5.6.3—
entities, attributes, relationships, and normalization—are very similar to
the ideas from XML design, if a little more formal.

This similarity arises from the fact that we are trying to solve essentially
the same problem in both cases, and this can be reflected in a simple cor-
respondence between database designs and XML designs for the same data
set.

As a rough guideline, a database table can correspond to a set of XML
elements of the same type. Each row of the table will correspond to a single
XML element, with each column of values recorded as a separate attribute
within the element. The caveats about when attributes cannot be used still
apply (see page 108).

Simple one-to-one or many-to-one relationships can be represented in XML
by nesting several elements (the many) within another element (the one).
More complex relationships cannot be solved by nesting, but attributes
corresponding to primary keys and foreign keys can be used to emulate
relationships between entities via XML elements that are not nested.

5.6.8 Case study: The Data Expo (continued)

The Data Expo data set consists of several atmospheric measurements taken
at many different locations and at several time points. A database design
that we developed for storing these data consisted of three tables: one
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for the location data, one for the time data, and one for the atmospheric
measurements (see Section 5.6.5). The database schema is reproduced below
for easy reference.

date_table ( ID [PK], date, month, year )

location_table ( ID [PK],
longitude, latitude, elevation )

measure_table ( date [PK] [FK date_table.ID],
location [PK] [FK location_table.ID],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature )

We can translate this database design into an XML document design very
simply, by creating a set of elements for each table, with attributes for each
column of data. For example, the fact that there is a table for location infor-
mation implies that we should have location elements, with an attribute
for each column in the database table. The data for the first few locations
are represented like this in a database table:

ID lon lat elv
------ ----- --- ----------
1 -113. 36. 1526.25
2 -111. 36. 1759.56
3 -108. 36. 1948.38

The same data could be represented in XML like this:

<location id="1" longitude="-113.75" latitude="36.25"
elevation="1526.25" />

<location id="2" longitude="-111.25" latitude="36.25"
elevation="1759.56" />

<location id="3" longitude="-108.75" latitude="36.25"
elevation="1948.38" />

As an analogue of the primary keys in the database design, the DTD for
this XML design could specify id as an ID attribute (see Section 6.2.2).

An XML element for the first row from the date_table might look like this
(again with id as an ID attribute in the DTD):

<date id="1" date="1995-01-16"
month="January" year="1995" />



i
i

“itdt” — 2012/7/30 — 8:05 — page 141 — #167 i
i

i
i

i
i

Data Storage 141

Because there is a many-to-many relationship between locations and dates,
it would not make sense to nest the corresponding XML elements. Instead,
the XML elements that correspond to the rows of the measure_table could
include attributes that refer to the relevant location and date elements. The
following code shows an example of what a measure XML element might
look like.

<measure date="1" location="1"
cloudhigh="26.0" cloudmid="34.5"
cloudlow="7.5" ozone="304.0"
pressure="835.0" surftemp="272.7"
temperature="272.1" />

In order to enforce the data integrity of the attributes date and location,
the DTD for this XML design would specify these as IDREF attributes (see
Section 6.2.2).

5.6.9 Database software

Every different database software product has its own format for storing
the database tables on disk, which means that data stored in a database are
only accessible via one specific piece of software.

This means that, if we are given data stored in a particular database format,
we are forced to use the corresponding software. Something that slightly
alleviates this problem is the existence of a standard language for querying
databases. We will meet this language, SQL, in Chapter 7.

If we are in the position of storing information in a database ourselves, there
are a number of fully featured open source database management systems to
choose from. PostgreSQL6 and MySQL7 are very popular options, though
they require some investment in resources and expertise to set up because
they have separate client and server software components. SQLite8 is much
simpler to set up and use, especially for a database that only requires access
by a single person working on a single computer.

Section 7.2.14 provides a very brief introduction to SQLite.

The major proprietary database systems include Oracle, Microsoft SQL
Server, and Microsoft Access. The default user interface for these software
products is based on menus and dialogs so they are beyond the scope and

6http://www.postgresql.org/
7http://www.mysql.com/
8http://www.sqlite.org/

http://www.postgresql.org/
http://www.mysql.com/
http://www.sqlite.org/
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interest of this book. Nevertheless, in all of these, as with the default inter-
faces for the open source database software, it is possible to write computer
code to access the data. Writing these data queries is the topic of the next
chapter.

Recap

A database consists of one or more tables. Each column of a database
table contains only one type of information, corresponding to one vari-
able from a data set.

A primary key uniquely identifies each row of a table. A primary key is
a column in a table with a different value on every row.

A foreign key relates one table to another within a database. A foreign
key is a column in a table that refers to the values in the primary key
of another table.

A database should be designed so that information about different en-
tities resides in separate tables.

Normalization is a way to produce a good database design.

Databases can handle large data sets and data sets with a complex
structure, but databases require specific software and a certain level of
expertise.

5.7 Further reading

Modern Database Management
by Jeffrey A. Hoffer, Mary Prescott, and Fred McFadden
7th edition (2004) Prentice Hall.
Comprehensive textbook treatment of databases and associated tech-
nologies, with more of a business focus. Includes many advanced topics
beyond the scope of this book.



i
i

“itdt” — 2012/7/30 — 8:05 — page 143 — #169 i
i

i
i

i
i

Data Storage 143

Summary

Simple text data is stored using 1 byte per character. Integers are stored using
2 or 4 bytes and real values typically use 4 or 8 bytes.

There is a limit to the size of numbers that can be stored digitally and for real
values there is a limit on the precision with which values can be stored.

Plain text files are the simplest data storage solution, with the advantage that
they are simple to use, work across different computer platforms, and work
with virtually any software. The main disadvantage to plain text files is their
lack of standard structure, which means that software requires human input
to determine where data values reside within the file. Plain text files are also
generally larger and slower than other data storage options.

CSV (comma-separated values) files offer the most standardized plain text for-
mat.

Binary formats tend to provide smaller files and faster access speeds. The
disadvantage is that data stored in a binary format can only be accessed using
specific software.

Spreadsheets are ubiquitous, flexible, and easy to use. However, they lack
structure so should be used with caution.

XML is a language that can be used for marking up data. XML files are plain
text but provide structure that allows software to automatically determine the
location of data values within the file (XML files are self-describing).

Databases are sophisticated but relatively complex. They are useful for storing
very large or very complex data sets but require specific software and much
greater expertise.
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6
XML Reference

XML (the eXtensible Markup Language) is a data description language that
can be used for storing data. It is particularly useful as a format for sharing
information between different software systems.

The information in this chapter describes XML 1.0, which is a W3C Rec-
ommendation.

Within this chapter, any code written in a sans-serif oblique font represents
a general template; that part of the code will vary depending on the names
of the elements and the names of the attributes that are used to store a
particular data set.

6.1 XML syntax

The first line of an XML document should be a declaration that this is an
XML document, including the version of XML being used.

<?xml version="1.0"?>

It is also useful to include a statement of the encoding used in the file.

<?xml version="1.0" encoding="UTF-8"?>

The main content of an XML document consists entirely of XML elements.
An element usually consists of a start tag and an end tag, with plain text
content or other XML elements in between.

A start tag is of the form <elementName> and an end tag has the form
</elementName>.

The following code shows an example of an XML element.

<filename>ISCCPMonthly_avg.nc</filename>

145
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The components of this XML element are shown below.

element: <filename>ISCCPMonthly_avg.nc</filename>
start tag: <filename>ISCCPMonthly_avg.nc</filename>
content: <filename>ISCCPMonthly_avg.nc</filename>
end tag: <filename>ISCCPMonthly_avg.nc</filename>

The start tag may include attributes of the form attrName="attrValue".
The attribute value must be enclosed within double-quotes.

The names of XML elements and XML attributes are case-sensitive.

It is also possible to have an empty element, which consists of a single tag,
with attributes. In this case, the tag has the form <elementName />.

The following code shows an example of an empty XML element with two
attributes.

<case date="16-JAN-1994"
temperature="278.9" />

The components of this XML element are shown below.

element name: <case date="16-JAN-1994"
attribute name: <case date="16-JAN-1994"
attribute value: <case date="16-JAN-1994"
attribute name: temperature="278.9" />
attribute value: temperature="278.9" />

XML elements may be nested; an XML element may have other XML ele-
ments as its content. An XML document must have a single root element,
which contains all other XML elements in the document.

The following code shows a very small, but complete, XML document. The
root element of this document is the temperatures element. The filename
and case elements are nested within the temperatures element.

<?xml version="1.0"?>
<temperatures>

<filename>ISCCPMonthly_avg.nc</filename>
<case date="16-JAN-1994"

temperature="278.9"/>
</temperatures>



i
i

“itdt” — 2012/7/30 — 8:05 — page 147 — #173 i
i

i
i

i
i

XML Reference 147

X
M

L

Table 6.1: The predefined XML entities.

Character Description Entity
< less-than sign &lt;
> greater-than sign &gt;
& ampersand &amp;
" quotation mark &quot;
’ apostrophe &apos;

A comment in XML is anything between the delimiters <!-- and -->.

For the benefit of human readers, the contents of an XML element are
usually indented. However, whitespace is preserved within XML so this is
not always possible when including plain text content.

In XML code, certain characters, such as the greater-than and less-than
signs, have special meanings. Table 6.1 lists these special characters and also
gives the escape sequence required to produce the normal, literal meaning
of the characters.

A special syntax is provided for escaping an entire section of plain text
content for the case where many such special characters are included. Any
text between the delimiters <![CDATA[ and ]]> is treated as literal.

6.2 Document Type Definitions

An XML document that obeys the rules of the previous section is described
as well-formed.

It is also possible to specify additional rules for the structure and content
of an XML document, via a schema for the document. If the document is
well-formed and also obeys the rules given in a schema, then the document
is described as valid.

The Document Type Definition language (DTD) is a language for describ-
ing the schema for an XML document. DTD code consists of element
declarations and attribute declarations.
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6.2.1 Element declarations

An element declaration should be included for every different type of element
that will occur in an XML document. Each declaration describes what
content is allowed inside a particular element. An element declaration is of
the form:

<!ELEMENT elementName elementContents>

The elementContents specifies whether an element can contain plain text,
or other elements (and if so, which elements, in what order), or whether the
element must be empty. Some possible values are shown below.

EMPTY
The element is empty.

ANY
The element may contain anything (other elements, plain text, or
both).

(#PCDATA)
The element may contain plain text.

(elementA)
The element must contain exactly one elementA element. The paren-
theses, ( and ), are essential in this example and all others below.

(elementA*)
The element may contain zero or more elementA elements. The aster-
isk, *, indicates “zero or more”.

(elementA+)
The element must contain one or more elementA elements. The plus
sign, +, indicates “one or more”.

(elementA?)
The element must contain zero or one elementA elements. The ques-
tion mark, ?, indicates “zero or one”.

(elementA,elementB)
The element must contain exactly one elementA element and exactly
one elementB element. The element names are separated from each
other by commas.

(elementA|elementB)
The element must contain either exactly one elementA element or ex-
actly one elementB element. The vertical bar, |, indicates alternatives.
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(#PCDATA|elementA|elementB*)
The element may contain plain text, or a single elementA element,
or zero or more elementB elements. The asterisk, *, is inside the
parentheses so only applies to the elementB element.

(#PCDATA|elementA|elementB)*
The element may contain plain text, plus zero or more occurrences of
elementA elements and elementB elements. The asterisk, *, is outside
the parentheses so applies to all elements within the parentheses.

6.2.2 Attribute declarations

An attribute declaration should be included for every different type of ele-
ment that can have attributes. The declaration describes which attributes
an element may have, what sorts of values the attribute may take, and
whether the attribute is optional or compulsory. An attribute declaration
is of the form:

<!ATTLIST elementName
attrName attrType attrDefault
...

>

The attrType controls what value the attribute can have. It can have one
of the following forms:

CDATA
The attribute can take any value. Attribute values must always be
plain text and escape sequences (XML entities) must be used for spe-
cial XML characters (see Table 6.1).

ID
The value of this attribute must be unique for all elements of this type
in the document (i.e., a unique identifier). This is similar to a primary
key in a database table.

The value of an ID attribute must not start with a digit.

IDREF
The value of this attribute must be the value of some other element’s
ID attribute. This is similar to a foreign key in a database table.

(option1|option2)
This form provides a list of the possible values for the attribute. The



i
i

“itdt” — 2012/7/30 — 8:05 — page 150 — #176 i
i

i
i

i
i

150 Introduction to Data Technologies

list of options is given, separated by vertical bars, |. This is a good
way to limit an attribute to only valid values (e.g., only "male" or
"female" for a gender attribute).

<!ATTLIST elementName
gender (male|female) #REQUIRED>

The attrDefault either provides a default value for the attribute or states
whether the attribute is optional or required (i.e., must be specified). It can
have one of the following forms:

value
This is the default value for the attribute.

#IMPLIED
The attribute is optional. It is valid for elements of this type to contain
this attribute, but it is not required.

#REQUIRED
The attribute is required so it must appear in all elements of this type.

6.2.3 Including a DTD

A DTD can be embedded within an XML document or the DTD can be
located within a separate file and referred to from the XML document.

The DTD information is included within a DOCTYPE declaration following
the XML declaration. An inline DTD has the form:

<!DOCTYPE rootElementName [
DTD code

]>

An external DTD stored in a file called file.dtd would be referred to as
follows:

<!DOCTYPE rootElementName SYSTEM "file.dtd">

The name following the keyword DOCTYPE must match the name of the root
element in the XML document.
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1 <?xml version="1.0"?>
2 <!DOCTYPE temperatures [
3 <!ELEMENT temperatures (filename, case)>
4 <!ELEMENT filename (#PCDATA)>
5 <!ELEMENT case EMPTY>
6 <!ATTLIST case
7 date CDATA #REQUIRED
8 temperature CDATA #IMPLIED>
9 ]>
10 <temperatures>
11 <filename>ISCCPMonthly_avg.nc</filename>
12 <case date="16-JAN-1994"
13 temperature="278.9"/>
14 </temperatures>

Figure 6.1: A well-formed and valid XML document, with an embedded DTD.

The line numbers (in grey) are just for reference.

6.2.4 An example

Figure 6.1 shows a very small, well-formed and valid XML document with
an embedded DTD.

Line 1 is the required XML declaration.

Lines 2 to 9 provide a DTD for the document. This DTD specifies that the
root element for the document must be a temperatures element (line 2).
The temperatures element must contain one filename element and one
case element (line 3). The filename element must contain only plain text
(line 4) and the case element must be empty (line 5).

The case element must have a date attribute (line 7) and may also have
a temperature attribute (line 8). The values of both attributes can be
arbitrary text (CDATA).

The elements within the XML document that mark up the actual data
values are on lines 10 to 14.
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6.3 Further reading

The W3C XML 1.0 Specification
http://www.w3.org/TR/2006/REC-xml-20060816/
The formal and official definition of XML. Quite technical.

The w3schools XML Tutorial
http://www.w3schools.com/xml/
Quick, basic tutorial-based introduction to XML.

The w3schools DTD Tutorial
http://www.w3schools.com/dtd/
Quick, basic tutorial-based introduction to DTDs.

The W3C Validation Service
http://validator.w3.org/
This will check raw XML files as well as HTML documents.

libxml2
http://xmlsoft.org/
This software includes a command-line tool, xmllint for checking
XML code, including validating it against a DTD.

http://www.w3.org/TR/2006/REC-xml-20060816/
http://www.w3schools.com/xml/
http://www.w3schools.com/dtd/
http://validator.w3.org/
http://xmlsoft.org/
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Having stored information in a particular data format, how do we get it
back out again? How easy is it to access the data? The answer naturally
depends on which data format we are dealing with.

For data stored in plain text files, it is very easy to find software that can
read the files, although the software may have to be provided with additional
information about the structure of the files—where the data values reside
within the file—plus information about what sorts of values are stored in
the file—whether the data are, for example, numbers or text.

For data stored in binary files, the main problem is finding software that is
designed to read the specific binary format. Having done that, the software
does all of the work of extracting the appropriate data values. This is an
all or nothing scenario; we either have software to read the file, in which
case data extraction is trivial, or we do not have the software, in which
case we can do nothing. This scenario includes most data that are stored
in spreadsheets, though in that case the likelihood of having appropriate
software is much higher.

Another factor that determines the level of difficulty involved in retrieving
data from storage is the structure of the data within the data format.

Data that are stored in plain text files, spreadsheets, or binary formats
typically have a straightforward structure. For example, all of the values in
a single variable within a data set are typically stored in a single column
of a text file or spreadsheet, or within a single block of memory within a
binary file.

By contrast, data that have been stored in an XML document or in a re-
lational database can have a much more complex structure. Within XML
files, the data from a single variable may be represented as attributes spread
across several different elements, and data that are stored in a database may
be spread across several tables.

This means that it is not necessarily straightforward to extract data from
an XML document or a relational database. Fortunately, this is offset by
the fact that sophisticated technologies exist to support data queries with
relational databases and XML documents.

153
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How this chapter is organized

To begin with, we will look at a simple example of data retrieval from a
database. As with previous introductory examples, the focus at this point
is not so much on the computer code itself as it is on the concepts involved
and what sorts of tasks we are able to perform.

The main focus of this chapter is Section 7.2 on the Structured Query
Language (SQL), the language for extracting information from relational
databases. We will also touch briefly on XPath for extracting information
from XML documents in Section 7.3.

7.1 Case study: The Data Expo (continued)

The Data Expo data set consists of seven atmospheric measurements at
locations on a 24 by 24 grid averaged over each month for six years (72
time points). The elevation (height above sea level) at each location is also
included in the data set (see Section 5.2.8 for more details).

The data set was originally provided as 505 plain text files, but the data
can also be stored in a database with the following structure (see Section
5.6.5).

date_table ( ID [PK], date, month, year )

location_table ( ID [PK],
longitude, latitude, elevation )

measure_table ( date [PK] [FK date_table.ID],
location [PK] [FK location_table.ID],
cloudhigh, cloudlow, cloudmid, ozone,
pressure, surftemp, temperature )

measure_table
date
location
cloudhigh
cloudlow
cloudmid
ozone
pressure
surftemp
temperature

location_table
ID
longitude
latitude
elevation

date_table
ID
date
month
year
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The location_table contains all of the geographic locations at which mea-
surements were taken, and includes the elevation at each location.

ID longitude latitude elevation
-- --------- -------- ---------
1 -113.75 36.25 1526.25
2 -111.25 36.25 1759.56
3 -108.75 36.25 1948.38
4 -106.25 36.25 2241.31
...

The date_table contains all of the dates at which measurements were taken.
This table also includes the text form of each month and the numeric form
of the year. These have been split out to make it easier to perform queries
based on months or years. The full dates are stored using the ISO 8601
format so that alphabetical ordering gives chronological order.

ID date month year
-- ---------- -------- ----
1 1995-01-16 January 1995
2 1995-02-16 February 1995
3 1995-03-16 March 1995
4 1995-04-16 April 1995
...

The measure_table contains all of the atmospheric measurements for all
dates and locations. Dates and locations are represented by simple ID num-
bers, referring to the appropriate complete information in the date_table
and location_table. In the output below, the column names have been
abbreviated to save space.

loc date chigh cmid clow ozone press stemp temp
--- ---- ----- ---- ---- ----- ----- ----- -----
1 1 26.0 34.5 7.5 304.0 835.0 272.7 272.1
2 1 23.0 32.0 7.0 306.0 810.0 270.9 270.3
3 1 23.0 32.0 7.0 306.0 810.0 270.9 270.3
4 1 17.0 29.5 7.0 294.0 775.0 269.7 270.9
...

With the data stored in this way, how difficult is it to extract information?

Some things are quite simple. For example, it is straightforward to extract
all of the ozone measurements from the measure_table. The following SQL
code performs this step.
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SQL> SELECT ozone FROM measure_table;

ozone
-----
304.0
306.0
306.0
294.0
...

Throughout this chapter, examples of SQL code will be displayed like this,
with the SQL code preceded by a prompt, SQL>, and the output from
the code—the data that have been extracted from the database—displayed
below the code, in a tabular format.

This information is more useful if we also know where and when each ozone
measurement was taken. Extracting this additional information is also not
difficult because we can just ask for the location and date columns as well.

SQL> SELECT date, location, ozone FROM measure_table;

date location ozone
---- -------- -----
1 1 304.0
1 2 306.0
1 3 306.0
1 4 294.0
...

Unfortunately, this is still not very useful because a date or location of 1
does not have a clear intuitive meaning. What we need to do is combine the
values from the three tables in the database so that we can, for example,
resolve the date value 1 to the corresponding real date 1995-01-16.

This is where the extraction of information from a database gets interesting—
when information must be combined from more than one table.

In the following code, we extract the date column from the date_table,
the longitude and latitude from the location_table, and the ozone from
the measure_table. Combining information from multiple tables like this
is called a database join.
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SQL> SELECT dt.date date,
lt.longitude long, lt.latitude lat,
ozone

FROM measure_table mt
INNER JOIN date_table dt

ON mt.date = dt.ID
INNER JOIN location_table lt

ON mt.location = lt.ID;

date long lat ozone
----------- ------- ----- -----
1995-01-16 -113.75 36.25 304.0
1995-01-16 -111.25 36.25 306.0
1995-01-16 -108.75 36.25 306.0
1995-01-16 -106.25 36.25 294.0
...

This complex code is one of the costs of having data stored in a database,
but if we learn a little SQL so that we can do this sort of fundamental task,
we gain the benefit of the wider range of capabilities that SQL provides. As
a simple example, the above task can be modified very easily if we want to
only extract ozone measurements from the first location (the difference is
apparent in the result because the date values change, while the locations
remain the same).

SQL> SELECT dt.date date,
lt.longitude long, lt.latitude lat,
ozone

FROM measure_table mt
INNER JOIN date_table dt

ON mt.date = dt.ID
INNER JOIN location_table lt

ON mt.location = lt.ID
WHERE mt.location = 1;

date long lat ozone
----------- ------- ----- -----
1995-01-16 -113.75 36.25 304.0
1995-02-16 -113.75 36.25 296.0
1995-03-16 -113.75 36.25 312.0
1995-04-16 -113.75 36.25 326.0
...
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In this chapter we will gain these two useful skills: how to use SQL to per-
form necessary tasks with a database—the sorts of things that are quite
straightforward with other storage formats—and how to use SQL to per-
form tasks with a database that are much more sophisticated than what is
possible with other storage options.

7.2 Querying databases

SQL is a language for creating, configuring, and querying relational databases.
It is an open standard that is implemented by all major DBMS software,
which means that it provides a consistent way to communicate with a
database no matter which DBMS software is used to store or access the
data.

Like all languages, there are different versions of SQL. The information in
this chapter is consistent with SQL-92.

SQL consists of three components:

Data Definition Language (DDL)
This is concerned with the creation of databases and the specification
of the structure of tables and of constraints between tables. This part
of the language is used to specify the data types of each column in
each table, which column(s) make up the primary key for each table,
and how foreign keys are related to primary keys. We will not discuss
this part of the language in this chapter, but some mention of it is
made in Section 8.3.

Data Control Language (DCL)
This is concerned with controlling access to the database—who is

allowed to do what to which tables. This part of the language is the
domain of database administrators and need not concern us.

Data Manipulation Language (DML)
This is concerned with getting data into and out of a database and

is the focus of this chapter.

In this section, we are only concerned with one particular command within
the DML part of SQL: the SELECT command for extracting values from
tables within a database.

Section 8.3 includes brief information about some of the other features of
SQL.
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7.2.1 SQL syntax

Everything we do in this section will be a variation on the SELECT command
of SQL, which has the following basic form:

SELECT columns
FROM tables
WHERE row condition

This will extract the specified columns from the specified tables but it will
only include the rows for which the row condition is true.

The keywords SELECT, FROM, and WHERE are written in uppercase by conven-
tion and the names of the columns and tables will depend on the database
that is being queried.

Throughout this section, SQL code examples will be presented after a
“prompt”, SQL>, and the result of the SQL code will be displayed below
the code.

7.2.2 Case study: The Data Expo (continued)

The goal for contestants in the Data Expo was to summarize the important
features of the atmospheric measurements. In this section, we will perform
some straightforward explorations of the data in order to demonstrate a
variety of simple SQL commands.

A basic first step in data exploration is just to view the univariate dis-
tribution of each measurement variable. The following code extracts all
air pressure values from the database using a very simple SQL query that
selects all rows from the pressure column of the measure_table.

SQL> SELECT pressure FROM measure_table;

pressure
--------
835.0
810.0
810.0
775.0
795.0
915.0
...
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Figure 7.1: A plot of the air pressure measurements from the 2006 JSM Data

Expo. This includes pressure measurements at all locations and at all time points.

This SELECT command has no restriction on the rows, so the result contains
all rows from the table. There are 41,472 (24×24×72) rows in total, so only
the first few are shown here. Figure 7.1 shows a plot of all of the pressure
values.

The resolution of the data is immediately apparent; the pressure is only
recorded to the nearest multiple of 5. However, the more striking feature
is the change in the spread of the second half of the data. NASA has
confirmed that this change is real but unfortunately has not been able to
give an explanation for why it occurred.

An entire column of data from the measure_table in the Data Expo database
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represents measurements of a single variable at all locations for all time pe-
riods. One interesting way to “slice” the Data Expo data is to look at the
values for a single location over all time periods. For example, how does
surface temperature vary over time at a particular location?

The following code shows a slight modification of the previous query to
obtain a different column of values, surftemp, and to only return some of
the rows from this column. The WHERE clause limits the result to rows for
which the location column has the value 1.

SQL> SELECT surftemp
FROM measure_table
WHERE location = 1;

surftemp
--------
272.7
282.2
282.2
289.8
293.2
301.4
...

Again, the result is too large to show all values, so only the first few are
shown. Figure 7.2 shows a plot of all of the values.

The interesting feature here is that we can see a cyclic change in tempera-
ture, as we might expect, with the change of seasons.

The order of the rows in a database table is not guaranteed. This means that
whenever we extract information from a table, we should be explicit about
the order in which we want for the results. This is achieved by specifying
an ORDER BY clause in the query. For example, the following SQL command
extends the previous one to ensure that the temperatures for location 1 are
returned in chronological order.

SELECT surftemp
FROM measure_table
WHERE location = 1
ORDER BY date;

The WHERE clause can use other comparison operators besides equality. As
a trivial example, the following code has the same result as the previous
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Figure 7.2: A plot of the surface temperature measurements from the 2006 JSM

Data Expo, for all time points, at location 1. Vertical grey bars mark the change

of years.

example by specifying that we only want rows where the location is less
than 2 (the only location value less than two is the value 1).

SELECT surftemp
FROM measure_table
WHERE location < 2
ORDER BY date;

It is also possible to combine several conditions within the WHERE clause,
using logical operators AND, to specify conditions that must both be true,
and OR, to specify that we want rows where either of two conditions are true.
As an example, the following code extracts the surface temperature for two
locations. In this example, we include the location and date columns in
the result to show that rows from both locations (for the same date) are
being included in the result.

SQL> SELECT location, date, surftemp
FROM measure_table
WHERE location = 1 OR

location = 2
ORDER BY date;
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Figure 7.3: A plot of the surface temperature measurements from the 2006 JSM

Data Expo, for all time points, at locations 1 (solid line) and 2 (dashed line).

Vertical grey bars mark the change of years.

location date surftemp
-------- ---- --------
1 1 272.7
2 1 270.9
1 2 282.2
2 2 278.9
1 3 282.2
2 3 281.6
...

Figure 7.3 shows a plot of all of the values, which shows a clear trend of
lower temperatures overall for location 2 (the dashed line).

The above query demonstrates that SQL code, even for a single query, can
become quite long. This means that we should again apply the concepts
from Section 2.4.3 to ensure that our code is tidy and easy to read. The code
in this chapter provides many examples of the use of indenting to maintain
order within an SQL query.

As well as extracting raw values from a column, it is possible to calculate
derived values by combining columns with simple arithmetic operators or by
using a function to produce the sum or average of the values in a column.

As a simple example, the following code calculates the average surface tem-
perature value across all locations and across all time points. It crudely
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represents the average surface temperature of Central America for the years
1995 to 2000.

SQL> SELECT AVG(surftemp) avgstemp
FROM measure_table;

avgstemp
--------
296.2310

One extra feature to notice about this example SQL query is that it defines
a column alias, avgstemp, for the column of averages. The components of
this part of the code are shown below.

keyword: SELECT AVG(surftemp) avgstemp
column name: SELECT AVG(surftemp) avgstemp
column alias: SELECT AVG(surftemp) avgstemp

This part of the query specifies that we want to select the average surface
temperature value, AVG(surftemp), and that we want to be able to refer
to this column by the name avgstemp. This alias can be used within the
SQL query, which can make the query easier to type and easier to read, and
the alias is also used in the presentation of the result. Column aliases will
become more important as we construct more complex queries later in the
section.

An SQL function will produce a single overall value for a column of a table,
but what is usually more interesting is the value of the function for sub-
groups within a column, so the use of functions is commonly combined with
a GROUP BY clause, which results in a separate summary value computed for
subsets of the column.

For example, instead of investigating the trend in surface temperature over
time for just location 1, we could look at the change in the surface tem-
perature over time averaged across all locations (i.e., the average surface
temperature for each month).

The following code performs this query and Figure 7.4 shows a plot of
the result. The GROUP BY clause specifies that we want an average surface
temperature value for each different value in the date column (i.e., for each
month).
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Figure 7.4: A plot of the surface temperature measurements from the 2006 JSM

Data Expo, averaged across all locations, for each time point. Vertical grey bars

mark the change of years.

SQL> SELECT date, AVG(surftemp) avgstemp
FROM measure_table
GROUP BY date
ORDER BY date;

date avgstemp
---- --------
1 294.9855
2 295.4869
3 296.3156
4 297.1197
5 297.2447
6 296.9769
...

Overall, it appears that 1997 and 1998 were generally warmer years in Cen-
tral America. This result probably corresponds to the major El Niño event
of 1997–1998.

7.2.3 Collations

There can be ambiguity whenever we sort or compare text values. A simple
example of this issue is deciding whether an upper-case ‘A’ comes before a
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lower-case ‘a’. More complex issues arise when comparing text from different
languages.

The solution to this ambiguity is to explicitly specify a rule for comparing
or sorting text. For example, a case-insensitive rule says that ‘A’ and ‘a’
should be treated as the same character.

In most databases, this sort of rule is called a collation.

Unfortunately, the default collation that is used may differ between database
systems, as can the syntax for specifying a collation.

For example, with SQLite, the default is to treat text as case-sensitive, and
a case-insensitive ordering can be obtained by adding a COLLATE NOCASE
clause to a query.

In MySQL, it may be necessary to specify a collation clause, for example,
COLLATE latin1_bin, in order to get case-sensitive sorting and compar-
isons.

7.2.4 Querying several tables: Joins

As demonstrated in the previous section, database queries from a single table
are quite straightforward. However, most databases consist of more than one
table, and most interesting database queries involve extracting information
from more than one table. In database terminology, most queries involve
some sort of join between two or more tables.

In order to demonstrate the most basic kind of join, we will briefly look at
a new example data set.

7.2.5 Case study: Commonwealth swimming

The Commonwealth of Nations
(“The Commonwealth”) is a collec-
tion of 53 countries, most of which
are former British colonies.

New Zealand sent a team of 18 swimmers to the Melbourne 2006 Common-
wealth Games. Information about the swimmers, the events they competed
in, and the results of their races are shown in Figure 7.5.
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first last length stroke gender stage time place

------ ----- ------ ------------ ------ ----- ------ -----

Zoe Baker 50 Breaststroke female heat 31.7 4

Zoe Baker 50 Breaststroke female semi 31.84 5

Zoe Baker 50 Breaststroke female final 31.45 4

Lauren Boyle 200 Freestyle female heat 121.11 8

Lauren Boyle 200 Freestyle female semi 120.9 8

Lauren Boyle 100 Freestyle female heat 56.7 10

Lauren Boyle 100 Freestyle female semi 56.4 9

...

Figure 7.5: A subset of the data recorded for New Zealand swimmers at the

Melbourne 2006 Commonwealth Games, including the name and gender of each

swimmer and the distance, stroke, stage, and result for each event that they

competed in.

These data have been stored in a database with six tables.

The swimmer_table has one row for each swimmer and contains the first
and last name of each swimmer. Each swimmer also has a unique numeric
identifier.

swimmer_table ( ID [PK], first, last )

There are four tables that define the set of valid events: the distances are
50m, 100m, and 200m; the swim strokes are breaststroke (Br), freestyle (Fr),
butterfly (Bu), and backstroke (Ba); the genders are male (M) and female
(F); and the possible race stages are heats (heat), semifinals (semi), and
finals (final).

distance_table ( length [PK] )
stroke_table ( ID [PK], stroke )
gender_table ( ID [PK], gender )
stage_table ( stage [PK] )

The result_table contains information on the races swum by individual
swimmers. Each row specifies a swimmer and the type of race (distance,
stroke, gender, and stage). In addition, the swimmer’s time and position in
the race (place) are recorded.
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result_table ( swimmer [PK] [FK swimmer_table.ID],
distance [PK] [FK distance_table.length],
stroke [PK] [FK stroke_table.ID],
gender [PK] [FK gender_table.ID],
stage [PK] [FK stage_table.stage],
time, place )

The database design is illustrated in the diagram below.

result_table
  swimmer
  distance
  stroke
  gender
  stage
  time
  place

swimmer_table
ID
first
last

distance_table
length

stroke_table
ID
stroke

gender_table
ID
gender

stage_table
stage

As an example of the information stored in this database, the following code
shows that the swimmer with an ID of 1 is called Zoe Baker. This SQL
query, and the next, are not joins, they are just simple one-table queries to
show what sort of data is contained in the database.

SQL> SELECT * FROM swimmer_table
WHERE ID = 1;

ID first last
-- ----- -----
1 Zoe Baker

Notice the use of * in this query to denote that we want all columns from
the table in our result.

The following code shows that Zoe Baker swam in three races—a heat, a
semifinal and the final of the women’s 50m breaststroke—and she came 4th

in the final in a time of 31.45 seconds.
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SQL> SELECT * FROM result_table
WHERE swimmer = 1;

swimmer distance stroke gender stage time place
------- -------- ------ ------ ----- ----- -----
1 50 Br F final 31.45 4
1 50 Br F heat 31.7 4
1 50 Br F semi 31.84 5

7.2.6 Cross joins

The most basic type of database join, upon which all other types of join
are conceptually based, is a cross join. The result of a cross join is the
Cartesian product of the rows of one table with the rows of another table.
In other words, row 1 of table 1 is paired with each row of table 2, then row
2 of table 1 is paired with each row of table 2, and so on. If the first table
has n1 rows and the second table has n2 rows, the result of a cross join is a
table with n1 × n2 rows.

The simplest way to create a cross join is simply to perform an SQL query
on more than one table. As an example, we will perform a cross join on
the distance_table and stroke_table in the swimming database to gen-
erate all possible combinations of swimming stroke and event distance. The
distance_table has three rows.

SQL> SELECT *
FROM distance_table;

length
------
50
100
200

The stroke_table has four rows.

SQL> SELECT *
FROM stroke_table;

ID stroke
-- ------------
Br Breaststroke
Fr Freestyle
Bu Butterfly
Ba Backstroke
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A cross join between these tables has 12 rows, including all possible combi-
nations of the rows of the two tables.

SQL> SELECT length, stroke
FROM distance_table, stroke_table;

length stroke
------ ------------
50 Breaststroke
50 Freestyle
50 Butterfly
50 Backstroke
100 Breaststroke
100 Freestyle
100 Butterfly
100 Backstroke
200 Breaststroke
200 Freestyle
200 Butterfly
200 Backstroke

A cross join can also be obtained more explicitly using the CROSS JOIN
syntax as shown below (the result is exactly the same as for the code above).

SELECT length, stroke
FROM distance_table CROSS JOIN stroke_table;

We will come back to this data set later in the chapter.

7.2.7 Inner joins

An inner join is the most common way of combining two tables. In this
sort of join, only “matching” rows are extracted from two tables. Typically,
a foreign key in one table is matched to the primary key in another table.

This is the natural way to combine information from two separate tables.

Conceptually, an inner join is a cross join, but with only the desired rows
retained.

In order to demonstrate inner joins, we will return to the Data Expo database
(see Section 7.1).
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7.2.8 Case study: The Data Expo (continued)

In a previous example (page 163), we saw that the surface temperatures
from the Data Expo data set for location 1 were consistently higher than
the surface temperatures for location 2. Why is this?

One obvious possibility is that location 1 is closer to the equator than lo-
cation 2. To test this hypothesis, we will repeat the earlier query but add
information about the latitude and longitude of the two locations.

To do this we need information from two tables. The surface tempera-
tures come from the measure_table and the longitude/latitude information
comes from the location_table.

The following code performs an inner join between these two tables, com-
bining rows from the measure_table with rows from the location_table
that have the same location ID.

SQL> SELECT longitude, latitude, location, date, surftemp
FROM measure_table mt, location_table lt
WHERE location = ID AND

(location = 1 OR
location = 2)

ORDER BY date;

longitude latitude location date surftemp
--------- -------- -------- ---- --------
-113.75 36.25 1 1 272.7
-111.25 36.25 2 1 270.9
-113.75 36.25 1 2 282.2
-111.25 36.25 2 2 278.9
-113.75 36.25 1 3 282.2
-111.25 36.25 2 3 281.6
...

The result shows that the longitude for location 2 is less negative (less
westward) than the longitude for location 1, so the difference between the
locations is that location 2 is to the east of location 1 (further inland in the
US southwest).

The most important feature of this code is the fact that it obtains informa-
tion from two tables.

FROM measure_table mt, location_table lt
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Another important feature of this code is that it makes use of table aliases.
The components of this part of the code are shown below.

keyword: FROM measure_table mt, location_table lt
table name: FROM measure_table mt, location_table lt
table alias: FROM measure_table mt, location_table lt

table name: FROM measure_table mt, location_table lt
table alias: FROM measure_table mt, location_table lt

We have specified that we want information from the measure_table and
we have specified that we want to use the alias mt to refer to this table
within the code of this query. Similarly, we have specified that the alias lt
can be used instead of the full name location_table within the code of
this query. This makes it easier to type the code and can also make it easier
to read the code.

A third important feature of this code is that, unlike the cross join from the
previous section, in this join we have specified that the rows from one table
must match up with rows from the other table. In most inner joins, this
means specifying that a foreign key from one table matches the primary key
in the other table, which is precisely what has been done in this case; the
location column from the measure_table is a foreign key that references
the ID column from the location_table.

WHERE location = ID

The result is that we get the longitude and latitude information combined
with the surface temperature information for the same location.

The WHERE clause in this query also demonstrates the combination of three
separate conditions: there is a condition matching the foreign key of the
measure_table to the primary key of the location_table, plus there are
two conditions that limit our attention to just two values of the location
column. The use of parentheses is important to control the order in which
the conditions are combined.

Another way to specify the join in the previous query uses a different syntax
that places all of the information about the join in the FROM clause of the
query. The following code produces exactly the same result as before but
uses the key words INNER JOIN between the tables that are being joined
and follows that with a specification of the columns to match ON. Notice
how the WHERE clause is much simpler in this case.
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SELECT longitude, latitude, location, date, surftemp
FROM measure_table mt

INNER JOIN location_table lt
ON mt.location = lt.ID

WHERE location = 1 OR
location = 2

ORDER BY date;

This idea of joining tables extends to more than two tables. In order to
demonstrate this, we will now consider a major summary of temperature
values: what is the average temperature per year, across all locations on
land (above sea level)?

In order to answer this question, we need to know the temperatures from
the measure_table, the elevation from the location_table, and the years
from the date_table. In other words, we need to combine all three tables.

This situation is one reason for using the INNER JOIN syntax shown above,
because it naturally extends to joining more than two tables and results in
a clearer and tidier query. The following code performs the desired query
(see Figure 7.6).

SQL> SELECT year, AVG(surftemp) avgstemp
FROM measure_table mt

INNER JOIN location_table lt
ON mt.location = lt.ID

INNER JOIN date_table dt
ON mt.date = dt.ID

WHERE elevation > 0
GROUP BY year;

year avgstemp
---- --------
1995 295.3807
1996 295.0065
1997 295.3839
1998 296.4164
1999 295.2584
2000 295.3150

The result in Figure 7.6 shows only 1998 as warmer than other years, which
suggests that the higher temperatures for 1997 that we saw in Figure 7.4
were due to higher temperatures over water.



i
i

“itdt” — 2012/7/30 — 8:05 — page 174 — #200 i
i

i
i

i
i

174 Introduction to Data Technologies
a

vg
st

em
p

295.0

295.5

296.0

1995 1996 1997 1998 1999 2000

●

●

●

●

●
●

Figure 7.6: A plot of the surface temperature measurements from the 2006 JSM

Data Expo, averaged across all locations with an elevation greater than zero and

averaged across months, for each year.

There is another important new feature of SQL syntax in the code for this
query, which occurs within the part of the code that specifies which columns
the inner join should match ON. This part of the code is reproduced below.

ON mt.location = lt.ID

This code demonstrates that, within an SQL query, a column may be spec-
ified using a combination of the table name and the column name, rather
than just using the column name. In this case, we have defined an alias
for each table, so we can use the table alias rather than the complete table
name. The components of this part of the code are shown below.

table name (alias): ON mt.location = lt.ID
column name: ON mt.location = lt.ID

table name (alias): ON mt.location = lt.ID
column name: ON mt.location = lt.ID

This syntax is important when joining several tables because the same col-
umn name can be used in two different tables. This is the case in the above
example; both the location_table and the date_table have a column
called ID. This syntax allows us to specify exactly which ID column we
mean.
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7.2.9 Subqueries

It is possible to use an SQL query within another SQL query, in which case
the nested query is called a subquery.

As a simple example, consider the problem of extracting the date at which
the lowest surface temperature occurred. It is simple enough to determine
the minimum surface temperature.

SQL> SELECT MIN(surftemp) min FROM measure_table;

min
-----
266.0

In order to determine the date, we need to find the row of the measurement
table that matches this minimum value. We can do this using a subquery
as shown below.

SQL> SELECT date, surftemp stemp
FROM measure_table
WHERE surftemp = ( SELECT MIN(surftemp)

FROM measure_table );

date stemp
---- -----
36 266.0

The query that calculates the minimum surface temperature is inserted
within parentheses as a subquery within the WHERE clause. The outer query
returns only the rows of the measure_table where the surface temperature
is equal to the minimum.

This subquery can be part of a more complex query. For example, the
following code also performs a join so that we can see the real date on
which this minimum temperature occurred.
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SQL> SELECT year, month, surftemp stemp
FROM measure_table mt

INNER JOIN date_table dt
ON mt.date = dt.ID

WHERE surftemp = ( SELECT MIN(surftemp)
FROM measure_table );

year month stemp
---- -------- -----
1997 December 266.0

7.2.10 Outer joins

Another type of table join is the outer join, which differs from an inner
join by including additional rows in the result.

In order to demonstrate this sort of join, we will return to the Common-
wealth swimming example.

7.2.11 Case study: Commonwealth swimming (contin-
ued)

The results of New Zealand’s swimmers at the 2006 Commonwealth Games
in Melbourne are stored in a database consisting of six tables: a table of
information about each swimmer; separate tables for the distance of a swim
event, the type of swim stroke, the gender of the swimmers in an event, and
the stage of the event (heat, semifinal, or final); plus a table of results for
each swimmer in different events.

In Section 7.2.6 we saw how to generate all possible combinations of dis-
tance and stroke in the swimming database using a cross join between the
distance_table and the stroke_table. There are three possible distances
and four different strokes, so the cross join produced 12 different combina-
tions.

We will now take that cross join and combine it with the table of race results
using an inner join.

Our goal is to summarize the result of all races for a particular combination
of distance and stroke by calculating the average time from such races. The
following code performs this inner join, with the results ordered from fastest
event on average to slowest event on average.
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The cross join produces all possible combinations of distance and stroke and
the result table is then joined to that, making sure that the results match
up with the correct distance and stroke.

SQL> SELECT dt.length length,
st.stroke stroke,
AVG(time) avg

FROM distance_table dt
CROSS JOIN stroke_table st
INNER JOIN result_table rt

ON dt.length = rt.distance AND
st.ID = rt.stroke

GROUP BY dt.length, st.stroke
ORDER BY avg;

length stroke avg
------ ------------ -----
50 Freestyle 26.16
50 Butterfly 26.40
50 Backstroke 28.04
50 Breaststroke 31.29
100 Butterfly 56.65
100 Freestyle 57.10
100 Backstroke 60.55
100 Breaststroke 66.07
200 Freestyle 118.6
200 Butterfly 119.0
200 Backstroke 129.7

The result suggests that freestyle and butterfly events tend to be faster on
average than breaststroke and backstroke events.

However, the feature of the result that we need to focus on for the current
purpose is that this result has only 11 rows.

What has happened to the remaining combination of distance and stroke?
The answer is that, for inner joins, a row is not included in the result if
either of the two columns being matched in the ON clause has the value
NULL.

In this case, one row from the cross join, which produced all possible com-
binations of distance and stroke, has been dropped from the result because
this combination does not appear in the result_table; no New Zealand
swimmer competed in the 200m breaststroke.
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This feature of inner joins is not always desirable and can produce misleading
results, which is why an outer join is sometimes necessary. The idea of an
outer join is to retain in the final result rows where one or another of the
columns being matched has a NULL value.

The following code repeats the previous query, but instead of using INNER
JOIN, it uses LEFT JOIN to perform a left outer join so that all dis-
tance/stroke combinations are reported, even though there is no average
time information available for one of the combinations. The result now in-
cludes all possible combinations of distance and stroke, with a NULL value
where there is no matching avg value from the result_table.

SQL> SELECT dt.length length,
st.stroke stroke,
AVG(time) avg

FROM distance_table dt
CROSS JOIN stroke_table st
LEFT JOIN result_table rt

ON dt.length = rt.distance AND
st.ID = rt.stroke

GROUP BY dt.length, st.stroke
ORDER BY avg;

length stroke avg
------ ------------ -----
200 Breaststroke NULL
50 Freestyle 26.16
50 Butterfly 26.40
50 Backstroke 28.04
50 Breaststroke 31.29
100 Butterfly 56.65
100 Freestyle 57.10
100 Backstroke 60.55
100 Breaststroke 66.07
200 Freestyle 118.6
200 Butterfly 119.0
200 Backstroke 129.7

The use of LEFT JOIN in this example is significant because it means that
all rows from the original cross join are retained even if there is no matching
row in the result_table.
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It is also possible to use RIGHT JOIN to perform a right outer join instead.
In that case, all rows of the result_table (the table on the right of the
join) would have been retained.

In this case, the result of a right outer join would be the same as using INNER
JOIN because all rows of the result_table have a match in the cross join.
This is not surprising because it is equivalent to saying that all swimming
results came from events that are a subset of all possible combinations of
event stroke and event distance.

It is also possible to use FULL JOIN to perform a full outer join, in which
case all rows from tables on both sides of the join are retained in the final
result.

7.2.12 Self joins

It is useful to remember that database joins always begin, at least con-
ceptually, with a Cartesian product of the rows of the tables being joined.
The different sorts of database joins are all just different subsets of a cross
join. This makes it possible to answer questions that, at first sight, may not
appear to be database queries.

For example, it is possible to join a table with itself in what is called a
self join, which produces all possible combinations of the rows of a table.
This sort of join can be used to answer questions that require comparing a
column within a table to itself or to other columns within the same table.
The following case study provides an example.

7.2.13 Case study: The Data Expo (continued)

Consider the following question: did the temperature at location 1 for Jan-
uary 1995 (date 1) occur at any other locations and times?

This question requires a comparison of one row of the temperature column
in the measure_table with the other rows in that column. The code below
performs the query using a self join.
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SQL> SELECT mt1.temperature temp1, mt2.temperature temp2,
mt2.location loc, mt2.date date

FROM measure_table mt1, measure_table mt2
WHERE mt1.temperature = mt2.temperature AND

mt1.date = 1 AND
mt1.location = 1;

temp1 temp2 loc date
----- ----- --- ----
272.1 272.1 1 1
272.1 272.1 498 13

To show the dates as real dates and locations as longitudes and latitudes,
we can join the result to the date_table as well.

SQL> SELECT mt1.temperature temp1, mt2.temperature temp2,
lt.longitude long, lt.latitude lat, dt.date date

FROM measure_table mt1, measure_table mt2
INNER JOIN date_table dt

ON mt2.date = dt.ID
INNER JOIN location_table lt

ON mt2.location = lt.ID
WHERE mt1.temperature = mt2.temperature AND

mt1.date = 1 AND
mt1.location = 1;

temp1 temp2 long lat date
----- ----- ------- ------ ----------
272.1 272.1 -113.75 36.25 1995-01-16
272.1 272.1 -71.25 -13.75 1996-01-16

The temperature occurred again for January 1996 in a location far to the
east and south of location 1.

7.2.14 Running SQL code

One major advantage of SQL is that it is implemented by every major
DBMS. This means that we can learn a single language and then use it to
work with any database.

Not all DBMS software supports all of the SQL standard and most DBMS
software has special features that go beyond the SQL standard. However,
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the basic SQL queries that are described in this chapter should work in any
major DBMS.

Another major difference between DBMS software is the user interface. In
particular, the commercial systems tend to have complete GUIs while the
open-source systems tend to default to a command-line interface. How-
ever, even a DBMS with a very sophisticated GUI will have a menu option
somewhere that will allow SQL code to be run.

The simplest DBMS for experimenting with SQL is the SQLite system1

because it is very straightforward to install. This section provides a very
brief example SQLite session.

SQLite is run from a command window or shell by typing the name of
the program plus the name of the database that we want to work with.
For example, at the time of writing, the latest version of SQLite was named
sqlite3. We would type the following to work with the dataexpo database.

sqlite3 dataexpo

SQLite then presents a prompt, usually sqlite>. We type SQL code after
the prompt and the result of our code is printed out to the screen. For
example, a simple SQL query with the dataexpo database is shown below,
with the result shown below the code.

sqlite> SELECT * FROM date_table WHERE ID = 1;

1|1995-01-16|January|1995

There are a number of special SQLite commands that control how the
SQLite program works. For example, the .mode, .header, and .width
commands control how SQLite formats the results of queries. The following
example shows the use of these special commands to make the result include
column names and to use fixed-width columns for displaying results.

sqlite> .header ON
sqlite> .mode column
sqlite> .width 2 10 7 4
sqlite> SELECT * FROM date_table WHERE ID = 1;

ID date month year
-- ---------- ------- ----
1 1995-01-16 January 1995

1http://www.sqlite.org/

http://www.sqlite.org/
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The full set of these special SQLite commands can be viewed by typing
.help.

To exit the SQLite command line, type .exit.

Recap

The SQL SELECT command is used to query (extract information from)
a relational database.

An SQL query can limit which columns and which rows are returned
from a database table.

Information can be combined from two or more database tables using
some form of database join: a cross join, an inner join, an outer join,
or a self join.

7.3 Querying XML

The direct counterpart to SQL that is designed for querying XML docu-
ments is a language called XQuery. However, a full discussion of XQuery
is beyond the scope of this book. Instead, this section will only focus on
XPath, a language that underpins XQuery, as well as a number of other
XML-related technologies.

The XPath language provides a way to specify a particular subset of an XML
document. XPath makes it easy to identify a coherent set of data values
that are distributed across multiple elements within an XML document.

7.3.1 XPath syntax

An XPath expression specifies a subset of elements and attributes from
within an XML document. We will look at the basic structure of XPath
expressions via an example.

7.3.2 Case study: Point Nemo (continued)

Figure 7.7 shows the temperature data at Point Nemo in an XML format
(this is a reproduction of Figure 5.13 for convenience).
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<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

Figure 7.7: The first few lines of the surface temperature at Point Nemo in an

XML format. This is a reproduction of Figure 5.16.

This XML document demonstrates the idea that values from a single vari-
able in a data set may be scattered across separate XML elements. For
example, the temperature values are represented as attributes of case ele-
ments; they are not assembled together within a single column or a single
block of memory within the file.

We will use some XPath expressions to extract useful subsets of the data
set from this XML document.

The most basic XPath expressions consist of element names separated by
forwardslashes. The following XPath selects the temperatures element
from the XML document. In each of the XPath examples in this section,
the elements or attributes that are selected by the XPath expression will be
shown below the XPath code. If there are too many elements or attributes,
then, to save space, only the first few will be shown, followed by ... to
indicate that some of the results were left out.
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/temperatures

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

...

More specifically, because the expression begins with a forwardslash, it se-
lects the root element called temperatures. If we want to select elements
below the root element, we need to specify a complete path to those ele-
ments, or start the expression with a double-forwardslash.

Both of the following two expressions select all case elements from the XML
document. In the first example, we specify case elements that are directly
nested within the (root) temperatures element:

/temperatures/case

<case date="16-JAN-1994" temperature="278.9"/>
<case date="16-FEB-1994" temperature="280"/>
<case date="16-MAR-1994" temperature="278.9"/>
...

The second approach selects case elements no matter where they are within
the XML document.

//case

<case date="16-JAN-1994" temperature="278.9"/>
<case date="16-FEB-1994" temperature="280"/>
<case date="16-MAR-1994" temperature="278.9"/>
...

An XPath expression may also be used to subset attributes rather than
entire elements. Attributes are selected by specifying the appropriate name,
preceded by an @ character. The following example selects the temperature
attribute from the case elements.
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/temperatures/case/@temperature

278.9
280
278.9
...

Several separate paths may also be specified, separated by a vertical bar.
This next XPath selects both longitude and latitude elements from any-
where within the XML document.

//longitude | //latitude

<longitude>123.8W(-123.8)</longitude>
<latitude>48.8S</latitude>

It is also possible to specify predicates, which are conditions that must be
met for an element to be selected. These are placed within square brack-
ets. In the following example, only case elements where the temperature
attribute has the value 280 are selected.

/temperatures/case[@temperature=280]

<case date="16-FEB-1994" temperature="280"/>
<case date="16-MAR-1995" temperature="280"/>
<case date="16-MAR-1997" temperature="280"/>

We will demonstrate more examples of the use of XPath expressions later
in Section 9.7.7, which will include an example of software that can be used
to run XPath code.

7.4 Further reading

The w3schools XPath Tutorial
http://www.w3schools.com/xpath/
Quick, basic tutorial-based introduction to XPath.

http://www.w3schools.com/xpath/
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Summary

When data has been stored using a more sophisticated data storage format, a
more sophisticated tool is required to access the data.

SQL is a language for accessing data that has been stored in a relational
database.

XPath is a language for specifying a subset of data values in an XML document.
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SQL Reference

The Structured Query Language (SQL) is a language for working with in-
formation that has been stored in a database.

SQL has three parts: the Data Manipulation Language (DML) concerns
adding information to a database, modifying the information, and extract-
ing information from a database; the Data Definition Language (DDL) is
concerned with the structure of a database (creating tables); and the Data
Control Language (DCL) is concerned with administration of a database
(deciding who gets what sort of access to which parts of the database).

This chapter is mostly focused on the SELECT command, which is the part
of the DML that is used to extract information from a database, but other
useful SQL commands are also mentioned briefly in Section 8.3.

8.1 SQL syntax

This section is only concerned with the syntax of the SQL SELECT command,
which is used to perform a database query.

Within this chapter, any code written in a sans-serif oblique font represents a
general template; that part of the code will vary depending on the database
in use and the names of the tables as well as the names of the columns
within those tables.

8.2 SQL queries

The basic format of an SQL query is this:

SELECT columns
FROM tables
WHERE row condition
ORDER BY order by columns

187
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The SQL keywords, SELECT, FROM, WHERE, and ORDER BY, are traditionally
written in uppercase, though this is not necessary.

The names of tables and columns depend on the database being queried,
but they should always start with a letter and only contain letters, digits,
and the underscore character, ‘ ’.

This will select the named columns from the specified tables and return all
rows matching the row condition.

The order of the rows in the result is based on the columns named in the
order by columns clause.

8.2.1 Selecting columns

The special character * selects all columns; otherwise, only those columns
named are included in the result. If more than one column name is given,
the column names must be separated by commas.

SELECT *
...

SELECT colname
...

SELECT colname1, colname2
...

The column name may be followed by a column alias, which can then be
used anywhere within the query in place of the original column name (e.g.,
in the WHERE clause).

SELECT colname colalias
...

If more than one table is included in the query, and the tables share a column
with the same name, a column name must be preceded by the relevant table
name, with a full stop in between.

SELECT tablename.colname
...

Functions and operators may be used to produce results that are calculated
from the column. The set of functions that is provided varies widely between
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DBMS, but the normal mathematical operators for addition, subtraction,
multiplication, and division, plus a set of basic aggregation functions for
maximum value (MAX), minimum value (MIN), summation (SUM), and arith-
metic mean (AVG), should always be available.

SELECT MAX(colname)
...

SELECT colname1 + colname2
...

A column name can also be a constant value (number or text), in which
case the value is replicated for every row of the result.

8.2.2 Specifying tables: The FROM clause

The FROM clause must contain at least one table and all columns that are
referred to in the query must exist in at least one of the tables in the FROM
clause.

If a single table is specified, then the result is all rows of that table, subject
to any filtering applied by a WHERE clause.

SELECT colname
FROM tablename
...

A table name may be followed by a table alias, which can be used in place
of the original table name anywhere else in the query.

SELECT talias.colname
FROM tablename talias
...

If two tables are specified, separated only by a comma, the result is all
possible combinations of the rows of the two tables (a Cartesian product).
This is known as a cross join.

SELECT ...
FROM table1, table2
...

An inner join is created from a cross join by specifying a condition so that
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only rows that have matching values are returned (typically using a foreign
key to match with a primary key). The condition may be specified within
the WHERE clause (see Section 8.2.3), or as part of an INNER JOIN syntax as
shown below.

SELECT ...
FROM table1 INNER JOIN table2

ON table1.primarykey = table2.foreignkey
...

An outer join extends the inner join by including in the result rows from
one table that have no match in the other table. There are left outer joins
(where rows are retained from the table named on the left of the join syntax),
right outer joins, and full outer joins (where non-matching rows from both
tables are retained).

SELECT ...
FROM table1 LEFT OUTER JOIN table2

ON table1.primarykey = table2.foreignkey
...

A self join is a join of a table with itself. This requires the use of table
aliases.

SELECT ...
FROM tablename alias1, tablename alias2
...

8.2.3 Selecting rows: The WHERE clause

By default, all rows from a table, or from a combination of tables, are
returned. However, if the WHERE clause is used to specify a condition, then
only rows matching that condition will be returned.

Conditions may involve any column from any table that is included in the
query. Conditions usually involve a comparison between a column and a
constant value, or a comparison between two columns.

A constant text value should be enclosed in single-quotes.

Valid comparison operators include: equality (=), greater-than or less-than
(>, <), greater-than or equal-to or less-than or equal-to (>=, <=), and in-
equality (!= or <>).
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SELECT ...
FROM ...
WHERE colname = 0;

SELECT ...
FROM ...
WHERE column1 > column2;

Complex conditions can be constructed by combining simple conditions with
logical operators: AND, OR, and NOT. Parentheses should be used to make the
order of evaluation explicit.

SELECT ...
FROM ...
WHERE column1 = 0 AND

column2 != 0;

SELECT ...
FROM ...
WHERE NOT (stroke = 'Br' AND

(distance = 50 OR
distance = 100));

For the case where a column can match several possible values, the special
IN keyword can be used to specify a range of valid values.

SELECT ...
FROM ...
WHERE column1 IN (value1, value2);

Comparison with text constants can be generalized to allow patterns using
the special LIKE comparison operator. In this case, within the text constant,
the underscore character, _, has a special meaning; it will match any single
character. The percent character, %, is also special and it will match any
number of characters of any sort.

SELECT ...
FROM ...
WHERE stroke LIKE '%stroke';
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8.2.4 Sorting results: The ORDER BY clause

The order of the columns in the results of a query is based on the order of
the column names in the query.

The order of the rows in a result is undetermined unless an ORDER BY clause
is included in the query.

The ORDER BY clause consists of one or more column names. The rows are
ordered according to the values in the named columns. The keyword ASC is
used to indicate ascending order and DESC is used for descending order.

SELECT ...
FROM ...
ORDER BY columnname ASC;

The results can be ordered by the values in several columns simply by spec-
ifying several column names, separated by commas. The results are ordered
by the values in the first column, but if several rows in the first column have
the same value, those rows are ordered by the values in the second column.

SELECT ...
FROM ...
ORDER BY column1 ASC, column2 DESC;

8.2.5 Aggregating results: The GROUP BY clause

The aggregation functions MAX, MIN, SUM, and AVG (see Section 8.2.1) all
return a single value from a column. If a GROUP BY clause is included in the
query, aggregated values are reported for each unique value of the column
specified in the GROUP BY clause.

SELECT column1, SUM(column2)
FROM ...
GROUP BY column1;

Results can be reported for combinations of unique values of several columns
simply by naming several columns in the GROUP BY clause.

SELECT column1, column2, SUM(column3)
FROM ...
GROUP BY column1, column2;
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The GROUP BY clause can include a HAVING sub-clause that works like the
WHERE clause but operates on the rows of aggregated results rather than the
original rows.

SELECT column1, SUM(column2) colalias
FROM ...
GROUP BY column1

HAVING colalias > 0;

8.2.6 Subqueries

The result of an SQL query may be used as part of a larger query. The
subquery is placed within parentheses but otherwise follows the same syntax
as a normal query.

Subqueries can be used in place of table names within the FROM clause and
to provide comparison values within a WHERE clause.

SELECT column1
FROM table1
WHERE column1 IN

( SELECT column2
FROM table2

... );
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8.3 Other SQL commands

This section deals with SQL commands that perform other common useful
actions on a database.

We start with entering the data into a database.

Creating a table proceeds in two steps: first we must define the schema or
structure of the table and then we can load rows of values into the table.

8.3.1 Defining tables

A table schema is defined using the CREATE command.

CREATE TABLE tablename
(col1name col1type,
col2name col2type)

column constraints;

This command specifies the name of the table, the name of each column,
and the data type to be stored in each column. A common variation is to
add NOT NULL after the column data type to indicate that the value of the
column can never be NULL. This must usually be specified for primary key
columns.

The set of possible data types available depends on the DBMS being used,
but some standard options are shown in Table 8.1.

The column constraints are used to specify primary and foreign keys for the
table.

CREATE TABLE table1
(col1name col1type NOT NULL,
col2name col2type)
CONSTRAINT constraint1

PRIMARY KEY (col1name)
CONSTRAINT constraint2

FOREIGN KEY (col2name)
REFERENCES table2 (table2col);

The primary key constraint specifies which column or columns make up the
primary key for the table. The foreign key constraint specifies which column
or columns in this table act as a foreign key and the constraint specifies the
table and the column in that table that the foreign key refers to.
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Table 8.1: Some common SQL data types.

Type Description
CHAR(n) Fixed-length text (n characters)
VARCHAR(n) Variable-length text (maximum n characters)
INTEGER Whole number
REAL Real number
DATE Calendar date

As concrete examples, the code in Figure 8.1 shows the SQL code that
was used to create the database tables date_table, location_table, and
measure_table for the Data Expo case study in Section 7.1.

The primary key of the date_table is the ID column and the primary key of
the location_table is its ID column. The (composite) primary key of the
measure_table is a combination of the location and date columns. The
measure_table also has two foreign keys: the date column acts as a foreign
key, referring to the ID column of the date_table, and the location column
also acts as a foreign key, referring to the ID column of the location_table.

8.3.2 Populating tables

Having generated the table schema, values are entered into the table using
the INSERT command.

INSERT INTO table VALUES
(value1, value2);

There should be as many values as there are columns in the table, with
values separated from each other by commas. Text values should be enclosed
within single-quotes.

Most DBMS software also provides a way to read data values into a table
from an external (text) file. For example, in SQLite, the special .import
command can be used to read values from an external text file.
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CREATE TABLE date_table
(ID INTEGER NOT NULL,
date DATE,
month CHAR(9),
year INTEGER,
CONSTRAINT date_table_pk PRIMARY KEY (ID));

CREATE TABLE location_table
(ID INTEGER NOT NULL,
longitude REAL,
latitude REAL,
elevation REAL,
CONSTRAINT location_table_pk PRIMARY KEY (ID));

CREATE TABLE measure_table
(location INTEGER NOT NULL,
date INTEGER NOT NULL,
cloudhigh REAL,
cloudmid REAL,
cloudlow REAL,
ozone REAL,
pressure REAL,
surftemp REAL,
temperature REAL,
CONSTRAINT measure_table_pk

PRIMARY KEY (location, date),
CONSTRAINT measure_date_table_fk

FOREIGN KEY (date)
REFERENCES date_table(ID),

CONSTRAINT measure_location_table_fk
FOREIGN KEY (location)
REFERENCES location_table(ID));

Figure 8.1: The SQL code used to define the table schema for storing the Data

Expo data set in a relational database (see Section 7.1).
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8.3.3 Modifying data

Values in a database table may be modified using the UPDATE command.

UPDATE table
SET column = value
WHERE row condition

The rows of the specified column, within the specified table, that satisfy the
row condition, will be changed to the new value.

8.3.4 Deleting data

The DELETE command can be used to remove specific rows from a table.

DELETE FROM table
WHERE row condition;

The DROP command can be used to completely remove not only the contents
of a table but also the entire table schema so that the table no longer exists
within the database.

DROP TABLE table;

In some DBMS, it is even possible to “drop” an entire database (and all of
its tables).

DROP DATABASE database;

These commands should obviously be used with extreme caution.

8.4 Further reading

SQL: The Complete Reference
by James R. Groff and Paul N. Weinberg
2nd Edition (2002) McGraw-Hill.
Like the title says, a complete reference to SQL.

Using SQL
by Rafe Colburn
Special Edition (1999) Que.
Still a thorough treatment, but an easier read.
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Data Processing

In previous chapters, we have encountered some useful tools for specific
computing tasks. For example, in Chapter 7 we learned about SQL for
extracting data from a relational database.

Given a data set that has been stored in a relational database, we could now
write a piece of SQL code to extract data from that data set. But what if
we want to extract data from the database at a specific time of day? What
if we want to repeat that task every day for a year? SQL has no concept
of when to execute a task.

In Chapter 5, we learned about the benefits of the XML language for storing
data, but we also learned that it is a very verbose format. We could conceive
of designing the structure of an XML document, but would we really be
prepared to write large amounts of XML by hand? What we want to be
able to do is to get the computer to write the file of XML code for us.

In order to perform these sorts of tasks, we need a programming lan-
guage. With a programming language, we will be able to tell the computer
to perform a task at a certain time, or to repeat a task a certain number of
times. We will be able to create files of information and we will be able to
perform calculations with data values.

The purpose of this chapter is to explore and enumerate some of the tasks
that a programming language will allow us to perform. As with previous
topics, it is important to be aware of what tasks are actually possible as
well as look at the technical details of how to carry out each task.

As we might expect, a programming language will let us do a lot more than
the specific languages like HTML, XML, and SQL can do, but this will
come at a cost because we will need to learn a few more complex concepts.
However, the potential benefit is limitless. This is the chapter where we
truly realize the promise of taking control of our computing environment.

The other important purpose of this chapter is to introduce a specific pro-
gramming language, so that we can perform tasks in practice.

There are many programming languages to choose from, but in this chapter
we will use the R language because it is relatively simple to learn and because
it is particularly well suited to working with data.

199
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CPU

RAM

Keyboard

Mass

Storage

Screen

Network

Figure 9.1: A diagram illustrating the basic components of a standard computing

environment.

Computer hardware

So, what can we do with a programming language?

To answer that question, it will again be useful to compare and contrast
a programming language with the more specific languages that we have
already met and what we can do with those.

SQL lets us talk to database systems; we can ask database software to
extract specific data from database tables. With HTML, we can talk to
web browsers; we can instruct the browser software to draw certain content
on a web page. Working with XML is a bit more promiscuous because we
are essentially speaking to any software system that might be interested in
our data. However, we are limited to only being able to say “here are the
data”.

A programming language is more general and more powerful than any of
these, and the main reason for this is because a programming language
allows us to talk not just to other software systems, but also to the computer
hardware.

In order to understand the significance of this, we need to have a very basic
understanding of the fundamental components of computer hardware and
what we can do with them. Figure 9.1 shows a simple diagram of the basic
components in a standard computing environment, and each component is
briefly described below.
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CPU

The Central Processing Unit (CPU) is the part of the hardware that
can perform calculations or process our data. It is only capable of a
small set of operations—basic arithmetic, plus the ability to compare
values, and the ability to shift values between locations in computer
memory—but it performs these tasks exceptionally quickly. Complex
tasks are performed by combining many, many simple operations in
the CPU.

The CPU also has access to a clock for determining times.

Being able to talk to the CPU means that we can perform arbitrarily
complex calculations. This starts with simple things like determin-
ing minima, maxima, and averages for numeric values, but includes
sophisticated data analysis techniques, and there really is no upper
bound.

RAM

Computer memory, the hardware where data values are stored, comes
in many different forms. Random Access Memory (RAM) is the term
usually used to describe the memory that sits closest to the CPU.
This memory is temporary—data values in RAM only last while the
computer is running (they disappear when the computer is turned
off)—and it is fast—values can be transferred to the CPU for pro-
cessing and the result can be transferred back to RAM very rapidly.
RAM is also usually relatively small.

Loosely speaking, RAM corresponds to the popular notion of short-
term memory.

All processing of data typically involves, at a minimum, both RAM
and the CPU. Data values are stored temporarily in RAM, shifted
to the CPU to perform arithmetic or comparisons or something more
complex, and the result is then stored back in RAM. A fundamental
feature of a programming language is the ability to store values in
RAM and specify the calculations that should be carried out by the
CPU.

Being able to store data in RAM means that we can accomplish a
complex task by performing a series of simpler steps. After each step,
we record the intermediate result in memory so that we can use that
result in subsequent steps.
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Keyboard

The keyboard is one example of input hardware.

Most computers also have a mouse or touchpad. These are also ex-
amples of input hardware, but for the purposes of this book we are
mostly interested in being able to enter code and data via a keyboard.

We will not be writing code to control the keyboard; this hardware
component is more relevant to us as the primary way in which we will
communicate our instructions and data to the computer.

Mass

Storage

Most computers typically have a very large repository of computer
memory, such as a hard drive. This will be much larger and much
slower than RAM but has the significant advantage that data values
will persist when the power goes off. Mass storage is where we save
all of our files and documents.

A related set of hardware components includes external storage de-
vices, such as CD and DVD drives and thumb drives (memory sticks),
which allow the data to be physically transported away from the ma-
chine.

Where RAM corresponds to short-term memory, mass storage corre-
sponds to long-term memory.

It is essential to be able to access mass storage because that is where
the original data values will normally reside. With access to mass stor-
age, we can also permanently store the results of our data processing
as well as our computer code.

Screen

The computer screen is one example of output hardware. The screen
is important as the place where text and images are displayed to show
the results of our calculations.

Being able to control what is displayed on screen is important for
viewing the results of our calculations and possibly for sharing those
results with others.

Network

Most modern computers are connected to a network of some kind,
which consists of other computers, printers, etc, and in many cases
the general internet.

As with mass storage, the importance of having access to the network
is that this may be where the original data values reside.
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A programming language will allow us to work with these hardware com-
ponents to perform all manner of useful tasks, such as reading files or doc-
uments from a hard disk into RAM, calculating new values, and displaying
those new values on the computer screen.

How this chapter is organized

This chapter begins with a task that we might naturally think to perform by
hand, but which can be carried out much more efficiently and accurately if
instead we write code in a programming language to perform the task. The
aims of this section are to show how useful a little programming knowledge
can be and to demonstrate how an overall task can be broken down into
smaller tasks that we can perform by writing code.

Sections 9.2 and 9.3 provide an initial introduction to the R programming
language for performing these sorts of tasks. These sections will allow us to
write and run some very basic R code.

Section 9.4 introduces the important idea of data structures—how data
values are stored in RAM. In this section, we will learn how to enter data
values by hand and how those values can be organized. All data processing
tasks require data values to be loaded into RAM before we can perform
calculations on the data values. Different processing tasks will require the
data values to be organized and stored in different ways, so it is important
to understand what options exist for storing data in RAM and how to work
with each of the available options.

Some additional details about data structures are provided in Section 9.6,
but before that, Section 9.5 provides a look at one of the most basic data
processing tasks, which is extracting a subset from a large set of values.
Being able to break a large data set into smaller pieces is one of the fun-
damental small steps that we can perform with a programming language.
Solutions to more complex tasks are based on combinations of these small
steps.

Section 9.7 addresses how to get data from external files into RAM so that
we can process them. Most data sets are stored permanently in some form of
mass storage, so it is crucial to know how to load data from various storage
formats into RAM using R.

Section 9.8 describes a number of data processing tasks. Much of the chap-
ter up to this point is laying the foundation. This section starts to provide
information for performing powerful calculations with data values. Again,
the individual techniques that we learn in these sections provide the foun-
dation for completing more complex tasks. Section 9.8.12 provides a larger
case study that demonstrates how the smaller steps can be combined to
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carry out a more substantial data processing exercise.

Section 9.9 looks at the special case of processing text data. We will look at
tools for searching within text, extracting subsets from text, and splitting
and recombining text values. Section 9.9.2 describes regular expressions,
which are an important tool for searching for patterns within text.

Section 9.10 describes how to format the results of data processing, either
for display on screen or for use in research reports.

Section 9.11 very briefly discusses some more advanced ideas about writ-
ing code in a programming language, and Section 10 contains a few com-
ments about and pointers to alternative software and programming lan-
guages for data processing. These are more advanced topics and provide a
small glimpse of areas to explore further.

9.1 Case study: The Population Clock

The Doomsday Clock symbolizes how close the
world is to complete disaster. It currently stands at
5 minutes to midnight ...

The U.S. Census Bureau maintains a web site called the World Population
Clock (see Figure 9.2).

This web site provides an up-to-the-minute snapshot of the world’s popu-
lation, based on estimates by the U.S. Census Bureau. It is updated every
few seconds.

In this case study, we will use this clock to generate a rough estimate of the
current rate of growth of the world’s population.

We will perform this task by taking two snapshots of the World Population
Clock, ten minutes apart, and then we will divide the change in population
by the change in time.

The purpose of this section is to look at the steps involved in detail, noting
how we might perform this task “by hand”, and then looking at how we
might use the computer to do the work instead. This will allow us to see
what sorts of tasks we can expect a computer to be able to perform and will
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Figure 9.2: The World Population Clock web page shows an up-to-the-minute

snapshot of the world’s population (based on estimates by the U.S. Census Bu-

reau).

begin to introduce some of the programming concepts involved.

1. Copy the current value of the population clock.
The first step is to capture a snapshot of the world population from
the U.S. Census Bureau web site.

This is very easy to do by hand; we simply navigate a web browser to
the population clock web page and type out, cut-and-paste, or even
just write down the current population value.

What about getting the computer to do the work?

Navigating to a web page and downloading the information is not
actually very difficult. This is an example of interacting with the
network component of the computing environment. Downloading a
web page is something that we can expect any modern programming
language to be able to do, given the appropriate URL (which is visible
in the “navigation bar” of the web browser in Figure 9.2).

The following R code will perform this data import task.

R> clockHTML <-

readLines("http://www.census.gov/ipc/www/popclockworld.html")

We will not focus on understanding all of the details of the examples
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of R code in this section—that is the purpose of the remainder of this
chapter. The code is just provided here as concrete evidence that the
task can be done and as a simple visual indication of the level of effort
and complexity involved.

Conceptually, the above code says “read the HTML code from the
network location given by the URL and store it in RAM under the
name clockHTML.”The images below illustrate this idea, showing how
the information that we input at the keyboard (the URL) leads to
the location of a file containing HTML code on the network, which
is read into RAM and given the name clockHTML. The image on the
left shows the main hardware components involved in this process in
general and the image on the right shows the actual data values and
files involved in this particular example. We will use diagrams like
this throughout the chapter to illustrate which hardware components
we are dealing with when we perform different tasks.

RAM

Keyboard

Network

"http://www.census.gov/ipc/www/popclockworld.html"

<html>

clockHTML

It is important to realize that the result of the R code above is not a
nice picture of the web page like we see in a browser. Instead, we have
the raw HTML code that describes the web page (see Figure 9.3).

This is actually a good thing because it would be incredibly difficult
for the computer to extract the population information from a picture.

The HTML code is better than a picture because the HTML code has
a clear structure. If information has a pattern or structure, it is much
easier to write computer code to navigate within the information. We
will exploit the structure in the HTML code to get the computer to
extract the relevant population value for us.

However, before we do anything with this HTML code, it is worth
taking note of what sort of information we have. From Chapter 2,
we know that HTML code is just plain text, so what we have down-
loaded is a plain text file. This means that, in order to extract the
world population value from the HTML code, we will need to know
something about how to perform text processing. We are going to
need to search within the text to find the piece we want, and we are
going to need to extract just that piece from the larger body of text.

The current population value on the web page is contained within the
HTML code in a div tag that has an id attribute, with the unique
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1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml"

4 xml:lang="en" lang="en">

5 <head>

6 <title>World POPClock Projection</title>

7 <link rel="stylesheet"

8 href="popclockworld%20Files/style.css"

9 type="text/css">

10 <meta name="author" content="Population Division">

11 <meta http-equiv="Content-Type"

12 content="text/html; charset=iso-8859-1">

13 <meta name="keywords" content="world, population">

14 <meta name="description"

15 content="current world population estimate">

16 <style type="text/css">

17 #worldnumber {

18 text-align: center;

19 font-weight: bold;

20 font-size: 400%;

21 color: #ff0000;

22 }

23 </style>

24 </head>

25 <body>

26 <div id="cb_header">

27 <a href="http://www.census.gov/">

28 <img src="popclockworld%20Files/cb_head.gif"

29 alt="U.S. Census Bureau"

30 border="0" height="25" width="639">

31 </a>

32 </div>

33

34 <h1>World POPClock Projection</h1>

35

36 <p></p>

37 According to the <a href="http://www.census.gov/ipc/www/">

38 International Programs Center</a>, U.S. Census Bureau,

39 the total population of the World, projected to 09/12/07

40 at 07:05 GMT (EST+5) is<br><br>

41 <div id="worldnumber">6,617,746,521</div>

42 <p></p>

43 <hr>

...

Figure 9.3: Part of the HTML code for the World Population Clock web page

(see Figure 9.2). The line numbers (in grey) are just for reference.
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value "worldnumber" (line 41 in Figure 9.3). This makes it very easy
to find the line that contains the population estimate because we just
need to search for the pattern id="worldnumber". This text search
task can be performed using the following code:

R> popLineNum <- grep('id="worldnumber"', clockHTML)

This code says “find the line of HTML code that contains the text
id="worldnumber" and store the answer in RAM under the name
popLineNum.” The HTML code is fetched from RAM, we supply
the pattern to search for by typing it at the keyboard, the computer
searches the HTML code for our pattern and finds the matching line,
and the result of our search is stored back in RAM.

CPU

RAM

Keyboard

'id="worldnumber"'

CPU

clockHTML

41 popLineNum

We can see the value that has been stored in RAM by typing the
appropriate name.

R> popLineNum

[1] 41

Notice that the result this time is not text; it is a number representing
the appropriate line within the HTML code.

Also notice that each time we store a value in RAM, we provide a label
for the value so that we can access the value again later. We stored the
complete set of HTML code with the label clockHTML, and we have
now also stored the result of our search with the label popLineNum.

What we want is the actual line of HTML code rather than just the
number telling us which line, so we need to use popLineNum to extract
a subset of the text in clockHTML. This action is performed by the
following code.

R> popLine <- clockHTML[popLineNum]

Again, this task involves using information that we already have in
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RAM to calculate a new data value, and we store the new value back
in RAM with the label popLine.

CPU

RAM

CPU

clockHTML

41 popLineNum

popLine

As before, we can just type the name to see the value that has been
stored in RAM. The new value in this case is a line of text.

R> popLine

[1] " <div id=\"worldnumber\">6,617,746,521</div>"

In many of the code examples throughout this chapter, we will follow
this pattern: in one step, calculate a value and store it in RAM, with
a label; then, in a second step, type the name of the label to display
the value that has been stored.

Now that we have the important line of HTML code, we want to
extract just the number, 6,617,746,521, from that line. This task
consists of getting rid of the HTML tags. This is a text search-and-
replace task and can be performed using the following code:

R> popText <- gsub('^.*<div id="worldnumber">|</div>.*$',
"", popLine)

R> popText

[1] "6,617,746,521"

This code says “delete the start and end div tags (and any spaces
in front of the start tag)”. We have used a regular expression,
'^.*<div id="worldnumber">|</div>.*$', to specify the part of the
text that we want to get rid of, and we have specified "", which means
an empty piece of text, as the text to replace it with.
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CPU

RAM

Keyboard

'^.*<div id="worldnumber">|</div>.*$'

CPU

'<div id="worldnumber">6,617,746,521</div>'

popLine

"6,617,746,521" popText

Section 9.9 describes text processing tasks and regular expressions in
more detail.

At this point, we are close to having what we want, but we are not
quite there yet because the value that we have for the world’s popu-
lation is still a piece of text, not a number. This is a very important
point. We always need to be aware of exactly what sort of information
we are dealing with. As described in Chapter 5, computers represent
different sorts of values in different ways, and certain operations are
only possible with certain types of data. For example, we ultimately
want to be able to perform arithmetic on the population value that
we are getting from this web site. That means that we must have
a number; it does not make sense to perform arithmetic with text
values.

Thus, the final thing we need to do is turn the text of the population
estimate into a number so that we can later carry out mathematical
operations. This process is called type coercion and appropriate
code is shown below.

R> pop <- as.numeric(gsub(",", "", popText))
R> pop

[1] 6617746521

Notice that we have to process the text still further to remove the com-
mas that are so useful for human viewers but a complete distraction
for computers.

CPU

RAM

Keyboard

","

CPU

"6,617,746,521"

popText

6617746521 pop

And now we have what we were after: the current U.S. Census Bureau
estimate of the world’s population from the World Population Clock
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web site.

This first step provides a classic demonstration of the difference be-
tween performing a task by hand and writing code to get a computer
to do the work. The manual method is simple, requires no new skills,
and takes very little time. On the other hand, the computer code
approach requires learning new information (it will take substantial
chunks of this chapter to explain the code we have used so far), so it
is more difficult and takes longer (the first time). However, the com-
puter code approach will pay off in the long run, as we are about to
see.

2. Wait ten minutes.
The second step involves letting time pass so that we can obtain a
second snapshot of the world population after a fixed time interval.

Doing nothing is about as simple as it gets for a do-it-yourself task.
However, it highlights two of the major advantages of automating
tasks by computer. First, computers will perform boring tasks without
complaining or falling asleep, and, second, their accuracy will not
degrade as a function of the boredom of the task.

The following code will make the computer wait for 10 minutes (600
seconds):

R> Sys.sleep(600)
CPU

3. Copy the new value of the population clock.
The third step is to take another snapshot of the world population
from the U.S. Census Bureau web site.

This is the same as the first task. If we do it by hand, it is just as
easy as it was before, though tasks like this quickly become tiresome
if we have to repeat them many times.

What about doing it by computer code?

Here we see a third major benefit of writing computer code: once code
has been written to perform a task, repetitions of the task become
essentially free. All of the pain of writing the code in the first place
starts to pay off very rapidly once a task has to be repeated. Almost
exactly the same code as before will produce the new population clock
estimate.

R> clockHTML2 <-

readLines("http://www.census.gov/ipc/www/popclockworld.html")
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R> popLineNum2 <- grep('id="worldnumber"', clockHTML2)
R> popLine2 <- clockHTML2[popLineNum2]
R> popText2 <- gsub('^.*<div id="worldnumber">|</div>.*$',

"", popLine2)
R> pop2 <- as.numeric(gsub(",", "", popText2))
R> pop2

[1] 6617747987

One detail that we have ignored to this point is the fact that the results
of our calculations are being printed out. The information that we
have stored in RAM is being displayed on the screen. As this example
suggests, there may be differences between the value that is stored in
memory and what is actually displayed for human eyes; in this case,
the computer displays an “index”, [1], in front of the number. This
is another important point to be aware of as we proceed through this
chapter.

RAM

Screen

6617747987 pop2

[1] 6617747987

4. Calculate the growth rate.
The fourth step in our task is to divide the change in the population
estimate by the time interval.

This is a very simple calculation that is, again, easy to do by hand.
But arithmetic like this is just as easy to write code for. All we need to
do is divide the change in population by the elapsed time (10 minutes):

R> rateEstimate <- (pop2 - pop)/10
R> rateEstimate

[1] 146.6

CPU

RAM

Keyboard

10

CPU

6617746521 pop

6617747987 pop2

146.6 rateEstimate
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The final result is this: at the time of writing, we estimate that the
world population was growing at the rate of about 147 people every
minute.

As a final step, it would be prudent to save this result in a more perma-
nent state, by writing this information to more permanent computer
memory. The values that are in RAM will disappear when we quit
from R. The following code creates a new text file and stores our rate
estimate in that file.

R> writeLines(as.character(rateEstimate),
"popRate.txt")

Notice that, in this step, we start with a number and convert it to a
text value so that it can be stored as part of a text file.

CPU

RAM

Keyboard

Mass

Storage

"popRate.txt"

CPU

146.6

rateEstimate

"146.6"

To reiterate, although that may seem like quite a lot of work to go through
to perform a relatively simple task, the effort is worth it. By writing code
so that the computer performs the task, we can improve our accuracy and
efficiency, and we can repeat the task whenever we like for no additional
cost. For example, we might want to improve our estimate of the population
growth rate by taking several more snapshots from the population clock web
site. This would take hours by hand, but we have most of the code already,
and with a little more knowledge we could set the computer happily working
away on this task for us.

This chapter is concerned with writing code like this, using the R language,
to conduct and automate general data handling tasks: importing and ex-
porting data, manipulating the shape of the data, and processing data into
new forms.

In the following sections, we will begin to look specifically at how to perform
these tasks in R.
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9.2 The R environment

The name R is used to describe both the R language and the R software
environment that is used to run code written in the language.

In this section, we will give a brief introduction to the R software. We will
discuss the R language from Section 9.3 onwards.

The R software can be run on Windows, MacOS X, and Linux. An appropri-
ate version may be downloaded from the Comprehensive R Archive Network
(CRAN).1 The user interface will vary between these settings, but the cru-
cial common denominator that we need to know about is the command
line.

Figure 9.4 shows what the command line looks like on Windows and on
Linux.

9.2.1 The command line

The R command line interface consists of a prompt, usually the > character.
We type code written in the R language and, when we press Enter, the code
is run and the result is printed out. A very simple interaction with the
command line looks like this:

R> 1 + 3 + 5 + 7

[1] 16

Throughout this chapter, examples of R code will displayed like this, with
the R code preceded by a prompt, R>, and the results of the code (if any)
displayed below the code. The format of the displayed result will vary
because there can be many different kinds of results from running R code.

In this case, a simple arithmetic expression has been typed and the numeric
result has been printed out.

1http://cran.r-project.org/

http://cran.r-project.org/
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Figure 9.4: The R command line interface as it appears in the Windows GUI (top)

and in an xterm on Linux (bottom).
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CPU

Keyboard Screen 1 + 3 + 5 + 7

CPU

[1] 16

Notice that the result is not being stored in memory. We will look at how
to retain results in memory in Section 9.3.

One way to write R code is simply to enter it interactively at the command
line as shown above. This interactivity is beneficial for experimenting with
R or for exploring a data set in a casual manner. For example, if we want
to determine the result of division by zero in R, we can quickly find out by
just trying it.

R> 1/0

[1] Inf

However, interactively typing code at the R command line is a very bad
approach from the perspective of recording and documenting code because
the code is lost when R is shut down.

A superior approach in general is to write R code in a file and get R to read
the code from the file.

cut-and-paste
One way to work is to write R code in a text editor and then cut-and-
paste bits of the code from the text editor into R. Some editors can
be associated with an R session and allow submission of code chunks
via a single key stroke (e.g., the Windows GUI provides a script editor
with this facility).

source()
Another option is to read an entire file of R code into R using the
source() function (see Section 10.3.8). For example, if we have a
file called code.R containing R code, then we can run the R code by
typing the following at the R command line:

R> source("code.R")
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R reads the code from the file and runs it, one line at a time.

CPU

Keyboard

Mass

Storage

?

"code.R"

CPU

code.R

?

Whether there is any output and where it goes (to the screen, to RAM,
or to mass storage) depends on the contents of the R code.

We will look at starting to write code using the R language in Section 9.3,
but there is one example of R code that we need to know straight away.
This is the code that allows us to exit from the R environment: to do this,
we type q().

9.2.2 The workspace

When quitting R, the option is given to save the “workspace image”.

The workspace consists of all values that have been created during a session—
all of the data values that have been stored in RAM.

RAM
Mass

Storage
RAM

 .Rdata

The workspace is saved as a file called .Rdata and when R starts up, it checks
for such a file in the current working directory and loads it automatically.
This provides a simple way of retaining the results of calculations from one
R session to the next.

However, saving the entire R workspace is not the recommended approach.
It is better to save the original data set and R code and re-create results by
running the code again.

If we have specific results that we want to save permanently to mass storage,
for example, the final results of a large and time-consuming analysis, we can
use the techniques described later in Sections 9.7 and 9.10.
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The most important point for now is that we should save any code that we
write; if we always know how we got a result, we can always recreate the
result later, if necessary.

9.2.3 Packages

The features of R are organized into separate bundles called packages. The
standard R installation includes about 25 of these packages, but many more
can be downloaded from CRAN and installed to expand the things that R
can do. For example, there is a package called XML that adds features for
working with XML documents in R. We can install that package by typing
the following code.

R> install.packages("XML")

Once a package has been installed, it must then be loaded within an R
session to make the extra features available. For example, to make use of
the XML package, we need to type the following code.

R> library("XML")

Of the 25 packages that are installed by default, nine packages are loaded by
default when we start a new R session; these provide the basic functionality
of R. All other packages must be loaded before the relevant features can be
used.

Recap

The R environment is the software used to run R code.

R code is submitted to the R environment either by typing it directly at
the command line, by cutting-and-pasting from a text file containing R
code, or by specifying an entire file of R code to run.

R functionality is contained in packages. New functionality can be
added by installing and then loading extra packages.
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9.3 The R language

R is a popular programming language for working with and analyzing data.

As with the other computer languages that we have dealt with in this book,
we have two main topics to cover for R: we need to learn the correct syntax
for R code, so that we can write code that will run; and we need to learn
the semantics of R code, so that we can make the computer do what we
want it to do.

R is a programming language, which means that we can achieve a much
greater variety of results with R compared to the other languages that we
have seen. The cost of this flexibility is that the syntax for R is more complex
and, because there are many more things that we can do, the R vocabulary
that we have to learn is much larger.

In this section, we will look at the basics of R syntax—how to write correct R
code. Each subsequent section will tackle the meaning of R code by focusing
on a specific category of tasks and how they are performed using R.

9.3.1 Expressions

R code consists of one or more expressions.

An expression is an instruction to perform a particular task. For exam-
ple, the following expression instructs R to add the first four odd numbers
together.

R> 1 + 3 + 5 + 7

[1] 16

If there are several expressions, they are run, one at a time, in the order
they appear.

The next few sections describe the basic types of R expressions.

9.3.2 Constant values

The simplest sort of R expression is just a constant value, typically a nu-
meric value (a number) or a character value (a piece of text). For



i
i

“itdt” — 2012/7/30 — 8:05 — page 220 — #246 i
i

i
i

i
i

220 Introduction to Data Technologies

example, if we need to specify a number of seconds corresponding to 10
minutes, we specify a number.

R> 600

[1] 600

If we need to specify the name of a file that we want to read data from, we
specify the name as a character value. Character values must be surrounded
by either double-quotes or single-quotes.

R> "http://www.census.gov/ipc/www/popclockworld.html"

[1] "http://www.census.gov/ipc/www/popclockworld.html"

As shown above, the result of a constant expression is just the corresponding
value and the result of an expression is usually printed out on the screen.

CPU

Keyboard Screen 600

CPU

[1] 600

9.3.3 Arithmetic

An example of a slightly more complex expression is an arithmetic expres-
sion for calculating with numbers. R has the standard arithmetic opera-
tors:

+ addition.
- subtraction.
* multiplication.
/ division.
^ exponentiation.

For example, the following code shows the arithmetic calculation that
was performed in Section 9.1 to obtain the rate of growth of the world’s
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population—the change in population divided by the elapsed time. Note
the use of parentheses to control the order of evaluation. R obeys the nor-
mal BODMAS rules of precedence for arithmetic operators, but parentheses
are a useful way of avoiding any ambiguity, especially for a human audience.

R> (6617747987 - 6617746521) / 10

[1] 146.6

9.3.4 Conditions

A condition is an expression that has a yes/no answer—for example, whether
one data value is greater than, less than, or equal to another. The result of
a condition is a logical value: either TRUE or FALSE.

R has the standard operators for comparing values, plus operators for com-
bining conditions:

== equality.
> and >= greater than (or equal to).
< and <= less than (or equal to).

!= inequality.
&& logical and.
|| logical or.
! logical not.

For example, the following code asks whether the second population esti-
mate is larger than the first.

R> pop2 > pop

[1] TRUE

The code below asks whether the second population estimate is larger than
the first and the first population estimate is greater than 6 billion.
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R> (pop2 > pop) && (pop > 6000000000)

[1] TRUE

The parentheses in this code are not necessary, but they make the code
easier to read.

9.3.5 Function calls

The most common and most useful type of R expression is a function call.
Function calls are very important because they are how we use R to perform
any non-trivial task.

A function call is essentially a complex instruction, and there are thousands
of different R functions that perform different tasks. This section just looks
at the basic structure of a function call; we will meet some important specific
functions for data manipulation in later sections.

A function call consists of the function name followed by, within parentheses
and separated from each other by commas, expressions called arguments
that provide necessary information for the function to perform its task.

The following code gives an example of a function call that makes R pause
for 10 minutes (600 seconds).

R> Sys.sleep(600)

The various components of this function call are shown below:

function name: Sys.sleep(600)
parentheses: Sys.sleep(600)

argument: Sys.sleep(600)

The name of the function in this example is Sys.sleep (this function makes
the computer wait, or “sleep”, for a number of seconds). There is one argu-
ment to the function, the number of of seconds to wait, and in this case the
value supplied for this argument is 600.

Because function calls are so common and important, it is worth looking at
a few more examples to show some of the variations in their format.

The writeLines() function saves text values into an external file. This
function has two arguments: the text to save and the name of the file
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that the text will be saved into. The following expression shows a call to
writeLines() that writes the text "146.6" into a file called popRate.txt.

R> writeLines("146.6", "popRate.txt")

The components of this function call are shown below:

function name: writeLines("146.6", "popRate.txt")
parentheses: writeLines("146.6", "popRate.txt")

comma between arguments: writeLines("146.6", "popRate.txt")
first argument: writeLines("146.6", "popRate.txt")

second argument: writeLines("146.6", "popRate.txt")

This example demonstrates that commas must be placed between arguments
in a function call. The first argument is the text to save, "146.6", and the
second argument is the name of the text file, "popRate.txt".

The next example is very similar to the previous function call (the result
is identical), but it demonstrates the fact that every argument has a name
and these names can be specified as part of the function call.

R> writeLines(text="146.6", con="popRate.txt")

The important new components of this function call are shown below:

first arg. name: writeLines(text="146.6", con="popRate.txt")
first arg. value: writeLines(text="146.6", con="popRate.txt")

second arg. name: writeLines(text="146.6", con="popRate.txt")
second arg. value: writeLines(text="146.6", con="popRate.txt")

When arguments are named in a function call, they may be given in any
order, so the previous function call would also work like this:

R> writeLines(con="popRate.txt", text="146.6")

The final example in this section is another variation on the function call to
writeLines().
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R> writeLines("146.6")

146.6

The point of this example is that we can call the writeLines() function
with only one argument. This demonstrates that some arguments have a
default value, and if no value is supplied for the argument in the function
call, then the default value is used. In this case, the default value of the
con argument is a special value that means that the text is displayed on the
screen rather than being saved to a file.

There are many other examples of function calls in the code examples
throughout the remainder of this chapter.

9.3.6 Symbols and assignment

Anything that we type that starts with a letter, and which is not one of the
special R keywords, is interpreted by R as a symbol (or name).

A symbol is a label for an object that is currently stored in RAM. When
R encounters a symbol, it extracts from memory the value that has been
stored with that label.

R automatically loads some predefined values into memory, with associated
symbols. One example is the predefined symbol pi, which is a label for the
the mathematical constant π.

R> pi

[1] 3.141593

The result of any expression can be assigned to a symbol, which means
that the result is stored in RAM, with the symbol as its label.

For example, the following code performs an arithmetic calculation and
stores the result in memory under the name rateEstimate.

R> rateEstimate <- (6617747987 - 6617746521) / 10
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CPU

RAM

Keyboard

(6617747987 − 6617746521) / 10

CPU

146.6 rateEstimate

The combination of a less-than sign followed by a dash, <-, is called the
assignment operator. We say that the symbol rateEstimate is assigned
the value of the arithmetic expression.

Notice that R does not display any result after an assignment.

When we refer to the symbol rateEstimate, R will retrieve the correspond-
ing value from RAM. An expression just consisting of a symbol will result
in the value that is stored with that name being printed on the screen.

R> rateEstimate

[1] 146.6

CPU

RAM

Screen [1] 146.6

CPU

146.6 rateEstimate

In many of the code examples throughout this chapter, we will follow this
pattern: in one step, we will calculate a value and assign it to a symbol,
which produces no display; then, in a second step, we will type the name of
the symbol on its own to display the calculated value.

We can also use symbols as arguments to a function call, as in the following
expression, which converts the numeric rate value into a text value.

R> as.character(rateEstimate)

[1] "146.6"
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The value that has been assigned to rateEstimate, 146.6, is retrieved from
RAM and passed to the as.character() function, which produces a text
version of the number.

In this case, we do not assign the result of our calculation, so it is automat-
ically displayed on the screen.

For non-trivial tasks, assigning values to symbols is vital because we will
need to perform several steps in order to achieve the ultimate goal. Assign-
ments allow us to save intermediate steps along the way.

9.3.7 Keywords

Some symbols are used to represent special values. These predefined sym-
bols cannot be re-assigned.

NA
This symbol represents a missing or unknown value.

Inf
This symbol is used to represent infinity (as the result of an arithmetic
expression).

R> 1/0
[1] Inf

NaN
This symbol is used to represent an arithmetic result that is undefined
(Not A Number).

R> 0/0
[1] NaN

NULL
This symbol is used to represent an empty result. Some R functions
do not produce a result, so they return NULL.

TRUE and FALSE
These symbols represent the logical values “true” and “false”. The
result of a condition is a logical value.

R> pop2 > pop
[1] TRUE
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9.3.8 Flashback: Writing for an audience

Chapter 2 introduced general principles for writing computer code. In this
section, we will look at some specific issues related to writing scripts in R.

The same principles, such as commenting code and laying out code so that
it is easy for a human audience to read, still apply. In R, a comment is
anything on a line after the special hash character, #. For example, the
comment in the following line of code is useful as a reminder of why the
number 600 has been chosen.

Sys.sleep(600) # Wait 10 minutes

Indenting is also very important. We need to consider indenting whenever
an expression is too long and has to be broken across several lines of code.
The example below shows a standard approach that left-aligns all arguments
to a function call.

popText <- gsub('^.*<div id="worldnumber">|</div>.*$',
"", popLine)

It is also important to make use of whitespace. Examples in the code above
include the use of spaces around the assignment operator (<-), around arith-
metic operators, and between arguments (after the comma) in function calls.

9.3.9 Naming variables

When writing R code, because we are constantly assigning intermediate
values to symbols, we are forced to come up with lots of different symbol
names. It is important that we choose sensible symbol names for several
reasons:

1. Good symbol names are a form of documentation in themselves. A
name like dateOfBirth tells the reader a lot more about what value
has been assigned to the symbol than a name like d, or dob, or even
date.

2. Short or convenient symbol names, such as x, or xx, or xxx should be
avoided because it too easy to create errors by reusing the same name
for two different purposes.

Anyone with children will know how difficult it can be to come up with
even one good name, let alone a constant supply. However, unlike children,
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symbols usually have a specific purpose, so the symbol name naturally arises
from a description of that purpose. A good symbol name should fully and
accurately represent the information that has been assigned to that symbol.

One problem that arises is that a good symbol name is often a combination
of two or more words. One approach to making such symbols readable is
to use a mixture of lowercase and uppercase letters when typing the name;
treat the symbol name like a sentence and start each new word with a capital
letter (e.g., dateOfBirth). This naming mechanism is called “camelCase”
(the uppercase letters form humps like the back of a camel).

Recap

A programming language is very flexible and powerful because it allows
us to control the computer hardware as well as computer software.

R is a programming language with good facilities for working with data.

An instruction in the R language is called an expression.

Important types of expressions are: constant values, arithmetic expres-
sions, function calls, and assignments.

Constant values are just numbers and pieces of text.

Arithmetic expressions are typed mostly as they would be written, ex-
cept for division and exponentiation operators.

Function calls are instructions to perform a specific task and are of the
form:

functionName(argument1, argument1)

An assignment saves a value in computer memory with an associated
label, called a symbol, so that it can be retrieved again later. An
assignment is of the form:

symbol <- expression

R code should be written in a disciplined fashion just like any other
computer code.
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9.4 Data types and data structures

We now have some knowledge of R syntax—what R expressions look like.
Before we can start to learn some specific R expressions for particular data
processing tasks, we first need to spend some time looking at how informa-
tion is stored in computer memory.

When we are writing code in a programming language, we work most of the
time with RAM, combining and restructuring data values to produce new
values in RAM.

CPU

RAM

In Chapter 5, we looked at a number of different data storage formats.

In that discussion, we were dealing with long-term, persistent storage of
information on mass storage computer memory.

Although, in this chapter, we will be working in RAM rather than with
mass storage, we have exactly the same issues that we had in Chapter 5 of
how to represent data values in computer memory. The computer memory
in RAM is a series of 0’s and 1’s, just like the computer memory used to
store files in mass storage. In order to work with data values, we need to
get those values into RAM in some format.

At the basic level of representing a single number or a single piece of text,
the solution is the same as it was in Chapter 5. Everything is represented
as a pattern of bits, using various numbers of bytes for different sorts of
values. In R, in an English locale, and on a 32-bit operating system, a
single character usually takes up one byte, an integer takes four bytes, and
a real number 8 bytes. Data values are stored in different ways depending
on the data type—whether the values are numbers or text.

Although we do not often encounter the details of the memory represen-
tation, except when we need a rough estimate of how much RAM a data
set might require, it is important to keep in mind what sort of data type
we are working with because the computer code that we write will produce
different results for different data types. For example, we can only calculate
an average if we are dealing with values that have been stored as numbers,
not if the values have been stored as text.

Another important issue is how collections of values are stored in memory.
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The tasks that we will consider will typically involve working with an entire
data set, or an entire variable from a data set, rather than just a single value,
so we need to have a way to represent several related values in memory.

This is similar to the problem of deciding on a storage format for a data set,
as we discussed in Chapter 5. However, rather than talking about different
file formats, in this chapter we will talk about different data structures
for storing a collection of data values in RAM. In this section, we will learn
about the most common data structures in R.

Throughout this entire chapter, it will be important to always keep clear
in our minds what data type we are working with and what sort of data
structure are we working with.

Basic data types

Every individual data value has a data type that tells us what sort of value
it is. The most common data types are numbers, which R calls numeric
values, and text, which R calls character values.

We will meet some other data types as we progress through this section.

Basic data structures

We will look at five basic data structures that are available in R.

Because it is very important to know what sort of data structure we are
dealing with, in the next few sections each result of an R expression will
be accompanied by a small image (as shown below) that indicates the data
structure involved.

Vectors
A collection of values that all have the same data type.
The elements of a vector are all numbers, giving a nu-
meric vector, or all character values, giving a charac-
ter vector.

A vector can be used to represent a single variable in a
data set.

1
2
3
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Factors
A collection of values that all come from a fixed set of
possible values. A factor is similar to a vector, except
that the values within a factor are limited to a fixed set
of possible values.

A factor can be used to represent a categorical variable
in a data set.

F
M
F

Matrices
A two-dimensional collection of values that all have
the same type. The values are arranged in rows and
columns.

There is also an array data structure that extends this
idea to more than two dimensions.

1 4 7
2 5 8
3 6 9

Data frames
A collection of vectors that all have the same length.
This is like a matrix, except that each column can con-
tain a different data type.

A data frame can be used to represent an entire data
set.

1
2
3

F
M
F

a
b
c

Lists
A collection of data structures. The components of a
list can be simply vectors—similar to a data frame, but
with each column allowed to have a different length.
However, a list can also be a much more complicated
structure.

This is a very flexible data structure. Lists can be used
to store any combination of data values together.

F
M
F

a 1
2

Starting with the next section, we will use a simple case study to explore the
memory representation options available to us. We will also look at some
of the functions that are used to create different data structures.
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Table 9.1: The results from counting how many different sorts of candy there are

in a bag of candy. There are 36 candies in total.

Shape Pattern Shade Count
round pattern light 2
oval pattern light 0
long pattern light 3
round plain light 1
oval plain light 3
long plain light 2
round pattern dark 9
oval pattern dark 0
long pattern dark 2
round plain dark 1
oval plain dark 11
long plain dark 2

9.4.1 Case study: Counting candy

A counting puzzle. How many candies of each
different shape are there? How many candies have
a pattern? How many candies are dark and how
many are light?

Table 9.1 shows the results of counting how many different sorts of candy
there are in a bag of candy. The candies are categorized by their shape
(round, oval, or long), their shade (light or dark), and whether they are
plain or have a pattern.

In this example, we have information in a table that we can see (on a printed
page or on a computer screen) and we want to enter this information into
RAM by typing the values on the computer keyboard. We will look at how
to write R code to store the information as data structures within RAM.

We will start by entering the first column of values from Table 9.1—the
different shapes of candy. This will demonstrate the c() function for storing
data as vectors.
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R> shapes <- c("round", "oval", "long",
"round", "oval", "long",
"round", "oval", "long",
"round", "oval", "long")

R> shapes

a
b
c

[1] "round" "oval" "long" "round" "oval" "long" "round"
[8] "oval" "long" "round" "oval" "long"

The information in the first column consists of text, so each individual value
is entered as a character value (within quotes), and the overall result is a
character vector.

The result has been assigned to the symbol shapes so that we can use this
character vector again later.

The second and third columns from Table 9.1 can be stored as character
vectors in a similar manner.

R> patterns <- c("pattern", "pattern", "pattern",
"plain", "plain", "plain",
"pattern", "pattern", "pattern",
"plain", "plain", "plain")

R> patterns

a
b
c

[1] "pattern" "pattern" "pattern" "plain" "plain"
[6] "plain" "pattern" "pattern" "pattern" "plain"
[11] "plain" "plain"

R> shades <- c("light", "light", "light",
"light", "light", "light",
"dark", "dark", "dark",
"dark", "dark", "dark")

R> shades

a
b
c

[1] "light" "light" "light" "light" "light" "light" "dark"
[8] "dark" "dark" "dark" "dark" "dark"

The c() function also works with numeric values. In the following code,
we create a numeric vector to store the fourth column of Table 9.1.
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R> counts <- c(2, 0, 3, 1, 3, 2, 9, 0, 2, 1, 11, 2)
R> counts

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

We now have the information from Table 9.1 stored as four vectors in RAM.

9.4.2 Vectors

The previous example demonstrated the c() function for concatenating val-
ues together to create a vector. In this section, we will look at some other
functions that create vectors.

When data values have a regular pattern, the function rep() is extremely
useful (rep is short for “repeat”). For example, column 1 of Table 9.1 has
a simple pattern: the set of three possible shapes is repeated four times.
The following code generates the shapes vector again, but this time using
rep().

R> shapes <- rep(c("round", "oval", "long"), 4)
R> shapes

a
b
c

[1] "round" "oval" "long" "round" "oval" "long" "round"
[8] "oval" "long" "round" "oval" "long"

The first argument to rep() is the vector of values to repeat and the second
argument says how many times to repeat the vector. The result is the
original vector of 3 values repeated 4 times, producing a final vector with
12 values.

It becomes easier to keep track of what sort of data structure we are dealing
with once we become familiar with the way that R displays the different
types of data structures. With vectors, R displays an index inside square
brackets at the start of each line of output, followed by the values, which
are formatted so that they each take up the same amount of space (similar
to a fixed-width file format). The previous result had room to display up
to seven values on each row, so the second row of output starts with the
eighth value (hence the [8] at the start of the line). All of the values have
double-quotes around them to signal that these are all character values (i.e.,
this is a character vector).

As another example of the use of rep(), the following code generates a data



i
i

“itdt” — 2012/7/30 — 8:05 — page 235 — #261 i
i

i
i

i
i

Data Processing 235

structure containing the values in column 2 of Table 9.1.

R> patterns <- rep(c("pattern", "plain"), each=3, length=12)
R> patterns

a
b
c

[1] "pattern" "pattern" "pattern" "plain" "plain"
[6] "plain" "pattern" "pattern" "pattern" "plain"
[11] "plain" "plain"

This example demonstrates two other arguments to rep(). The each ar-
gument says that each individual element of the original vector should be
repeated 3 times. The length argument says that the final result should
be a vector of length 12 (without that, the 2 original values would only be
repeated 3 times each to produce a vector of 6 values; try it and see!).

To complete the set of variables in the candy data set, the following code
generates the shade information from column 3 of Table 9.1.

R> shades <- rep(c("light", "dark"), each=6)
R> shades

a
b
c

[1] "light" "light" "light" "light" "light" "light" "dark"
[8] "dark" "dark" "dark" "dark" "dark"

The rep() function also works for generating numeric vectors; another im-
portant function for generating regular patterns of numeric values is the
seq() function (seq is short for “sequence”). For example, a numeric vector
containing the first 10 positive integers can be created with the following
code.

R> seq(1, 10)

1
2
3

[1] 1 2 3 4 5 6 7 8 9 10

The first argument to seq() specifies the number to start at and the second
argument specifies the number to finish at.

There is also a by argument to allow steps in the sequence greater than one,
as shown by the following code.
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R> seq(1, 10, by=3)

1
2
3

[1] 1 4 7 10

For integer sequences in steps of 1, a short-hand equivalent is available using
the special colon operator, :. For example, we could also have generated
the first 10 positive integers with the code below.

R> 1:10

1
2
3

[1] 1 2 3 4 5 6 7 8 9 10

Going back to the candy data, now that we have Table 9.1 stored as four
vectors, we can begin to ask some questions about these data. This will allow
us to show that when we perform a calculation with a vector of values, the
result is often a new vector of values.

As an example, we will look at how to determine which types of candy did
not appear in our bag of candy; in other words, we want to find the values
in the counts vector that are equal to zero. The following code performs
this calculation using a comparison.

R> counts == 0

F
T
F

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[10] FALSE FALSE FALSE

This result is interesting for three reasons. The first point is that the result
of comparing two numbers for equality is a logical value: either TRUE or
FALSE. Logical values are another of the basic data types in R. This result
above is a logical vector containing only TRUE or FALSE values.

The second point is that we are starting with a numeric vector, counts,
which contains 12 values, and we end up with a new vector that also has 12
values. In general, operations on vectors produce vectors as the result, so
a very common way of generating new vectors is to do something with an
existing vector.

The third point is that the 12 values in counts are being compared to a
single numeric value, 0. The effect is to compare each of the 12 values
separately against 0 and return 12 answers. This happens a lot in R when
two vectors of different lengths are used. Section 9.6.1 discusses this idea of
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“recycling” shorter vectors further.

9.4.3 Factors

A factor is a basic data structure in R that is ideal for storing categorical
data.

For example, consider the shapes vector that we created previously. This
was just a character vector recording the text "round" for counts of round
candies, "oval" for counts of oval candies, and "long" for counts of long
candies.

This is not the ideal way to store this information because it does not
acknowledge that elements containing the same text, e.g., "round", really
are the same value. A character vector can contain any text at all, so there
are no data integrity constraints. The information would be represented
better using a factor.

The following code creates the candy shape information as a factor:

R> shapesFactor <- factor(shapes,
levels=c("round", "oval", "long"))

R> shapesFactor

F
M
F

[1] round oval long round oval long round oval long
[10] round oval long
Levels: round oval long

The first argument to the factor() function is the set of data values. We
have also specified the set of valid values for the factor via the levels
argument.

This is a better representation of the data because every value in the factor
shapesFactor is now guaranteed to be one of the valid levels of the factor.

Factors are displayed in a similar way to vectors, but with additional infor-
mation displayed about the levels of the factor.

9.4.4 Data frames

A vector in R contains values that are all of the same type. Vectors corre-
spond to a single variable in a data set.
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Most data sets consist of more than just one variable, so to store a complete
data set we need a different data structure. In R, several variables can be
stored together in an object called a data frame.

We will now build a data frame to contain all four variables in the candy
data set (i.e., all of the information in Table 9.1).

The function data.frame() creates a data frame object from a set of vec-
tors. For example, the following code generates a data frame from the
variables that we have previously created, shapes, patterns, shades, and
counts.

R> candy <- data.frame(shapes, patterns, shades, counts)
R> candy

1
2
3

F
M
F

a
b
c

shapes patterns shades counts
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3
4 round plain light 1
5 oval plain light 3
6 long plain light 2
7 round pattern dark 9
8 oval pattern dark 0
9 long pattern dark 2
10 round plain dark 1
11 oval plain dark 11
12 long plain dark 2

We now have a data structure that contains the entire data set. This is a
significant improvement over having four separate vectors because it prop-
erly represents the fact that the first value in each vector corresponds to
information about the same type of candy.

An important feature of data frames is the fact that each column within a
data frame can contain a different data type. For example, in the candy data
frame, the first three columns contain text and the last column is numeric.
However, all columns of a data frame must have the same length.

Data frames are displayed in a tabular layout, with column names above
and row numbers to the left.

Another detail to notice about the way that data frames are displayed is
that the text values in the first three columns do not have double-quotes
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around them (compare this with the display of text in character vectors
in Section 9.4.2). Although character values must always be surrounded
by double-quotes when we write code, they are not always displayed with
double-quotes.

9.4.5 Lists

Vectors, factors, and data frames are the typical data structures that we
create to represent our data values in computer memory. However, several
other basic data structures are also important because when we call a func-
tion, the result could be any sort of data structure. We need to understand
and be able to work with a variety of data structures.

As an example, consider the result of the following code:

R> dimnames(candy)

F
M
F

a 1
2
[[1]]
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
[12] "12"

[[2]]
[1] "shapes" "patterns" "shades" "counts"

The dimnames() function extracts the column names and the row names
from the candy data frame; these are the values that are displayed above
and to the left of the data frame (see the example in the previous section).
There are 4 columns and 12 rows, so the dimnames() function has to return
two character vectors that have different lengths. A data frame can contain
two vectors, but the vectors cannot have different lengths; the only way the
dimnames() function can return these values is as a list.

In this case, we have a list with two components. The first component is a
character vector containing the 12 row names and the second component is
another character vector containing the 4 column names.

Notice the way that lists are displayed. The first component of the list
starts with the component index, [[1]], followed by the contents of this
component, which is a character vector containing the names of the rows
from the data frame.
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[[1]]
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
[12] "12"

The second component of the list starts with the component index [[2]],
followed by the contents of this component, which is also a character vector,
this time the column names.

[[2]]
[1] "shapes" "patterns" "shades" "counts"

The list() function can be used to create a list explicitly. Like the c()
function, list() takes any number of arguments; if the arguments are
named, those names are used for the components of the list.

In the following code, we generate a list similar to the previous one, con-
taining the row and column names from the candy data frame.

R> list(rownames=rownames(candy),
colnames=colnames(candy))

F
M
F

a 1
2
$rownames
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11"
[12] "12"

$colnames
[1] "shapes" "patterns" "shades" "counts"

The difference is that, instead of calling dimnames() to get the entire list,
we have called rownames() to get the row names as a character vector,
colnames() to get the column names as another character vector, and then
list() to combine the two character vectors into a list. The advantage is
that we have been able to provide names for the components of the list.
These names are evident in how the list is displayed on the screen.

A list is a very flexible data structure. It can have any number of compo-
nents, each of which can be any data structure of any length or size. A
simple example is a data-frame-like structure where each column can have
a different length, but much more complex structures are also possible. For
example, it is possible for a component of a list to be another list.

Anyone who has worked with a computer should be familiar with the idea
of a list containing another list because a directory or folder of files has this
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sort of structure: a folder contains multiple files of different kinds and sizes
and a folder can contain other folders, which can contain more files or even
more folders, and so on. Lists allow for this kind of hierarchical structure.

9.4.6 Matrices and arrays

Another sort of data structure in R, which lies in between vectors and data
frames, is the matrix. This is a two-dimensional structure (like a data
frame), but one where all values are of the same type (like a vector).

As for lists, it is useful to know how to work with matrices because many
R functions either return a matrix as their result or take a matrix as an
argument.

A matrix can be created directly using the matrix() function. The following
code creates a matrix from 6 values, with 3 columns and two rows; the values
are used column-first.

R> matrix(1:6, ncol=3)

1 4 7
2 5 8
3 6 9

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

The array data structure extends the idea of a matrix to more than two
dimensions. For example, a three-dimensional array corresponds to a data
cube.

The array() function can be used to create an array. In the following code,
a two-by-two-by-two, three-dimensional array is created.

R> array(1:8, dim=c(2, 2, 2))

1 4 7
2 5 8
3 6 9

, , 1

[,1] [,2]
[1,] 1 3
[2,] 2 4

, , 2

[,1] [,2]
[1,] 5 7
[2,] 6 8
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9.4.7 Flashback: Numbers in computer memory

Although we are not generally concerned with the bit-level or byte-level
details of how data values are stored by R in RAM, we do need to be aware
of one of the issues that was raised in Section 5.3.1.

In that section, we discussed the fact that there are limits to the precision
with which numeric values can be represented in computer memory. This
is true of numeric values stored in RAM just as it was for numeric values
stored on some form of mass storage.

As a simple demonstration, consider the following condition.

R> 0.3 - 0.2 == 0.1

F
T
F

[1] FALSE

That apparently incorrect result is occurring because it is not actually pos-
sible to store an apparently simple value like 0.1 with absolute precision in
computer memory (using a binary representation). The stored value is very,
very close to 0.1, but it is not exact. In the condition above, the bit-level
representations of the two values being compared are not identical, so the
values, in computer memory, are not strictly equal.

Comparisons between real values must be performed with care and tests
for equality between real values are not considered to be meaningful. The
function all.equal() is useful for determining whether two real values are
(approximately) equivalent.

Another issue is the precision to which numbers are displayed. Consider the
following simple arithmetic expression.

R> 1/3

1
2
3

[1] 0.3333333

The answer, to full precision, never ends, but R has only shown seven sig-
nificant digits. There is a limit to how many decimal places R could display
because of the limits of representing numeric values in memory, but there
is also a global option that controls (approximately) how many digits that
R will display.

The following code uses the options() function to specify that R should
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display more significant digits.

R> options(digits=16)
R> 1/3

1
2
3

[1] 0.3333333333333333

The code below sets the option back to its default value.

R> options(digits=7)

Recap

A vector is a one-dimensional data structure and all of its elements are
of the same data type.

A factor is one-dimensional and every element must be one of a fixed
set of values, called the levels of the factor.

A matrix is a two-dimensional data structure and all of its elements are
of the same type.

A data frame is two-dimensional and different columns may contain
different data types, though all values within a column must be of the
same data type and all columns must have the same length.

A list is a hierarchical data structure and each component of a list may
be any type of data structure whatsoever.

9.5 Subsetting

Now that we know some basic R functions that allow us to enter data values
and we have a basic idea of how data values are represented in RAM, we
are in a position to start working with the data values.

One of the most basic ways that we can manipulate data structures is to
subset them—select a smaller portion from a larger data structure. This
is analogous to performing a query on a database.

For example, we might want to answer the question: “what sort of candy
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was the most common in the bag of candy?” The following code produces
the answer to this question using R’s subsetting capabilities.

R> candy[candy$counts == max(candy$counts), ]

1
2
3

F
M
F

a
b
c

shapes patterns shades counts
11 oval plain dark 11

R has very powerful mechanisms for subsetting. In this section, we will
outline the basic format of these operations and many more examples will
be demonstrated as we progress through the rest of the chapter.

We will start with subsetting vectors.

A subset from a vector may be obtained by appending an index within
square brackets to the end of a symbol name. As an example, recall the
vector of candy counts, called counts.

R> counts

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

We can extract fourth of these counts by specifying the index 4, as shown
below.

R> counts[4]

1
2
3

[1] 1

The components of this expression are shown below:

symbol: counts[4]
square brackets: counts[4]

index: counts[4]

The index can be a vector of any length. For example, the following code
produces the first three counts (the number of light-shaded candies with a
pattern).
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R> counts[1:3]

1
2
3

[1] 2 0 3

The diagram below illustrates how the values in the index vector are used
to select elements from the counts vector to create a subset. Diagrams
like this will be used throughout this chapter to help describe different data
manipulation techniques; in each case, to save on space, the data values
shown in the diagram will not necessarily correspond to the data values
being discussed in the surrounding text.

1
2
3

2
0
3
1
3

2
0
3

index counts subset

The index does not have to be a contiguous sequence, and it can include
repetitions. The following example produces counts for all candies with a
pattern. The elements we want are the first three and the seventh, eighth,
and ninth. The index is constructed with the following code.

R> c(1:3, 7:9)

1
2
3

[1] 1 2 3 7 8 9

The subsetting operation is expressed as follows.

R> counts[c(1:3, 7:9)]

1
2
3

[1] 2 0 3 9 0 2

This is an example of a slightly more complex R expression. It involves a
function call, to the c() function, that generates a vector, and this vector is
then used as an index to select the corresponding elements from the counts
vector.
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The components of this expression are shown below:

symbol: counts[c(1:3, 7:9)]
square brackets: counts[c(1:3, 7:9)]

index: counts[c(1:3, 7:9)]

As well as using integers for indices, we can use logical values. For example,
a better way to express the idea that we want the counts for all candies with
a pattern is to generate a logical vector first, as in the following code.

R> hasPattern <- patterns == "pattern"
R> hasPattern

F
T
F

[1] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[10] FALSE FALSE FALSE

This logical vector can be used as an index to return all of the counts where
hasPattern is TRUE.

R> counts[hasPattern]

1
2
3

[1] 2 0 3 9 0 2

The diagram below illustrates how an index of logical values selects elements
from the complete object where the index value is TRUE.

T
T
T
F
F

2
0
3
1
3

2
0
3

index counts subset

It would be even better to work with the entire data frame and retain
the pattern with the counts, so that we can see that we have the correct
result. We will now look at how subsetting works for two-dimensional data
structures such as data frames.

A data frame can also be indexed using square brackets, though slightly
differently because we have to specify both which rows and which columns
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we want. The following code extracts the patterns and counts variables,
columns 2 and 4, from the data frame for all candies with a pattern:

R> candy[hasPattern, c(2, 4)]

1
2
3

F
M
F

a
b
c

patterns counts
1 pattern 2
2 pattern 0
3 pattern 3
7 pattern 9
8 pattern 0
9 pattern 2

The result is still a data frame, just a smaller one.

The components of this expression are shown below:

symbol: candy[hasPattern, c(2, 4)]
square brackets: count[hasPattern, c(2, 4)]

row index: count[hasPattern, c(2, 4)]
comma: count[hasPattern, c(2, 4)]

column index: count[hasPattern, c(2, 4)]

An even better way to select this subset is to refer to the appropriate
columns by their names. When a data structure has named components, a
subset may be selected using those names. For example, the previous subset
could also be obtained with the following code.

R> candy[hasPattern, c("patterns", "counts")]

1
2
3

F
M
F

a
b
c

patterns counts
1 pattern 2
2 pattern 0
3 pattern 3
7 pattern 9
8 pattern 0
9 pattern 2

The function subset() provides another way to subset a data frame. This
function has a subset argument for specifying the rows and a select ar-
gument for specifying the columns.
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R> subset(candy, subset=hasPattern,
select=c("patterns", "counts"))

1
2
3

F
M
F

a
b
c

patterns counts
1 pattern 2
2 pattern 0
3 pattern 3
7 pattern 9
8 pattern 0
9 pattern 2

When subsetting using square brackets, it is possible to leave the row or
column index completely empty. The result is that all rows or all columns,
respectively, are returned. For example, the following code extracts all
columns for the first three rows of the data frame (the light-shaded candies
with a pattern).

R> candy[1:3, ]

1
2
3

F
M
F

a
b
c

shapes patterns shades counts
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3

If a single index is specified when subsetting a data frame with single square
brackets, the effect is to extract the appropriate columns of the data frame
and all rows are returned.

R> candy["counts"]

1
2
3

F
M
F

a
b
c

counts
1 2
2 0
3 3
4 1
5 3
6 2
7 9
8 0
9 2
10 1
11 11
12 2
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This result is one that we need to study more closely. This subsetting
operation has extracted a single variable from a data frame. However, the
result is a data frame containing a single column (i.e., a data set with one
variable).

Often what we will require is just the vector representing the values in
the variable. This is achieved using a different sort of indexing that uses
double square brackets, [[. For example, the following code extracts the
first variable from the candy data frame as a vector.

R> candy[["counts"]]

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

The components of this expression are shown below:

symbol: candy[["counts"]]
double square brackets: candy[["counts"]]

index: candy[["counts"]]

Single square bracket subsetting on a data frame is like taking an egg con-
tainer that contains a dozen eggs and chopping up the container so that we
are left with a smaller egg container that contains just a few eggs. Double
square bracket subsetting on a data frame is like selecting just one egg from
an egg container.

As with single square bracket subsetting, the index used for double square
bracket subsetting can also be a number.

R> candy[[4]]

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

However, with double square bracket subsetting, the index must be a single
value.

There is also a short-hand equivalent for getting a single variable from a data
frame. This involves appending a dollar sign, $, to the symbol, followed by
the name of the variable.
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R> candy$counts

1
2
3

[1] 2 0 3 1 3 2 9 0 2 1 11 2

The components of this expression are shown below:

symbol: candy$counts
dollar sign: candy$counts

variable name: candy$counts

9.5.1 Assigning to a subset

The subsetting syntax can also be used to assign a new value to some portion
of a larger data structure. As an example, we will look at replacing the zero
values in the counts vector (the counts of candies) with a missing value,
NA.

As with extracting subsets, the index can be a numeric vector, a character
vector, or a logical vector. In this case, we will first develop an expression
that generates a logical vector telling us where the zeroes are.

R> counts == 0

F
T
F

[1] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[10] FALSE FALSE FALSE

The zeroes are the second and eighth values in the vector.

We can now use this expression as an index to specify which elements of the
counts vector we want to modify.

R> counts[counts == 0] <- NA
R> counts

1
2
3

[1] 2 NA 3 1 3 2 9 NA 2 1 11 2

We have replaced the original zero values with NAs.

The following code reverses the process and replaces all NA values with zero.
The is.na() function is used to find which values within the counts vector
are NAs.
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R> counts[is.na(counts)] <- 0

9.5.2 Subsetting factors

The case of subsetting a factor deserves special mention because, when we
subset a factor, the levels of the factor are not altered. For example, consider
the patterns variable in the candy data set.

R> candy$patterns

F
M
F

[1] pattern pattern pattern plain plain plain pattern
[8] pattern pattern plain plain plain
Levels: pattern plain

This factor has two levels, pattern and plain. If we subset just the first
three values from this factor, the result only contains the value pattern,
but there are still two levels.

R> candy$patterns[1:3]

F
M
F

[1] pattern pattern pattern
Levels: pattern plain

It is possible to force the unused levels to be dropped by specifying drop=TRUE
within the square brackets, as shown below.

R> subPattern <- candy$patterns[1:3, drop=TRUE]
R> subPattern

F
M
F

[1] pattern pattern pattern
Levels: pattern

Assigning values to a subset of a factor is also a special case because only
the current levels of the factor are allowed. A missing value is generated
if the new value is not one of the current factor levels (and a warning is
displayed).

For example, in the following code, we attempt to assign a new value to the
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first element of a factor where the new value is not one of the levels of the
factor, so the result is an NA value.

R> subPattern[1] <- "swirly"
R> subPattern

F
M
F

[1] <NA> pattern pattern
Levels: pattern

Recap

Single square brackets, [ ], select one or more elements from a data
structure. The result is the same sort of data structure as the original
object, just smaller.

The index within the square brackets can be a numeric vector, a logical
vector, or a character vector.

Double square brackets, [[ ]], select a single element from a data
structure. The result is usually a simpler data structure than the origi-
nal.

The dollar sign, $, is short-hand for double square brackets.

9.6 More on data structures

This section provides some more details about how R data structures work.
The information in this section is a little more advanced, but most of it
is still useful for everyday use of R and most of it will be necessary to
completely understand some of the R functions that are introduced in later
sections.

9.6.1 The recycling rule

R allows us to work with vectors of values, rather than with single values,
one at a time. This is very useful, but it does raise the issue of what to do
when vectors have different lengths.

There is a general, but informal, rule in R that, in such cases, the shorter
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vector is recycled to become the same length as the longer vector. This is
easiest to demonstrate via simple arithmetic.

In the following code, a vector of length 3 is added to a vector of length 6.

R> c(1, 2, 3) + c(1, 2, 3, 4, 5, 6)

1
2
3

[1] 2 4 6 5 7 9

What happens is that the first vector is recycled to make a vector of length
6, and then element-wise addition can occur.

x
1
2
3

y
1 1
2 2
3 3
1 4
2 5
3 6

x+y
2
4
6
5
7
9

recycle

This rule is not necessarily followed in all possible situations, but it is the
expected behavior in most cases.

9.6.2 Type coercion

In the case study in Section 9.1, there was a step where we took the text rep-
resentation of a world population estimate and converted it into a number.
This step is repeated below, broken down into a little more detail.

We start with a character vector (containing just one character value).

R> popText

a
b
c

[1] "6,617,746,521"

We remove the commas from the text, but we still have a character vector.
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R> popNum <- gsub(",", "", popText)
R> popNum

a
b
c

[1] "6617746521"

Now, we convert the character vector to a numeric vector.

R> pop <- as.numeric(popNum)
R> pop

1
2
3

[1] 6617746521

The important part is the call to as.numeric(). This is the function that
starts with a character value and converts it into a numeric value.

This process is called type coercion and it is important because we need
the data in different forms to be able to perform different tasks. In this
example, we need the data, which is an estimate of the world population,
as a number so that we can subtract it from another, later, estimate of the
world population. We cannot do the subtraction on character values.

There are many functions of the form as.type() for deliberately converting
between different data structures like this. For example, the function for
converting data into a character vector is called as.character().

It is also important to keep in mind that many functions will automatically
perform type coercion if we give them an argument in the wrong form. To
demonstrate this, we will consider the shapes variable in the candy data
frame.

The shapes vector that we created first is a character vector.

R> shapes

a
b
c

[1] "round" "oval" "long" "round" "oval" "long" "round"
[8] "oval" "long" "round" "oval" "long"

We used this character vector, plus several others, to create the candy data
frame, with a call to the data.frame() function.

R> candy <- data.frame(shapes, patterns, shades, counts)



i
i

“itdt” — 2012/7/30 — 8:05 — page 255 — #281 i
i

i
i

i
i

Data Processing 255

What do we see if we extract the shapes column from the candy data frame?

R> candy$shapes

F
M
F

[1] round oval long round oval long round oval long
[10] round oval long
Levels: long oval round

This is a factor, not a character vector!

How did the original character vector become a factor within the data
frame? The data.frame() function automatically performed this type co-
ercion (without telling us!).

This sort of automatic coercion happens a lot in R. Often, it is very con-
venient, but it is important to be aware that it may be happening, it is
important to notice when it happens, and it is important to know how
to stop it from happening. In some cases it will be more appropriate to
perform type coercion explicitly, with functions such as as.numeric() and
as.character(), and in some cases functions will provide arguments that
turn the coercion off. For example, the data.frame() function provides
a stringsAsFactors argument that controls whether character data are
automatically converted to a factor.

Coercing factors

As we saw with subsetting factors, performing type coercion requires special
care when we are coercing from a factor to another data type.

The correct sequence for coercing a factor is to first coerce it to a character
vector and then to coerce the character vector to something else.

In particular, when coercing a factor that has levels consisting entirely of
digits, the temptation is to call as.numeric() directly. However, the correct
approach is to call as.character() and then as.numeric().
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9.6.3 Attributes

Consider the candy data frame again.

R> candy

1
2
3

F
M
F

a
b
c

shapes patterns shades counts
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3
4 round plain light 1
5 oval plain light 3
6 long plain light 2
7 round pattern dark 9
8 oval pattern dark 0
9 long pattern dark 2
10 round plain dark 1
11 oval plain dark 11
12 long plain dark 2

This data set consists of four variables that record how many candies were
counted for each combination of shape, pattern, and shade. These variables
are stored in the data frame as three factors and a numeric vector.

The data set also consists of some additional metadata. For example, each
variable has a name. How is this information stored as part of the data
frame data structure?

The answer is that the column names are stored as attributes of the data
frame.

Any data structure in R may have additional information attached to it
as an attribute; attributes are like an extra list structure attached to the
primary data structure. The diagram below illustrates the idea of a data
frame, on the left, with a list of attributes containing row names and column
names, on the right.

1
2
3

F
M
F

a
b
c

1
2
3

X
Y
Z

l

l

l
ll

l

l

l

In this case, the data frame has an attribute containing the row names and
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another attribute containing the column names.

As another example, consider the factor shapesFactor that we created on
page 237.

R> shapesFactor

F
M
F

[1] round oval long round oval long round oval long
[10] round oval long
Levels: round oval long

Again, there are the actual data values, plus there is metadata that records
the set of valid data values—the levels of the factor. This levels information
is stored in an attribute. The diagram below illustrates the idea of a factor,
on the left, with a single attribute that contains the valid levels of the factor,
on the right.

1
2
1

F
M

l

l
l

ll
l

l

l

We do not usually work directly with the attributes of factors or data frames.
However, some R functions produce a result that has important information
stored in the attributes of a data structure, so it is necessary to be able to
work with the attributes of a data structure.

The attributes() function can be used to view all attributes of a data
structure. For example, the following code extracts the attributes from the
candy data frame (we will talk about the class attribute later).

R> attributes(candy)

F
M
F

a 1
2
$names
[1] "shapes" "patterns" "shades" "counts"

$row.names
[1] 1 2 3 4 5 6 7 8 9 10 11 12

$class
[1] "data.frame"
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This is another result that we should look at very closely. What sort of data
structure is it?

This is a list of attributes.

Each component of this list, each attribute of the data frame, has a name;
the column names of the candy data frame are in a component of this
attribute list called names and the row names of the candy data frame are
in a component of this list called row.names.

The attr() function can be used to get just one specific attribute from a
data structure. For example, the following code just gets the names attribute
from the candy data frame.

R> attr(candy, "names")

a
b
c

[1] "shapes" "patterns" "shades" "counts"

Because many different data structures have a names attribute, there is a
special function, names(), for extracting just that attribute.

R> names(candy)

a
b
c

[1] "shapes" "patterns" "shades" "counts"

For the case of a data frame, we could also use the colnames() function to
get this attribute, and there is a rownames() function for obtaining the row
names.

Similarly, there is a special function, levels(), for obtaining the levels of
a factor.

R> levels(shapesFactor)

a
b
c

[1] "round" "oval" "long"

Section 9.9.3 contains an example where it is necessary to directly access
the attributes of a data structure.
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9.6.4 Classes

We can often get some idea of what sort of data structure we are work-
ing with by simply viewing how the data values are displayed on screen.
However, a more definitive answer can be obtained by calling the class()
function.

For example, the data structure that has been assigned to the symbol candy
is a data frame.

R> class(candy)

[1] "data.frame"

The shapes variable within the candy data frame is a factor.

R> class(candy$shapes)

[1] "factor"

Many R functions return a data structure that is not one of the basic data
structures that we have already seen. For example, consider the following
code, which generates a table of counts of the number of candies of each
different shape (summing across shades and patterns).

We will describe the xtabs() function later in Section 9.8.4. For now, we
are just interested in the data structure that is produced by this function.

R> shapeCount <- xtabs(counts ~ shapes, data=candy)
R> shapeCount

shapes
long oval round

9 14 13

What sort of data structure is this? The best way to find out is to use the
class() function.
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R> class(shapeCount)

[1] "xtabs" "table"

The result is an "xtabs" data structure, which is a special sort of "table"
data structure.

We have not seen either of these data structures before. However, much of
what we already know about working with the standard data structures,
and some of what we will learn in later sections, will also work with any
new class that we encounter.

For example, it is usually possible to subset any class using the standard
square bracket syntax. For example, in the following code, we extract the
first element from the table.

R> shapeCount[1]

long
9

Where appropriate, arithmetic and comparisons will also generally work. In
the code below, we are calculating which elements of the table are greater
than 10.

R> shapeCount > 10

shapes
long oval round
FALSE TRUE TRUE

Furthermore, if necessary, we can often resort to coercing a class to some-
thing more standard and familiar. The following code converts the table
data structure into a data frame, where the rows of the original table have
been converted into columns in the data frame, with appropriate column
names automatically provided.
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R> as.data.frame(shapeCount)

shapes Freq
1 long 9
2 oval 14
3 round 13

In summary, although we will encounter a wide variety of data structures,
the standard techniques that we learn in this chapter for working with basic
data structures, such as subsetting, will also be useful for working with other
classes.

9.6.5 Dates

Dates are an important example of a special data structure. Representing
dates as just text is convenient for humans to view, but other representations
are better for computers to work with.

As an example, we will make use of the Sys.Date() function, which returns
the current date.

R> today <- Sys.Date()
R> today

[1] "2008-09-29"

This looks like it is a character vector, but it is not. It is a Date data
structure.

R> class(today)

[1] "Date"

Having a special class for dates means that we can perform tasks with
dates, such as arithmetic and comparisons, in a meaningful way, something
we could not do if we stored the date as just a character value. For example,
the manuscript for this book was due at the publisher on September 30th

2008. The following code calculates whether the manuscript was late. The
as.Date() function converts a character value, in this case "2008-09-30",
into a date.
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R> deadline <- as.Date("2008-09-30")
R> today > deadline

[1] FALSE

The following code calculates how many days remain before the deadline
(or how late the manuscript is).

R> deadline - today

Time difference of 1 days

The Date class stores date values as integer values, representing the number
of days since January 1st 1970, and automatically converts the numbers to
a readable text value to display the dates on the screen.

9.6.6 Formulas

Another important example of a special class in R is the formula class.

A formula is created by the special tilde operator, ~. Formulas are created
to describe relationships using symbols.

We saw an example on page 259 that looked like this:

R> counts ~ shapes

counts ~ shapes

The components of this expression are show below:

left-hand side: counts ~ shapes
tilde operator: counts ~ shapes

right-hand side: counts ~ shapes

The result of a formula is just the formula expression itself. A formula only
involves the symbol names; any data values that have been assigned to the
symbols in the formula are not accessed at all in the creation of the formula.

Each side of a formula can have more than one symbol, with the symbols
separated by standard operators such as + and *.
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For example, the following call to the xtabs() function combines two sym-
bols on the right-hand side of the formula to produce a two-way table of
counts.

R> xtabs(counts ~ patterns + shades, data=candy)

shades
patterns dark light
pattern 11 5
plain 14 6

Formulas are mainly used to express statistical models in R, but they are
also used in other contexts, such as the xtabs() function shown above and
in Section 9.6.4. We will see another use of formulas in Section 9.8.11.

9.6.7 Exploring objects

When working with anything but tiny data sets, basic features of the data
set cannot be determined by just viewing the data values. This section
describes a number of functions that are useful for obtaining useful summary
features from a data structure.

The summary() function produces summary information for a data struc-
ture. For example, it will provide numerical summary data for each variable
in a data frame.

R> summary(candy)

shapes patterns shades counts
long :4 pattern:6 dark :6 Min. : 0
oval :4 plain :6 light:6 1st Qu.: 1
round:4 Median : 2

Mean : 3
3rd Qu.: 3
Max. :11

The length() function is useful for determining the number of values in a
vector or the number of components in a list. Similarly, the dim() function
will give the number of rows and columns in a matrix or data frame.
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R> dim(candy)

[1] 12 4

The str() function (short for “structure”) is useful when dealing with large
objects because it only shows a sample of the values in each part of the
object, although the display is very low-level so it may not always make
things clearer.

The following code displays the low-level structure of the candy data frame.

R> str(candy)

'data.frame': 12 obs. of 4 variables:
$ shapes : Factor w/ 3 levels "long","oval",..: 3 2 1 3 ..
$ patterns: Factor w/ 2 levels "pattern","plain": 1 1 1 2..
$ shades : Factor w/ 2 levels "dark","light": 2 2 2 2 2 ..
$ counts : num 2 0 3 1 3 2 9 0 2 1 ...

Another function that is useful for inspecting a large object is the head()
function. This just shows the first few elements of an object, so we can see
the basic structure without seeing all of the values. The code below uses
head() to display only the first six rows of the candy data frame.

R> head(candy)

shapes patterns shades counts
1 round pattern light 2
2 oval pattern light 0
3 long pattern light 3
4 round plain light 1
5 oval plain light 3
6 long plain light 2

There is also a tail() function for viewing the last few elements of an
object.
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9.6.8 Generic functions

In Section 9.6.2, we saw that some functions automatically perform type
coercion. An example is the paste() function, which combines text values.
If we give it a value that is not text, it will automatically coerce it to text.
For example, the following code returns a number (the total number of
candies in the candy data frame).

R> sum(candy$counts)

[1] 36

If we use this value as an argument to the paste() function, the number
is automatically coerced to a text value to become part of the overall text
result.

R> paste("There are", sum(candy$counts), "long candies")

[1] "There are 36 long candies"

Generic functions are similar in that they will accept many different data
structures as arguments. However, instead of forcing the argument to be
what the function wants it to be, a generic function adapts itself to the
data structure it is given. Generic functions do different things when given
different data structures.

An example of a generic function is the summary() function. The result of
a call to summary() will depend on what sort of data structure we provide.
The summary information for a factor is a table giving how many times
each level of the factor appears.

R> summary(candy$shapes)

long oval round
4 4 4

If we provide a numeric vector, the result is a five-number summary, plus
the mean.
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R> summary(candy$counts)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 1 2 3 3 11

Generic functions are another reason why it is easy to work with data in R; a
single function will produce a sensible result no matter what data structure
we provide.

However, generic functions are also another reason why it is so important
to be aware of what data structure we are working with. Without knowing
what sort of data we are using, we cannot know what sort of result to expect
from a generic function.

Recap

When two vectors of different lengths are used together, the shorter
vector is often recycled to make it the same length as the longer vector.

Type coercion is the conversion of data values from one data type
or data structure to another. This may happen automatically within a
function, so care should be taken to make sure that data values returned
by a function have the expected data type or data structure.

Any data structure may have attributes, which provide additional infor-
mation about the data structure. These are in the form of a list of data
values that are attached to the main data structure.

All data structures have a class.

Basic data manipulations such as subsetting, arithmetic, and compar-
isons, should still work even with unfamiliar classes.

Dates and formulas are important examples of special classes.

A generic function is a function that produces a different result depend-
ing on the class of its arguments.
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9.7 Data import/export

Almost all of the examples so far have used data that are typed explicitly
as R expressions. In practice, data usually reside in one or more files of
various formats and in some form of mass storage. This section looks at R
functions that can be used to read data into R from such external files.

We will look at functions that deal with all of the different data storage
options that were discussed in Chapter 5: plain text files, XML documents,
binary files, spreadsheets, and databases.

We will also look at some functions that go the other way and write a data
structure from RAM to external mass storage.

RAM
Mass

Storage

9.7.1 The working directory

This section provides a little more information about how the R software
environment works, with respect to reading and writing files.

Any files created during an R session are created in the current working
directory of the session, unless an explicit path or folder or directory is
specified. Similarly, when files are read into an R session, they are read
from the current working directory.

On Linux, the working directory is the directory that the R session was
started in. This means that the standard way to work on Linux is to create
a directory for a particular project, put any relevant files in that directory,
change into that directory, and then start an R session.

On Windows, it is typical to start R by double-clicking a shortcut or by
selecting from the list of programs in the ‘Start’ menu. This approach will,
by default, set the working directory to one of the directories where R was
installed, which is a bad place to work. Instead, it is a good idea to work
in a separate directory for each project, create a shortcut to R within that
directory, and set the ‘Start in’ field on the properties dialog of the shortcut
to be the directory for that project. An alternative is to use the setwd()
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function or the ‘Change dir’ option on the ‘File’ menu to explicitly change the
working directory to something appropriate when working on a particular
project.

9.7.2 Specifying files

In order to read or write a file, the first thing we need to be able to do is
specify which file we want to work with. Any function that works with a
file requires a precise description of the name of the file and the location of
the file.

A filename is just a character value, e.g., "pointnemotemp.txt", but spec-
ifying the location of a file can involve a path, which describes a location
on a persistent storage medium, such as a hard drive.

The best way to specify a path in R is via the file.path() function be-
cause this avoids the differences between path descriptions on different op-
erating systems. For example, the following code generates a path to the
file pointnemotemp.txt within the directory LAS (on a Linux system).

R> file.path("LAS", "pointnemotemp.txt")

[1] "LAS/pointnemotemp.txt"

The file.choose() function can be used to allow interactive selection of a
file. This is particularly effective on Windows because it provides a familiar
file selection dialog box.

9.7.3 Text formats

R has functions for reading in the standard types of plain text formats:
delimited formats, especially CSV files, and fixed-width formats (see Sec-
tion 5.2). We will briefly describe the most important functions and then
demonstrate their use in an example.

The read.table() function works for data in a delimited format. By de-
fault, the delimiter is whitespace (spaces and tabs), but an alternative may
be specified via the sep argument. There is a read.csv() function for the
special case of CSV files, and for data in a fixed-width format, there is the
read.fwf() function.
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The important arguments to these functions are the name of the external
file and information about the format of the file. For example, in order to
read a file in a fixed-width format with the read.fwf() function, we have
to supply the widths of the fields in the file via the widths argument.

The result returned by all of these functions is a data frame.

Another important piece of information required when reading text files is
the data type of each column of data in the file. Everything in the file is
text, including numeric values, which are stored as a series of digits, and
this means that some of the text values from the file may need to be coerced
so that they are stored as an appropriate data type in the resulting data
frame.

The general rule is that, if all values within a column in the text file are
numbers, then the values in that column are coerced to a numeric vector.
Otherwise, the values are used to create a factor. Several arguments are
provided to control the coercion from the text values in the file to a specific
data type; we will see examples in the next section and in other case studies
throughout this chapter.

Another function that can be used to read text files is the readLines()
function. The result in this case is a character vector, where each line of
the text file becomes a separate element of the vector. The text values from
the file become text values within RAM, so no type coercion is necessary in
this case.

This function is useful for processing a file that contains text, but not in
a standard plain text format. For example, the readLines() function was
used to read the HTML code from the World Population Clock web site in
Section 9.1. Section 9.9 discusses tools for processing data that have been
read into R as text.

The following case study provides some demonstrations of the use of these
functions for reading text files.

9.7.4 Case study: Point Nemo (continued)

The temperature data obtained from NASA’s Live Access Server for the
Pacific Pole of Inaccessibility (see Section 1.1) were delivered in a plain text
format (see Figure 9.5, which reproduces Figure 1.2 for convenience). How
can we load this temperature information into R?
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A read.table() example

One way to view the format of the file in Figure 9.5 is that the data start on
the ninth line and data values within each row are separated by whitespace.
This means that we can use the read.table() function to read the Point
Nemo temperature information, as shown below.

R> pointnemodelim <-
read.table(file.path("LAS", "pointnemotemp.txt"),

skip=8)

R> pointnemodelim

V1 V2 V3 V4 V5
1 16-JAN-1994 0 / 1: 278.9
2 16-FEB-1994 0 / 2: 280.0
3 16-MAR-1994 0 / 3: 278.9
4 16-APR-1994 0 / 4: 278.9
5 16-MAY-1994 0 / 5: 277.8
6 16-JUN-1994 0 / 6: 276.1
...

In the above example, and in a number of examples throughout the rest
of the chapter, the output displayed by R has been manually truncated to
avoid wasting too much space on the page. This truncation is indicated by
the use of ... at the end of a line of output, to indicate that there are
further columns that are not shown, or ... on a line by itself, to indicate
that there are further rows that are not shown.

By default, read.table() assumes that the text file contains a data set
with one case on each row and that each row contains multiple values, with
each value separated by whitespace (one or more spaces or tabs). The skip
argument is used to ignore the first few lines of a file when, for example,
there is header information or metadata at the start of the file before the
core data values.

The result of this function call is a data frame, with a variable for each
column of values in the text file. In this case, there are four instances
of whitespace on each line, so each line is split into five separate values,
resulting in a data frame with five columns.
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VARIABLE : Mean TS from clear sky composite (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 48 points (TIME)

LONGITUDE: 123.8W(-123.8)

LATITUDE : 48.8S

123.8W

23

16-JAN-1994 00 / 1: 278.9

16-FEB-1994 00 / 2: 280.0

16-MAR-1994 00 / 3: 278.9

16-APR-1994 00 / 4: 278.9

16-MAY-1994 00 / 5: 277.8

16-JUN-1994 00 / 6: 276.1

...

Figure 9.5: The first few lines of the plain text output from the Live Access Server

for the surface temperature at Point Nemo. This is a reproduction of Figure 1.2.

The types of variables are determined automatically. If a column only con-
tains numbers, the variable is numeric; otherwise, the variable is a factor.

The names of the variables in the data frame can be read from the file, or
specified explicitly in the call to read.table(). Otherwise, as in this case,
R will generate a unique name for each column: V1, V2, V3, etc.

The result in this case is not perfect because we end up with several columns
of junk that we do not want (V2 to V4). We can use a few more arguments
to read.table() to improve things greatly.

R> pointnemodelim <-
read.table(file.path("LAS", "pointnemotemp.txt"),

skip=8,
colClasses=c("character",

"NULL", "NULL", "NULL",
"numeric"),

col.names=c("date", "", "", "", "temp"))
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R> pointnemodelim

date temp
1 16-JAN-1994 278.9
2 16-FEB-1994 280.0
3 16-MAR-1994 278.9
4 16-APR-1994 278.9
5 16-MAY-1994 277.8
6 16-JUN-1994 276.1
...

The colClasses argument allows us to control the types of the variables
explicitly. In this case, we have forced the first variable to be just text (these
values are dates, not categories). There are five columns of values in the
text file (treating whitespace as a column break), but we are not interested
in the middle three, so we use "NULL" to indicate that these columns should
just be ignored. The last column, the temperature values, is numeric.

It is common for the names of the variables to be included as the first line
of a text file (the header argument can be used to read variable names from
such a file). In this case, there is no line of column names in the file, so
we provide the variable names explicitly, as a character vector, using the
col.names argument.

The dates can be converted from character values to date values in a separate
step using the as.Date() function.

R> pointnemodelim$date <- as.Date(pointnemodelim$date,
format="%d-%b-%Y")

R> pointnemodelim

date temp
1 1994-01-16 278.9
2 1994-02-16 280.0
3 1994-03-16 278.9
4 1994-04-16 278.9
5 1994-05-16 277.8
6 1994-06-16 276.1
...
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The format argument contains special sequences that tell as.Date() where
the various components of the date are within the character values. The %d
means that there are two digits for the day, the %b means that the month is
given as an abbreviated month name, and the %Y means that there are four
digits for the year. The dashes are literal dash characters.

The way that these components map to the original character value for the
first date is shown below.

two-digit day, %d: 16-JAN-1994
abbreviated month name, %b: 16-JAN-1994

four-digit year, %Y: 16-JAN-1994
literal dashes: 16-JAN-1994

Thus, for example, the original character value 16-JAN-1994 becomes the
date value 1994-01-16.

A read.fwf() example

Another way to view the Point Nemo text file in Figure 9.5 is as a fixed-
width format file. For example, the date values always reside in the first
12 characters of each line and the temperature values are always between
character 24 and character 28. This means that we could also read the file
using read.fwf(), as shown below.

R> pointnemofwf <-
read.fwf(file.path("LAS", "pointnemotemp.txt"),

skip=8,
widths=c(-1, 11, -11, 5),
colClasses=c("character", "numeric"),
col.names=c("date", "temp"))

R> pointnemofwf
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date temp
1 16-JAN-1994 278.9
2 16-FEB-1994 280.0
3 16-MAR-1994 278.9
4 16-APR-1994 278.9
5 16-MAY-1994 277.8
6 16-JUN-1994 276.1
...

Again, the result is a data frame. As for the call to read.table(), we have
specified the data type for each column, via the colClasses argument, and
a name for each column, via col.names.

The widths argument specifies how wide each column of data is, with neg-
ative values used to ignore the specified number of characters. In this case,
we have ignored the very first character on each line, we treat the next 11
characters as a date value, we ignore characters 13 to 23, and the final 5
characters are treated as the temp value.

The dates could be converted from character values to dates in exactly the
same way as before.

A readLines() example

The two examples so far have demonstrated reading in the raw data for this
data set, but so far we have completely ignored all of the metadata in the
head of the file. This information is also very important and we would like
to have some way to access it.

The readLines() function can help us here, at least in terms of getting raw
text into R. The following code reads the first eight lines of the text file into
a character vector.

R> readLines(file.path("LAS", "pointnemotemp.txt"),
n=8)

[1] " VARIABLE : Mean TS from clear sky composite (kelvin)"

[2] " FILENAME : ISCCPMonthly_avg.nc"

[3] " FILEPATH : /usr/local/fer_data/data/"

[4] " SUBSET : 48 points (TIME)"

[5] " LONGITUDE: 123.8W(-123.8)"

[6] " LATITUDE : 48.8S"

[7] " 123.8W "

[8] " 23"
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date,temp
1994-01-16,278.9
1994-02-16,280
1994-03-16,278.9
1994-04-16,278.9
1994-05-16,277.8
1994-06-16,276.1
...

Figure 9.6: The first few lines of the plain text output from the Live Access

Server for the surface temperature at Point Nemo in Comma-Separated Value

(CSV) format. This is a reproduction of Figure 5.4.

Section 9.9 will describe some tools that could be used to extract the meta-
data values from this text.

A write.csv() example

As a simple demonstration of the use of functions that can write plain text
files, we will now export the R data frame, pointnemodelim, to a new CSV
file. This will create a much tidier plain text file that contains just the date
and temperature values. Creating such a file is sometimes a necessary step
in preparing a data set for analysis with a specific piece of analysis software.

The following code uses the write.csv() function to create a file called
"pointnemoplain.csv" that contains the Point Nemo data (see Figure 9.6).

R> write.csv(pointnemodelim, "pointnemoplain.csv",
quote=FALSE, row.names=FALSE)

The first argument in this function call is the data frame of values. The
second argument is the name of the file to create.

The quote argument controls whether quote-marks are printed around char-
acter values and the row.names argument controls whether an extra column
of unique names is printed at the start of each line. In both cases, we have
turned these features off by specifying the value FALSE.

We will continue to use the Point Nemo data set, in various formats, through-
out the rest of this section.
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9.7.5 Binary formats

As discussed in Section 5.3, it is only possible to extract data from a bi-
nary file format with an appropriate piece of software that understands the
particular binary format.

A number of R packages exist for reading particular binary formats. For
example, the foreign package contains functions for reading files produced
by other popular statistics software systems, such as SAS, SPSS, Systat,
Minitab, and Stata. As an example of support for a more general binary
format, the ncdf package provides functions for reading netCDF files.

We will look again at the Point Nemo temperature data (see Section 1.1),
this time in a netCDF format, to demonstrate a simple use of the ncdf
package.

The following code loads the ncdf package and reads the file
pointnemotemp.nc.

R> library("ncdf")
R> nemonc <- open.ncdf(file.path("LAS",

"pointnemotemp.nc"))

One difference with this example compared to the functions in the previous
section is that the result of reading the netCDF file is not a data frame.

R> class(nemonc)

[1] "ncdf"

This data structure is essentially a list that contains the information from
the netCDF file. We can extract components of this list by hand, but a
more convenient approach is to use several other functions provided by the
ncdf package to extract the most important pieces of information from the
ncdf data structure.

If we display the nemonc data structure, we can see that the file contains a
single variable called Temperature.
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R> nemonc

file LAS/pointnemotemp.nc has 1 dimensions:
Time Size: 48
------------------------
file LAS/pointnemotemp.nc has 1 variables:
double Temperature[Time] Longname:Temperature

We can extract that variable from the file with the function get.var.ncdf().

R> nemoTemps <- get.var.ncdf(nemonc, "Temperature")
R> nemoTemps

[1] 278.9 280.0 278.9 278.9 277.8 276.1 276.1 275.6 275.6
[10] 277.3 276.7 278.9 281.6 281.1 280.0 278.9 277.8 276.7
[19] 277.3 276.1 276.1 276.7 278.4 277.8 281.1 283.2 281.1
[28] 279.5 278.4 276.7 276.1 275.6 275.6 276.1 277.3 278.9
[37] 280.5 281.6 280.0 278.9 278.4 276.7 275.6 275.6 277.3
[46] 276.7 278.4 279.5

The netCDF file of Point Nemo data also contains information about the
date that each temperature value corresponds to. This variable is called
"Time". The following code reads this information from the file.

R> nemoTimes <- get.var.ncdf(nemonc, "Time")
R> nemoTimes

[1] 8781 8812 8840 8871 8901 8932 8962 8993 9024
[10] 9054 9085 9115 9146 9177 9205 9236 9266 9297
[19] 9327 9358 9389 9419 9450 9480 9511 9542 9571
[28] 9602 9632 9663 9693 9724 9755 9785 9816 9846
[37] 9877 9908 9936 9967 9997 10028 10058 10089 10120
[46] 10150 10181 10211

Unfortunately, these do not look very much like dates.

This demonstrates that, even with binary file formats, it is often necessary
to coerce data from the storage format that has been used in the file to a
more convenient format for working with the data in RAM.

The netCDF format only allows numbers or text to be stored, so this date
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information has been stored in the file as numbers. However, additional in-
formation, metadata, can be stored along with the variable data in a netCDF
file; netCDF calls this additional information “attributes”. In this case, the
meaning of these numbers representing dates has been stored as the “units”
attribute of this variable and the following code uses the att.get.ncdf()
function to extract that attribute from the file.

R> att.get.ncdf(nemonc, "Time", "units")

$hasatt
[1] TRUE

$value
[1] "number of days since 1970-01-01"

This tells us that the dates were stored as a number of days since January
1st 1970. Using this information, we can convert the numbers from the file
back into real dates with the as.Date() function. The origin argument
allows us to specify the meaning of the numbers.

R> nemoDates <- as.Date(nemoTimes, origin="1970-01-01")

R> nemoDates

[1] "1994-01-16" "1994-02-16" "1994-03-16" "1994-04-16"
[5] "1994-05-16" "1994-06-16" "1994-07-16" "1994-08-16"
[9] "1994-09-16" "1994-10-16" "1994-11-16" "1994-12-16"
...

In most cases, where a function exists to read a particular binary format,
there will also be a function to write data out in that format. For example,
the ncdf package also provides functions to save data from RAM to an
external file in netCDF format.

9.7.6 Spreadsheets

When data is stored in a spreadsheet, one common approach is to save the
data in a text format as an intermediate step and then read the text file
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into R using the functions from Section 9.7.3.

RAM
Mass

Storage
Excel R

This makes the data easy to share, because text formats are very portable,
but it has the disadvantage that another copy of the data is created.

This is less efficient in terms of storage space and it creates issues if the
original spreadsheet is updated.

If changes are made to the original spreadsheet, at best, there is extra work
to be done to update the text file as well. At worst, the text file is forgotten
and the update does not get propagated to other places.

There are several packages that provide ways to directly read data from
a spreadsheet into R. One example is the (Windows only) xlsReadWrite
package, which includes the read.xls() function for reading data from an
Excel spreadsheet.

CPU

RAM

CPU

Excel R

Figure 9.7 shows a screen shot of the Point Nemo temperature data (see
Section 1.1) stored in a Microsoft Excel spreadsheet.

These data can be read into R using the following code.

R> library("xlsReadWrite")
R> read.xls("temperatures.xls", colNames=FALSE)
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Figure 9.7: Part of the Excel spreadsheet containing the surface temperatures at

Point Nemo.

V1 V2
1 34350 278.9
2 34381 280.0
3 34409 278.9
4 34440 278.9
5 34470 277.8
6 34501 276.1
...

Notice that the date information has come across as numbers. This is an-
other example of the type coercion that can easily occur when transferring
between different formats.

As before, we can easily convert the numbers to dates if we know the refer-
ence date for these numbers. Excel represents dates as the number of days
since the 0th of January 1900, so we can recover the real dates with the
following code.

R> dates <- as.Date(temps$V1 - 2, origin="1900-01-01")

R> dates

[1] "1994-01-16" "1994-02-16" "1994-03-16" "1994-04-16"
[5] "1994-05-16" "1994-06-16" "1994-07-16" "1994-08-16"
[9] "1994-09-16" "1994-10-16" "1994-11-16" "1994-12-16"
...
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We have to subtract 2 in this calculation because the Excel count starts from
the 0th rather than the 1st of January and because Excel thinks that 1900
was a leap year (apparently to be compatible with the Lotus 123 spreadsheet
software). Sometimes, computer technology is not straightforward.

The gdata package provides another way to access Excel spreadsheets with
its own read.xls() function and it is also possible to access Excel spread-
sheets via a technology called ODBC (see Section 9.7.8).

9.7.7 XML

In this section, we look at how to get information that has been stored in
an XML document into R.

Although XML files are plain text files, functions like read.table() from
Section 9.7.3 are of no use because they only work with data that are ar-
ranged in a plain text format, with the data laid out in rows and columns
within the file.

It is possible to read an XML document into R as a character vector using a
standard function like readLines(). However, extracting the information
from the text is not trivial because it requires knowledge of XML.

Fortunately, there is an R package called XML that contains functions for
reading and extracting data from XML files into R.

We will use the Point Nemo temperature data, in an XML format, to demon-
strate some of the functions from the XML package. Figure 9.8 shows one
possible XML format for the the Point Nemo temperature data.

There are several approaches to working with XML documents in R using
the XML package, but in this section, we will only consider the approach
that allows us to use XPath queries (see Section 7.3.1).

The first thing to do is to read the XML document into R using the function
xmlTreeParse().

R> library("XML")

R> nemoDoc <-
xmlParse(file.path("LAS",

"pointnemotemp.xml"))
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<?xml version="1.0"?>

<temperatures>

<variable>Mean TS from clear sky composite (kelvin)</variable>

<filename>ISCCPMonthly_avg.nc</filename>

<filepath>/usr/local/fer_dsets/data/</filepath>

<subset>93 points (TIME)</subset>

<longitude>123.8W(-123.8)</longitude>

<latitude>48.8S</latitude>

<case date="16-JAN-1994" temperature="278.9" />

<case date="16-FEB-1994" temperature="280" />

<case date="16-MAR-1994" temperature="278.9" />

<case date="16-APR-1994" temperature="278.9" />

<case date="16-MAY-1994" temperature="277.8" />

<case date="16-JUN-1994" temperature="276.1" />

...

</temperatures>

Figure 9.8: The first few lines of the surface temperature at Point Nemo in an

XML format. This is a reproduction of Figure 5.16.

The main argument to this function is the name and location of the XML
file.

It is important to point out that the data structure that is created in RAM
by this code, nemoDoc, is not a data frame.

R> class(nemoDoc)

[1] "XMLInternalDocument" "XMLAbstractDocument"
[3] "oldClass"

We must use other special functions from the XML package to work with
this data structure.

In particular, the getNodeSet() function allows us to select elements from
this data structure using XPath expressions.

In the following example, we extract the temperature attribute values
from all case elements in the XML document. The XPath expression
"/temperatures/case/@temperature" selects all of the temperature at-
tributes of the case elements within the root temperatures element.
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R> nemoDocTempText <-
unlist(getNodeSet(nemoDoc,

"/temperatures/case/@temperature"),
use.names=FALSE)

R> nemoDocTempText

[1] "278.9" "280" "278.9" "278.9" "277.8" "276.1" "276.1"
[8] "275.6" "275.6" "277.3" "276.7" "278.9" "281.6" "281.1"
[15] "280" "278.9" "277.8" "276.7" "277.3" "276.1" "276.1"
...

The first argument to getNodeSet() is the data structure previously created
by xmlParse() and the second argument is the XPath expression. The
result of the call to getNodeSet() is a list and the call to unlist() converts
the list to a vector.

One important point about the above result, nemoDocTempText, is that it
is a character vector. This reflects the fact that everything is stored as text
within an XML document. If we want to have numeric values to work with,
we need to coerce these text values into numbers.

Before we do that, the following code shows how to extract the date values
from the XML document as well. The only difference from the previous call
is the XPath that we use.

R> nemoDocDateText <-
unlist(getNodeSet(nemoDoc,

"/temperatures/case/@date"),
use.names=FALSE)

R> nemoDocDateText

[1] "16-JAN-1994" "16-FEB-1994" "16-MAR-1994" "16-APR-1994"
[5] "16-MAY-1994" "16-JUN-1994" "16-JUL-1994" "16-AUG-1994"
[9] "16-SEP-1994" "16-OCT-1994" "16-NOV-1994" "16-DEC-1994"
...

Again, the values are all text, so we need to coerce them to dates. The
following code performs the appropriate type coercions and combines the
dates and temperatures into a data frame.
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R> data.frame(date=as.Date(nemoDocDateText, "%d-%b-%Y"),
temp=as.numeric(nemoDocTempText))

date temp
1 1994-01-16 278.9
2 1994-02-16 280.0
3 1994-03-16 278.9
4 1994-04-16 278.9
5 1994-05-16 277.8
6 1994-06-16 276.1
...

With this approach to reading XML files, there is one final step: we need
to signal that we are finished with the file by calling the free() function.

R> free(nemoDoc)

9.7.8 Databases

Very large data sets are often stored in relational databases. As with spread-
sheets, a simple approach to extracting information from the database is to
export it from the database to text files and work with the text files. This
is an even worse option for databases than it was for spreadsheets because
it is more common to extract just part of a database, rather than an en-
tire spreadsheet. This can lead to several different text files from a single
database, and these are even harder to maintain if the database changes.

A superior option is to extract information directly from the database man-
agement system into R.

CPU

RAM

CPU

SQLite R

There are packages for connecting directly to several major database man-
agement systems. Two main approaches exist, one based on the DBI pack-
age and one based on the RODBC package.

The DBI package defines a set of standard (generic) functions for commu-
nicating with a database, and a number of other packages, e.g., RMySQL
and RSQLite, build on that to provide functions specific to a particular
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database system. The important functions to know about with this ap-
proach are:

dbDriver()
to create a “device driver”, which contains information about a par-
ticular database management system.

dbConnect(drv)
to create a “connection” to a database. Requires a device driver, drv,
as created by dbDriver().

dbGetQuery(conn, statement)
to send the SQL command, statement, to the database and receive
a result. The result is a data frame. Requires a connection, conn, as
created by dbConnect().

dbDisconnect(conn)
to sever the connection with the database and release resources.

The RODBC package defines functions for communicating with any ODBC
(Open Database Connectivity) compliant software. This allows connections
with many different types of software, including, but not limited to, most
database management systems. For example, this approach can also be used
to extract information from a Microsoft Excel spreadsheet.

The important functions to know about with this approach are:

odbcConnect()
to connect to the ODBC application.

sqlQuery(channel, query)
to send an SQL command to the database and receive a result, as a
data frame. Requires a connection, channel, that has been created
by odbcConnect().

odbcClose(channel)
to sever the ODBC connection and release resources.

The RODBC approach makes it possible to connect to a wider range of
other software systems, but it may involve installation of additional soft-
ware.

The simplest approach of all is provided by the RSQLite package because
it includes the complete SQLite application, so no other software needs to
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be installed. However, this will only be helpful if the data are stored in an
SQLite database.

The next section demonstrates an example usage of the RSQLite package.

9.7.9 Case study: The Data Expo (continued)

The Data Expo data set (see Section 5.2.8) contains several different atmo-
spheric measurements, all measured at 72 different time periods and 576
different locations. These data have been stored in an SQLite database,
with a table for location information, a table for time period information,
and a table of the atmospheric measurements (see Section 7.1).

The following SQL code extracts information for the first two locations in
the location table.

SELECT *
FROM location_table
WHERE ID = 1 OR ID = 2;

The following code carries out this query from within R. The first step is to
connect to the database.

R> library("RSQLite")

R> con <- dbConnect(dbDriver("SQLite"),
dbname="NASA/dataexpo")

Having established the connection, we can send SQL code to the DBMS.

R> result <-
dbGetQuery(con,

"SELECT *
FROM location_table
WHERE ID = 1 OR ID = 2")

R> result

ID longitude latitude elevation
1 1 -113.75 36.25 1526.25
2 2 -111.25 36.25 1759.56

Notice that the result is a data frame. The final step is to release our
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connection to SQLite.

R> dbDisconnect(con)

[1] TRUE

Recap

There are functions for reading plain text files in both delimited and
fixed-width formats. These functions create a data frame from the
data values in the file.

For many binary formats and spreadsheets, there exist packages with
special functions for reading files in the relevant format.

The XML package provides special functions for working with XML
documents.

Several packages provide special functions for extracting data from re-
lational databases. The result of a query to a database is a data frame.

9.8 Data manipulation

This section describes a number of techniques for rearranging objects in R,
particularly larger data structures, such as data frames, matrices, and lists.

Some of these techniques are useful for basic exploration of a data set. For
example, we will look at functions for sorting data and for generating tables
of counts.

Other techniques will allow us to perform more complex tasks such as re-
structuring data sets to convert them from one format to another, splitting
data structures into smaller pieces, and combining smaller pieces to form
larger data structures.

This section is all about starting with a data structure in RAM and calcu-
lating new values, or just rearranging the existing values, to generate a new
data structure in RAM.
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CPU

RAM

In order to provide a motivation for some of these techniques, we will use
the following case study throughout this section.

9.8.1 Case study: New Zealand schools

New Zealand consists of the North Island, the South
Island, and Stewart Island (all visible in the image
to the left), plus over 100 other islands scattered
over the Pacific Ocean and the Southern Ocean.

The New Zealand Ministry of Education provides basic information for all
primary and secondary schools in the country.2 In this case study, we will
work with a subset of this information that contains the following variables:

ID
A unique numeric identifier for each school.

Name
The name of the school.

City
The city where the school is located.

Auth
The“authority”or ownership of the school. Possible values are Private,
State, State Integrated, and Other. A state integrated school is
one that was private in the past, but is now state-owned; these schools
usually have some special character (e.g., an emphasis on a particular
religious belief).

2The data were originally obtained from http://www.minedu.govt.nz/web/

downloadable/dl6434_v1/directory-schools-web.xls and similar files are now avail-
able from http://www.educationcounts.govt.nz/statistics/tertiary_education/

27436.

http://www.minedu.govt.nz/web/downloadable/dl6434_v1/directory-schools-web.xls
http://www.minedu.govt.nz/web/downloadable/dl6434_v1/directory-schools-web.xls
http://www.educationcounts.govt.nz/statistics/tertiary_education/27436
http://www.educationcounts.govt.nz/statistics/tertiary_education/27436
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"ID","Name","City","Auth","Dec","Roll"
1015,"Hora Hora School","Whangarei","State",2,318
1052,"Morningside School","Whangarei","State",3,200
1062,"Onerahi School","Whangarei","State",4,455
1092,"Raurimu Avenue School","Whangarei","State",2,86
1130,"Whangarei School","Whangarei","State",4,577
1018,"Hurupaki School","Whangarei","State",8,329
1029,"Kamo Intermediate","Whangarei","State",5,637
1030,"Kamo School","Whangarei","State",5,395
...

Figure 9.9: The first few lines of the file schools.csv. This file contains informa-

tion for all primary and secondary schools in New Zealand, in a CSV format.

Dec
The “decile” of the school, which is a measure of the socio-economic
status of the families of the students of the school. A lower decile
roughly corresponds to a poorer school population. The value ranges
from 1 (poorest) to 10 (richest).

Roll
The number of students enrolled at the school (as of July 2007).

These data have been stored in CSV format in a file called schools.csv
(see Figure 9.9).

Using functions from the last section, we can easily read this information
into R and store it as a data frame called schools. The as.is argument is
used to ensure that the school names are kept as text and are not treated
as a factor.

R> schools <-
read.csv(file.path("Schools", "schools.csv"),

as.is=2)

R> schools
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ID Name City Auth Dec Roll
1 1015 Hora Hora School Whangarei State 2 318
2 1052 Morningside School Whangarei State 3 200
3 1062 Onerahi School Whangarei State 4 455
4 1092 Raurimu Avenue School Whangarei State 2 86
5 1130 Whangarei School Whangarei State 4 577
6 1018 Hurupaki School Whangarei State 8 329
...

In cases like this, where the data set is much too large to view all at once,
we can make use of functions to explore the basic characteristics of the data
set. For example, it is useful to know just how large the data set is. The
following code tells us the number of rows and columns in the data frame.

R> dim(schools)

[1] 2571 6

There are 6 variables measured on 2,571 schools.

We will now go on to look at some data manipulation tasks that we could
perform on this data set.

9.8.2 Transformations

A common task in data preparation is to create new variables from an
existing data set. As an example, we will generate a new variable that
distinguishes between “large” schools and “small” schools.

This new variable will be based on the median school roll. Any school with
a roll greater than the median will be “large”.

R> rollMed <- median(schools$Roll)
R> rollMed

[1] 193

We can use the ifelse() function to generate a character vector recording
"large" and "small". The first argument to this function, called test,
is a logical vector. The second argument, called yes, provides the result
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wherever the test argument is TRUE and the third argument, called no,
provides the result wherever the test argument is FALSE.

R> size <- ifelse(test=schools$Roll > rollMed,
yes="large", no="small")

R> size

[1] "large" "large" "large" "small" "large" "large" "large"
[8] "large" "large" "large" "large" "large" "small" "large"
...

The diagram below illustrates that the ifelse() function selects elements
from the yes argument when the test argument is TRUE and from the no
argument when test is FALSE.

T a b
T a b
F a b
F a b
T a b

a
a

b
b

a

a
a
b
b
a

test yes no

We will now add this new variable to the original data frame to maintain
the correspondence between the school size labels and the original rolls that
they were derived from.

This can be done in several ways. The simplest is to assign a new variable
to the data frame, as shown in the following code. The data frame does not
have an existing column called Size, so this assignment adds a new column.

R> schools$Size <- size

R> schools
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ID Name City Auth Dec Roll Size

1 1015 Hora Hora School Whangarei State 2 318 large

2 1052 Morningside School Whangarei State 3 200 large

3 1062 Onerahi School Whangarei State 4 455 large

4 1092 Raurimu Avenue School Whangarei State 2 86 small

5 1130 Whangarei School Whangarei State 4 577 large

6 1018 Hurupaki School Whangarei State 8 329 large

...

Another approach, which gives the same result, is to use the transform()
function.

R> schools <- transform(schools, Size=size)

If we want to remove a variable from a data frame, we can assign the value
NULL to the appropriate column.

R> schools$size <- NULL

Alternatively, we can use subsetting to retain certain columns or leave out
certain columns. This approach is better if more than one column needs
to be removed. For example, the following code removes the new, seventh
column from the data frame.

R> schools <- schools[, -7]
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R> schools

ID Name City Auth Dec Roll
1 1015 Hora Hora School Whangarei State 2 318
2 1052 Morningside School Whangarei State 3 200
3 1062 Onerahi School Whangarei State 4 455
4 1092 Raurimu Avenue School Whangarei State 2 86
5 1130 Whangarei School Whangarei State 4 577
6 1018 Hurupaki School Whangarei State 8 329
...

Binning

The previous example converted a numeric variable into two categories,
small and large. The more general case is to convert a numeric variable into
any number of categories.

For example, rather than just dividing the schools into large and small,
we could group the schools into five different size categories. This sort of
transformation is possible using the cut() function.

R> rollSize <-
cut(schools$Roll, 5,

labels=c("tiny", "small", "medium",
"large", "huge"))

The first argument to this function is the numeric vector to convert. The
second argument says that the range of the numeric vector should be broken
into five equal-sized intervals. The schools are then categorized according
to which interval their roll lies within. The labels argument is used to
provide levels for the resulting factor.

Only the first few schools are shown below and they are all tiny; the impor-
tant point is that the result is a factor with five levels.

R> head(rollSize)

[1] tiny tiny tiny tiny tiny tiny
Levels: tiny small medium large huge
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A better view of the result can be obtained by counting how many schools
there are of each size. This is what the following code does; we will see more
about functions to create tables of counts in Section 9.8.4.

R> table(rollSize)

rollSize
tiny small medium large huge
2487 75 8 0 1

9.8.3 Sorting

Another common task that we can perform is to sort a set of values into
ascending or descending order.

In R, the function sort() can be used to arrange a vector of values in order,
but of more general use is the order() function, which returns the indices
of the sorted values.

As an example, the information on New Zealand schools is roughly ordered
by region, from North to South in the original file. We might want to order
the schools by size instead.

The following code sorts the Roll variable by itself.

R> sort(schools$Roll)

[1] 5 5 6 6 6 7 7 7 7 8 9 9 9 9 9 9 9 ...

There are clearly some very small schools in New Zealand.

It is also easy to sort in decreasing order, which reveals that the largest
school is the largest by quite some margin.

R> sort(schools$Roll, decreasing=TRUE)

[1] 5546 3022 2613 2588 2476 2452 2417 2315 2266 2170 ...

However, what would be much more useful would be to know which schools



i
i

“itdt” — 2012/7/30 — 8:05 — page 295 — #321 i
i

i
i

i
i

Data Processing 295

these are. That is, we would like to sort not just the school rolls, but the
entire schools data frame.

To do this, we use the order() function, as shown in the following code.

R> rollOrder <- order(schools$Roll, decreasing=TRUE)

R> rollOrder

[1] 1726 301 376 2307 615 199 467 373 389 241 ...

This result says that, in order to sort the data frame in descending roll
order, we should use row 1726 first, then row 301, then row 376, and so on.

These values can be used as indices for subsetting the entire schools data
frame, as shown in the following code. Recall that, by only specifying a row
index and by leaving the column index blank, we will get all columns of the
schools data frame.

R> schools[rollOrder, ]

ID Name City Auth Dec Roll

1726 498 Correspondence School Wellington State NA 5546

301 28 Rangitoto College Auckland State 10 3022

376 78 Avondale College Auckland State 4 2613

2307 319 Burnside High School Christchurch State 8 2588

615 41 Macleans College Auckland State 10 2476

199 43 Massey High School Auckland State 5 2452

467 54 Auckland Grammar Auckland State 10 2417

373 69 Mt Albert Grammar School Auckland State 7 2315

389 74 Mt Roskill Grammar Auckland State 4 2266

...

The largest body of New Zealand school students represents those gain-
ing public education via correspondence (from the governmental base in
Wellington), but most of the other large schools are in Auckland, which is
the largest city in New Zealand.

The other advantage of using the order() function is that more than one
vector of values may be given and any ties in the first vector will be broken
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by ordering on the second vector. For example, the following code sorts the
rows of the schools data frame first by city and then by number of students
(in decreasing order). In the case of the City variable, which is a character
vector, the order is alphabetic. Again, we are specifying decreasing=TRUE
to get descending order.

R> schools[order(schools$City, schools$Roll,
decreasing=TRUE), ]

ID Name City Auth Dec Roll

2548 401 Menzies College Wyndham State 4 356

2549 4054 Wyndham School Wyndham State 5 94

1611 2742 Woodville School Woodville State 3 147

1630 2640 Papatawa School Woodville State 7 27

2041 3600 Woodend School Woodend State 9 375

1601 399 Central Southland College Winton State 7 549

...

The first two schools are both in Wyndham, with the larger school first and
the smaller school second, then there are two schools from Woodville, larger
first and smaller second, and so on.

9.8.4 Tables of counts

Continuing our exploration of the New Zealand schools data set, we might
be interested in how many schools are private and how many are state-
owned. This is an example where we want to obtain a table of counts for
a categorical variable. The function table() may be used for this task.

R> authTable <- table(schools$Auth)

R> authTable

Other Private State State Integrated

1 99 2144 327

This result shows the number of times that each different value occurs in
the Auth variable. As expected, most schools are public schools, owned by
the state.

As usual, we should take notice of the data structure that this function has
returned.
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R> class(authTable)

[1] "table"

This is not one of the basic data structures that we have focused on. How-
ever, tables in R behave very much like arrays, so we can use what we already
know about working with arrays. For example, we can subset a table just
like we subset an array. If we need to, we can also convert a table to an
array, or even to a data frame.

As a brief side track, the table of counts above also shows that there is
only one school in the category "Other". How do we find that school? One
approach is to generate a logical vector and use that to subscript the data
frame, as in the following code.

R> schools[schools$Auth == "Other", ]

ID Name City Auth Dec Roll
2315 518 Kingslea School Christchurch Other 1 51

It turns out that this school is not state-owned, but still receives its fund-
ing from the government because it provides education for students with
learning or social difficulties.

Getting back to tables of counts, another question we might ask is how
the school decile relates to the school ownership. If we give the table()
function more than one argument, it will cross-tabulate the arguments, as
the following code demonstrates.

R> table(Dec=schools$Dec, Auth=schools$Auth)

Auth
Dec Other Private State State Integrated
1 1 0 259 12
2 0 0 230 22
3 0 2 208 35
4 0 6 219 28
5 0 2 214 38
6 0 2 215 34
7 0 6 188 45
8 0 11 200 45
9 0 12 205 37
10 0 38 205 31
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Again, the result of this function call is a table data structure. This time it
is a two-dimensional table, which is very similar to a two-dimensional array.

In this example, we have provided names for the arguments, Dec and Auth,
and these have been used to provide overall labels for each dimension of the
table.

This table has one row for each decile and one column for each type of
ownership. For example, the third row of the table tells us that there are
2 private schools, 209 state schools, and 35 state integrated schools with a
decile of 3.

The most obvious feature of this result is that private schools tend to be in
wealthier areas, with higher deciles.

Another function that can be used to generate tables of counts is the
xtabs() function. This is very similar to the table() function, except
that the factors to cross-tabulate are specified in a formula, rather than as
separate arguments.

The two-dimensional table above could also be generated with the following
code.

R> xtabs( ~ Dec + Auth, data=schools)

One advantage of this approach is that the symbols used in the formula are
automatically found in the data frame provided in the data argument, so,
for example, there is no need to specify the Auth variable as schools$Auth,
as we had to do in the previous call to the table() function.

9.8.5 Aggregation

R provides many functions for calculating numeric summaries of data. For
example, the min() and max() functions calculate minimum and maximum
values for a vector, sum() calculates the sum, and the mean() function
calculates the average value. The following code calculates the average
value of the number of students enrolled at New Zealand schools.

R> mean(schools$Roll)

[1] 295.4737
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This “grand mean” value is not very interesting by itself. What would be
more interesting would be to calculate the average enrolment for different
types of schools and compare, for example, state schools and private schools.

We could calculate these values individually, by extracting the relevant sub-
set of the data. For example, the following code extracts just the enrolments
for private schools and calculates the mean for those values.

R> mean(schools$Roll[schools$Auth == "Private"])

[1] 308.798

However, a better way to work is to let R determine the subsets and calculate
all of the means in one go. The aggregate() function provides one way to
perform this sort of task.

The following code uses aggregate() to calculate the average enrolment for
New Zealand schools broken down by school ownership.

There are four different values of schools$Auth, so the result is four av-
erages. We can easily check the answer for Other schools because there is
only one such school and we saw on page 297 that this school has a roll of
51.

R> aggregate(schools["Roll"],
by=list(Ownership=schools$Auth),
FUN=mean)

Ownership Roll
1 Other 51.0000
2 Private 308.7980
3 State 300.6301
4 State Integrated 258.3792

This result shows that the average school size is remarkably similar for all
types of school ownership (ignoring the "Other" case because there is only
one such school).

The aggregate() function can take a bit of getting used to, so we will take
a closer look at the arguments to this function.

There are three arguments to the aggregate() call. The first argument
provides the values that we want to average. In this case, these values are
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the enrolments for each school. A minor detail is that we have provided
a data frame with only one column, the Roll variable, rather than just a
vector. It is possible to provide either a vector or a data frame, but the
advantage of using a data frame is that the second column in the result has
a sensible name.

We could have used schools$Roll, a vector, instead of schools["Roll"],
a data frame, but then the right-hand column of the result would have had
an uninformative name, x.

The second argument to the aggregate() function is called by and the value
must be a list. In this case, there is only one component in the list, the Auth
variable, which describes the ownership of each school. This argument is
used to generate subsets of the first argument. In this case, we subset
the school enrolments into four groups, corresponding to the four different
types of school ownership. By providing a name for the list component,
Ownership, we control the name of the first column in the result. If we had
not done this, then the first column of the result would have had a much
less informative name, Group.1.

The third argument to the aggregate() function, called FUN, is the name of
a function. This function is called on each subset of the data. In this case,
we have specified the mean() function, so we have asked for the average
enrolments to be calculated for each different type of school ownership. It is
possible to specify any function name here, as long as the function returns
only a single value as its result. For example, sum(), min(), and max() are
all possible alternatives.

The diagram below provides a conceptual view of how aggregate() works.

3 a
5 a
1 b
4 a
5 b

3 a
5 a
4 a

1 b
5 b

4 a

3 b

4a
3b

subset mean() combine

In the terminology of data queries in Section 7.2.1, the aggregate() func-
tion acts very much like an SQL query with a GROUP BY clause.

Another point to make about the aggregate() function is that the value
returned by the function is a data frame. This is convenient because data
frames are easy to understand and we have lots of tools for working with
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data frames.

We will now look at a slightly more complicated use of the aggregate()
function. For this example, we will generate a new vector called rich that
records whether each school’s decile is greater than 5. The following code
creates the new vector.

R> rich <- schools$Dec > 5

R> rich

[1] FALSE FALSE FALSE FALSE FALSE TRUE FALSE ...

The vector rich provides a crude measure of whether each school is in a
wealthy area or not. We will now use this variable in a more complicated
call to aggregate().

Because the by argument to aggregate() is a list, it is possible to provide
more than one factor. This means that we can produce a result for all
possible combinations of two or more factors. In the following code, we
provide a list of two factors as the by argument, so the result will be the
average enrolments broken down by both the type of school ownership and
whether the school is in a wealthy area.

R> aggregate(schools["Roll"],
by=list(Ownership=schools$Auth,

Rich=rich),
FUN=mean)

Ownership Rich Roll
1 Other FALSE 51.0000
2 Private FALSE 151.4000
3 State FALSE 261.7487
4 State Integrated FALSE 183.2370
5 Private TRUE 402.5362
6 State TRUE 338.8243
7 State Integrated TRUE 311.2135

The result of the aggregation is again a data frame, but this time there are
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three columns. The first two columns indicate the different groups and the
third gives the average for each group.

The result suggests that, on average, schools in wealthier areas have more
students.

One limitation of the aggregate() function is that it only works with func-
tions that return a single value. If we want to calculate, for example, the
range of enrolments for each type of school—the minimum and the max-
imum together—the range() function will perform the calculation for us,
but we cannot use range() with aggregate() because it returns two values.
Instead, we need to use the by() function.

The following code calculates the range of enrolments for all New Zealand
schools, demonstrating that the result is a numeric vector containing two
values, 5 and 5546.

R> range(schools$Roll)

[1] 5 5546

The following code uses the by() function to generate the range of enrol-
ments broken down by school ownership.

R> rollRanges <-
by(schools["Roll"],

INDICES=list(Ownership=schools$Auth),
FUN=range)

R> rollRanges

Ownership: Other
[1] 51 51
---------------------------------------------
Ownership: Private
[1] 7 1663
---------------------------------------------
Ownership: State
[1] 5 5546
---------------------------------------------
Ownership: State Integrated
[1] 18 1475
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The arguments to the by() function are very similar to the arguments for
aggregate() (with some variation in the argument names) and the effect is
also very similar: the first argument is broken into subsets, with one subset
for each different value in the second argument, and the third argument
provides a function to call on each subset.

However, the result of by() is not a data frame like for aggregate(). It is
a very different sort of data structure.

R> class(rollRanges)

[1] "by"

We have not seen this sort of data structure before, but a by object behaves
very much like a list, so we can work with this result just like a list.

The result of the call to by() gives the range of enrolments for each type of
school ownership. It suggests that most of the large schools are owned by
the state.

9.8.6 Case study: NCEA

A
+ The concept of measuring student achievement by assigning

a grade was first introduced by William Farish, a tutor at
the University of Cambridge, in 1792.

In order to motivate some of the remaining sections, here we introduce
another, related New Zealand schools data set for us to work with.

The National Certificates of Educational Achievement (NCEA) are used to
measure students’ learning in New Zealand secondary schools. Students
usually attempt to achieve NCEA Level 1 in their third year of secondary
schooling, Level 2 in their fourth year, and Level 3 in their fifth and final
year of secondary school.

Each year, information on the percentage of students who achieved each
NCEA level is reported for all New Zealand secondary schools. In this case
study, we will look at NCEA achievement percentages for 2007.

The data are stored in a plain text, colon-delimited format, in a file called
NCEA2007.txt. There are four columns of data: the school name, plus the
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Name:Level1:Level2:Level3

Al-Madinah School:61.5:75:0

Alfriston College:53.9:44.1:0

Ambury Park Centre for Riding Therapy:33.3:20:0

Aorere College:39.5:50.2:30.6

Auckland Girls' Grammar School:71.2:78.9:55.5

Auckland Grammar:22.1:30.8:26.3

Auckland Seventh-Day Adventist H S:50.8:34.8:48.9

Avondale College:57.3:49.8:44.6

Baradene College:89.3:89.7:88.6

...

Figure 9.10: The first few lines of the file NCEA2007.txt. This file contains in-

formation about the percentage of students gaining NCEA qualifications at New

Zealand secondary schools in 2007. This is a plain text, colon-delimited format.

three achievement percentages for the three NCEA levels. Figure 9.10 shows
the first few lines of the file.

The following code uses the read.table() function to read these data into a
data frame called NCEA. We have to specify the colon delimiter via sep=":".
Also, because some school names have an apostrophe, we need to specify
quote="". Otherwise, the apostrophes are interpreted as the start of a text
field. The last two arguments specify that the first line of the file contains
the variable names (header=TRUE) and that the first column of school names
should be treated as character data (not as a factor).

R> NCEA <- read.table(file.path("Schools", "NCEA2007.txt"),
sep=":", quote="",
header=TRUE, as.is=TRUE)

R> NCEA

Name Level1 Level2 Level3
1 Al-Madinah School 61.5 75.0 0.0
2 Alfriston College 53.9 44.1 0.0
3 Ambury Park Centre for Riding Therapy 33.3 20.0 0.0
4 Aorere College 39.5 50.2 30.6
5 Auckland Girls' Grammar School 71.2 78.9 55.5
6 Auckland Grammar 22.1 30.8 26.3
7 Auckland Seventh-Day Adventist H S 50.8 34.8 48.9
...
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As with the schools data frame, the data set is too large to view all at
once, so we will only show a few rows for most examples in the following
sections.

The dim() function tells us that, in total, there are 88 schools and 4 variables
in this data set. This data set only has Auckland schools.

R> dim(NCEA)

[1] 88 4

We will now explore this data set in order to demonstrate some more data
manipulation techniques.

9.8.7 The “apply” functions

The NCEA data frame contains three columns of numeric data—the per-
centage of students achieving NCEA at the three different NCEA levels.
Something we could quickly look at is whether the achievement percentages
are similar, on average, for each NCEA level.

One way to look at these averages is to extract each column and calculate
an average for each column. For example, the following code calculates the
average achievement percentage for NCEA Level 1.

R> mean(NCEA$Level1)

[1] 62.26705

However, as in the aggregation case, there is a smarter way to work, which
is to let R extract the columns and calculate a mean for all columns in a
single function call. This sort of task is performed by the apply() function.

The following code uses the apply() function to calculate the average
achievement percentage for each NCEA level.

R> apply(NCEA[2:4], MARGIN=2, FUN=mean)

Level1 Level2 Level3
62.26705 61.06818 47.97614
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The result suggests that a slightly lower percentage of students achieve
NCEA Level 3 compared to the other NCEA levels.

As with the aggregate() function, the apply() function can take a bit
of getting used to, so we will now take a closer look at how the apply()
function works.

The apply() function takes three main arguments.

The first argument is expected to be a matrix (or array). In the example
above, we have provided the second, third, and fourth columns of the NCEA
data frame, i.e., a data frame with three columns, as the first argument. This
is an example of a situation that was mentioned back in Section 9.6.2, where
a function will silently coerce the value that we supply to another sort of
data structure if it needs to.

In this case, the apply() function silently coerces the data frame that we
give it into a matrix. The conversion from a data frame to a matrix makes
sense in this case because all three columns of the data frame that we
supplied are numeric, so the data frame columns convert very naturally
and predictably into a matrix (with three columns and 88 rows).

The second argument to apply() specifies how the array should be broken
into subsets. The value 1 means split the matrix into separate rows and the
value 2 means split the matrix into separate columns. In this case, we have
split the matrix into columns; each column represents percentages for one
NCEA level.

The third argument specifies a function to call for each subset. In this case,
the apply() call says to take each column corresponding to an NCEA level
and call the mean() function on each column.

The diagram below provides a conceptual view of how apply() works when
MARGIN=1 (apply by rows). Figure 9.11 includes a diagram that illustrates
using apply() by columns.

1 4 7
2 5 8
3 6 9

1 4 7

2 5 8

3 6 9

4

5

6

4
5
6

subset mean() combine

The data structure returned by apply() depends on how many values are
returned by the function FUN. In the last example, we used the function
mean(), which returns just a single value, so the overall result was a numeric
vector, but if FUN returns more than one value, the result will be a matrix.
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apply()

1 4 7
2 5 8
3 6 9

1 4 7
2 5 8
3 6 9

2 5 8

2 5 8

subset

mean()

combine

lapply()

1
3

4
5
6

8

1
3

4
5
6

8

2 5 8

2 5 8

2 5 8

subset

mean()

combine

simplify

Figure 9.11: A conceptual view of how the apply() function (left) and the

lapply() function (right) manipulate data by calling another function on each

sub-component of a matrix or list and recombining the results into a new matrix

or list. The sapply() function extends the lapply() function by performing an

extra step to simplify the result to a vector (grey portion, bottom right).
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For example, the following code calls apply() with the range() function
to get the range of percentages at each NCEA level. The range() function
returns two values for each NCEA level, so the result is a matrix with
three columns (one for each NCEA level) and two rows—the minimum and
maximum percentage at each level.

R> apply(NCEA[2:4], 2, range)

Level1 Level2 Level3
[1,] 2.8 0.0 0.0
[2,] 97.4 95.7 95.7

The basic idea of apply() has similarities with the aggregate() and by()
functions that we saw in the previous section. In all of these cases, we are
breaking a larger data structure into smaller pieces, calling a function on
each of the smaller pieces and then putting the results back together again
to create a new data structure.

In the case of aggregate(), we start with a vector or a data frame and we
end up with a data frame. The by() function starts with a vector or a data
frame and ends up with a list-like object. With apply(), we start with an
array and end up with a vector or a matrix.

The lapply() function is another example of this idea. In this case, the
starting point is a list. The function breaks the list into its separate com-
ponents, calls a function on each component, and then combines the results
into a new list (see Figure 9.11).

In order to demonstrate the use of lapply(), we will repeat the task we
just performed using apply().

The following code calls lapply() to calculate the average percentage of
students achieving each NCEA level.

R> lapply(NCEA[2:4], FUN=mean)

$Level1
[1] 62.26705

$Level2
[1] 61.06818

$Level3
[1] 47.97614



i
i

“itdt” — 2012/7/30 — 8:05 — page 309 — #335 i
i

i
i

i
i

Data Processing 309

The lapply() function has only two main arguments. The first argument
is a list. As with the apply() example, we have supplied a data frame—
the second, third, and fourth columns of the NCEA data frame—rather than
supplying a list. The lapply() function silently converts the data frame to
a list, which is a natural conversion if we treat each variable within the data
frame as a component of the list.

The second argument to lapply() is a function to call on each component
of the list, and again we have supplied the mean() function.

The result of lapply() is a list data structure. The numeric results, the
average percentages for each NCEA level, are exactly the same as they were
when we used apply(); all that has changed is that these values are stored
in a different sort of data structure.

Like apply(), the lapply() function comfortably handles functions that
return more than a single value. For example, the following code calculates
the range of percentages for each NCEA level.

R> lapply(NCEA[2:4], FUN=range)

$Level1
[1] 2.8 97.4

$Level2
[1] 0.0 95.7

$Level3
[1] 0.0 95.7

These results from lapply() are very similar to the previous results from
apply(); all that has changed is that the values are stored in a different
sort of data structure (a list rather than a matrix).

Whether to use apply() or lapply() will depend on what sort of data
structure we are starting with and what we want to do with the result.
For example, if we start with a list data structure, then lapply() is the
appropriate function to use. However, if we start with a data frame, we
can often use either apply() or lapply() and the choice will depend on
whether we want the answer as a list or as a matrix.

The sapply() function provides a slight variation on lapply(). This func-
tion behaves just like lapply() except that it attempts to simplify the result
by returning a simpler data structure than a list, if that is possible. For ex-



i
i

“itdt” — 2012/7/30 — 8:05 — page 310 — #336 i
i

i
i

i
i

310 Introduction to Data Technologies

ample, if we use sapply() rather than lapply() for the previous examples,
we get a vector and a matrix as the result, rather than lists.

R> sapply(NCEA[2:4], mean)

Level1 Level2 Level3
62.26705 61.06818 47.97614

R> sapply(NCEA[2:4], range)

Level1 Level2 Level3
[1,] 2.8 0.0 0.0
[2,] 97.4 95.7 95.7

9.8.8 Merging

In this section, we will look at the problem of combining data structures.

For simple situations, the functions c(), cbind(), and rbind() are all that
we need. For example, consider the two numeric vectors below.

R> 1:3

[1] 1 2 3

R> 4:6

[1] 4 5 6

The c() function is useful for combining vectors or lists to make a longer
vector or a longer list.

R> c(1:3, 4:6)

[1] 1 2 3 4 5 6
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The functions cbind() and rbind() can be used to combine vectors, matri-
ces, or data frames with similar dimensions. The cbind() function creates a
matrix or data frame by combining data structures side-by-side (a “column”
bind) and rbind() combines data structures one above the other (a “row”
bind).

R> cbind(1:3, 4:6)

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

R> rbind(1:3, 4:6)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

A more difficult problem arises if we want to combine two data structures
that do not have the same dimensions.

In this situation, we need to first find out which rows in the two data
structures correspond to each other and then combine them.

The diagram below illustrates how two data frames (left and right) can be
merged to create a single data frame (middle) by matching up rows based
on a common column (labeled m in the diagram).

m

3 a
5 a
1 b
4 a
5 b

m

3 a T
5 a T
1 b F
4 a T
5 b F

m

a T
b F

For example, the two case studies that we have been following in this sec-
tion provide two data frames that contain information about New Zealand
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schools. The schools data frame contains information about the location
and size of every primary and secondary school in the country, while the
NCEA data frame contains information about the NCEA performance of ev-
ery secondary school.

It would be useful to be able to combine the information from these two data
frames. This would allow us to, for example, compare NCEA performance
between schools of different sizes.

The merge() function can be used to combine data sets like this.

The following code creates a new data frame, aucklandSchools, that con-
tains information from the schools data frame and from the NCEA data
frame for Auckland secondary schools.

R> aucklandSchools <- merge(schools, NCEA,
by.x="Name", by.y="Name",
all.x=FALSE, all.y=FALSE)

R> aucklandSchools

Name ID City Auth Dec Roll Level1 Level2 Level3

35 Mahurangi College 24 Warkworth State 8 1095 71.9 66.2 55.9

48 Orewa College 25 Orewa State 9 1696 75.2 81.0 54.9

32 Long Bay College 27 Auckland State 10 1611 74.5 84.2 67.2

55 Rangitoto College 28 Auckland State 10 3022 85.0 81.7 71.6

30 Kristin School 29 Auckland Private 10 1624 93.4 27.8 36.7

19 Glenfield College 30 Auckland State 7 972 58.4 65.5 45.6

10 Birkenhead College 31 Auckland State 6 896 59.8 65.7 50.4

...

The first two arguments to the merge() function are the data frames to be
merged, in this case, schools and NCEA.

The by.x and by.y arguments specify the names of the variables to use to
match the rows from one data frame with the other. In this case, we use the
Name variable from each data frame to determine which rows belong with
each other.

The all.x argument says that the result should only include schools from
the schools data frame that have the same name as a school in the NCEA
data frame. The all.y argument means that a school in NCEA must have a
match in schools or it is not included in the final result.

By default, merge() will match on any variable names that the two data
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frames have in common, and it will only include rows in the final result if
there is a match between the data frames. In this case, we could have just
used the following expression to get the same result:

R> merge(schools, NCEA)

9.8.9 Flashback: Database joins

In the terminology of Section 7.2.4, the merge() function is analogous to a
database join.

In relational database terms, by.x and by.y correspond to a primary-
key/foreign-key pairing. The all.x and all.y arguments control whether
the join is an inner join or an outer join.

The merge() call above roughly corresponds to the following SQL query.

SELECT *
FROM schools INNER JOIN NCEA

ON schools.Name = NCEA.Name;

9.8.10 Splitting

Instead of combining two data frames, it is sometimes useful to break a
data frame into several pieces. For example, we might want to perform
a separate analysis on the New Zealand schools for each different type of
school ownership.

The split() function can be used to break up a data frame into smaller
data frames, based on the levels of a factor. The result is a list, with one
component for each level of the factor.

The diagram below illustrates how the split() function uses the values
within a factor to break a data frame (left) into a list containing two separate
data frames (right).
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The result is effectively several subsets of the original data frame, but with
the subsets all conveniently contained within a single overall data structure
(a list), ready for subsequent processing or analysis.

3 f a
5 m a
1 f b
4 f a
5 m b

a b

3 f
5 m
4 f

1 f
5 m

split()

In the following code, the Rolls variable from the schools data frame is
broken into four pieces based on the Auth variable.

R> schoolRollsByAuth <- split(schools$Roll, schools$Auth)

The resulting list, schoolRollsByAuth, has four components, each named
after one level of the Auth variable and each containing the number of stu-
dents enrolled at schools of the appropriate type. The following code uses
the str() function that we saw in Section 9.6.7 to show a brief view of the
basic structure of this list.

R> str(schoolRollsByAuth)

List of 4
$ Other : int 51
$ Private : int [1:99] 255 39 154 73 83 25 95 85 ..
$ State : int [1:2144] 318 200 455 86 577 329 6..
$ State Integrated: int [1:327] 438 26 191 560 151 114 12..

Because the result of split() is a list, it is often used in conjunction with
lapply() to perform a task on each component of the resulting list. For
example, we can calculate the average roll for each type of school ownership
with the following code.
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R> lapply(schoolRollsByAuth, mean)

$Other
[1] 51

$Private
[1] 308.798

$State
[1] 300.6301

$`State Integrated`
[1] 258.3792

This result can be compared to the result we got using the aggregate()
function on page 299.

9.8.11 Reshaping

For multivariate data sets, where a single individual or case is measured
several times, there are two common formats for storing the data.

The so-called “wide” format uses a separate variable for each measurement,
and the “long” format for a data set has a single observation on each row.

The diagram below illustrates the difference between wide format (on the
left), where each row contains multiple measurements (t1, t2, and t3) for
a single individual, and long format (on the right), where each row contains
a single measurement and there are multiple rows for each individual.

t1 t2 t3

3 a 1 2 3
5 t 4 5 6

3 a t1 1
3 a t2 2
3 a t3 3
5 t t1 4
5 t t2 5
5 t t3 6

For some data processing tasks, it is useful to have the data in wide format,
but for other tasks, the long format is more convenient, so it is useful to be
able to convert a data set from one format to the other.
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The NCEA data frame that we have been using is in wide format because it
has a row for each school and a column for each NCEA level. There is one
row per school and three observations on each row.

R> NCEA

Name Level1 Level2 Level3
1 Al-Madinah School 61.5 75.0 0.0
2 Alfriston College 53.9 44.1 0.0
3 Ambury Park Centre for Riding Therapy 33.3 20.0 0.0
4 Aorere College 39.5 50.2 30.6
5 Auckland Girls' Grammar School 71.2 78.9 55.5
6 Auckland Grammar 22.1 30.8 26.3
7 Auckland Seventh-Day Adventist H S 50.8 34.8 48.9
...

In the long format of the NCEA data set, each school would have three rows,
one for each NCEA level. What this format looks like is shown below. We
will go on to show how to obtain this format.

Name variable value
1 Alfriston College Level1 53.9
2 Alfriston College Level2 44.1
3 Alfriston College Level3 0.0
4 Al-Madinah School Level1 61.5
5 Al-Madinah School Level2 75.0
6 Al-Madinah School Level3 0.0
7 Ambury Park Centre for Riding Therapy Level1 33.3
...

There are several ways to perform the transformation between wide and
long formats in R, but we will focus in this section on the reshape package
because it provides a wider range of options and a more intuitive set of
arguments.

R> library("reshape")

The two main functions in the reshape package are called melt() and
cast(). The melt() function is used to convert a data frame into long
format, and the cast() function can then be used to reshape the data into
a variety of other forms.
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Melting

The following code creates the long format version of the NCEA data frame
using the melt() function.

R> longNCEA <- melt(NCEA, measure.var=2:4)

The melt() function typically requires two arguments. The first argu-
ment provides the data frame to melt. The second argument is either
measure.var to specify which columns of the data frame are observations
(reshape calls them “measured” variables) or id.var to specify which
columns of the data frame are just values that identify the individual or
case (reshape calls these “id” variables).

In the example above, we have specified that the second, third, and fourth
columns are observations. The melt() function infers that the first column
is therefore an“id”variable. The following code produces an identical result,
using the id.var argument instead. In this case, we have specified that the
Name variable is an “id” variable and the melt() function will treat all other
columns as “measured”variables. This code also demonstrates that columns
in the data frame can be specified by name as well as by number.

R> longNCEA <- melt(NCEA, id.var="Name")

Name variable value
1 Alfriston College Level1 53.9
2 Alfriston College Level2 44.1
3 Alfriston College Level3 0.0
4 Al-Madinah School Level1 61.5
5 Al-Madinah School Level2 75.0
6 Al-Madinah School Level3 0.0
7 Ambury Park Centre for Riding Therapy Level1 33.3
...

The longNCEA data frame has 264 rows because each of the original 88
schools now occupies three rows.

R> dim(longNCEA)

[1] 264 3



i
i

“itdt” — 2012/7/30 — 8:05 — page 318 — #344 i
i

i
i

i
i

318 Introduction to Data Technologies

The original four columns in NCEA have become three columns in longNCEA.
The first column in longNCEA is the same as the first column of NCEA, except
that all of the values repeat three times.

The second column in longNCEA is called variable and it records which
column of NCEA that each row of longNCEA has come from. For example,
all values from the original Level1 column in NCEA have the value Level1
in the new variable column in longNCEA.

The third column in longNCEA is called value and this contains all of the
data from the Level1, Level2, and Level3 columns of NCEA.

Casting

We now turn our attention to the other main function in the reshape
package, the cast() function.

As a simple demonstration of the cast() function, we will use it to recreate
the original wide format of the NCEA data set. The following code performs
this transformation.

R> cast(longNCEA, Name ~ variable)

Name Level1 Level2 Level3
1 Alfriston College 53.9 44.1 0.0
2 Al-Madinah School 61.5 75.0 0.0
3 Ambury Park Centre for Riding Therapy 33.3 20.0 0.0
4 Aorere College 39.5 50.2 30.6
5 Auckland Girls' Grammar School 71.2 78.9 55.5
6 Auckland Grammar 22.1 30.8 26.3
7 Auckland Seventh-Day Adventist H S 50.8 34.8 48.9
...

The first argument to cast() is a data frame in long format.

The second argument to cast() is a formula.

Variables on the left-hand side of this formula are used to form the rows of
the result and variables on the right-hand side are used to form columns.
In the above example, the result contains a row for each different school,
based on the Name of the school, and a column for each different NCEA
level, where the variable column specifies the NCEA level.
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The following code uses a different formula to demonstrate the power that
cast() provides for reshaping data. In this case, the data set has been
transposed so that each column is now a different school and each row
corresponds to one of the NCEA levels.

R> tNCEA <- cast(longNCEA, variable ~ Name)

R> tNCEA

variable Alfriston College Al-Madinah School ...
1 Level1 53.9 61.5 ...
2 Level2 44.1 75.0 ...
3 Level3 0.0 0.0 ...

This data structure has 3 rows and 89 columns: one row for each NCEA
level and one column for each school, plus an extra column containing the
names of the NCEA levels.

R> dim(tNCEA)

[1] 3 89

Now that we have seen a number of techniques for manipulating data sets,
the next section presents a larger case study that combines several of these
techniques to perform a more complex exploration of a data set.

9.8.12 Case study: Utilities

A compact fluorescent light bulb. This sort of light bulb
lasts up to 16 times longer and consumes about one quar-
ter of the power of a comparable incandescent light bulb.

A resident of Baltimore, Maryland, in the United States collected data from
his residential gas and electricity power bills over 8 years. The data are in
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start therms gas KWHs elect temp days

10-Jun-98 9 16.84 613 63.80 75 40

20-Jul-98 6 15.29 721 74.21 76 29

18-Aug-98 7 15.73 597 62.22 76 29

16-Sep-98 42 35.81 460 43.98 70 33

19-Oct-98 105 77.28 314 31.45 57 29

17-Nov-98 106 77.01 342 33.86 48 30

17-Dec-98 200 136.66 298 30.08 40 33

19-Jan-99 144 107.28 278 28.37 37 30

18-Feb-99 179 122.80 253 26.21 39 29

...

Figure 9.12: The first few lines of the Utilities data set in a plain text, white-

space-delimited format.

a text file called baltimore.txt and include the start date for the bill,
the number of therms of gas used and the amount charged, the number of
kilowatt hours of electricity used and the amount charged, the average daily
outdoor temperature (as reported on the bill), and the number of days in
the billing period. Figure 9.12 shows the first few lines of the data file.

Several events of interest occurred in the household over the time period
during which these values were recorded, and one question of interest was
to determine whether any of these events had any effect on the energy
consumption of the household.

The events were:

� An additional resident moved in on July 31st 1999.
� Two storm windows were replaced on April 22nd 2004.
� Four storm windows were replaced on September 1st 2004.
� An additional resident moved in on December 18th 2005.

The text file containing the energy usage can be read conveniently using
the read.table() function, with the header=TRUE argument specified to
use the variable names on the first line of the file. We also use as.is=TRUE
to keep the dates as text for now.

R> utilities <- read.table(file.path("Utilities",
"baltimore.txt"),

header=TRUE, as.is=TRUE)
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R> utilities

start therms gas KWHs elect temp days
1 10-Jun-98 9 16.84 613 63.80 75 40
2 20-Jul-98 6 15.29 721 74.21 76 29
3 18-Aug-98 7 15.73 597 62.22 76 29
4 16-Sep-98 42 35.81 460 43.98 70 33
5 19-Oct-98 105 77.28 314 31.45 57 29
6 17-Nov-98 106 77.01 342 33.86 48 30
...

The first thing we want to do is to convert the first variable into actual
dates. This will allow us to perform calculations and comparisons on the
date values.

R> utilities$start <- as.Date(utilities$start,
"%d-%b-%y")

R> utilities

start therms gas KWHs elect temp days
1 1998-06-10 9 16.84 613 63.80 75 40
2 1998-07-20 6 15.29 721 74.21 76 29
3 1998-08-18 7 15.73 597 62.22 76 29
4 1998-09-16 42 35.81 460 43.98 70 33
5 1998-10-19 105 77.28 314 31.45 57 29
6 1998-11-17 106 77.01 342 33.86 48 30
...

The next thing that we will do is break the data set into five different
time “phases,” using the four significant events as breakpoints; we will be
interested in the average daily charges for each of these phases.

To keep things simple, we will just determine the phase based on whether
the billing period began before a significant event.

The six critical dates that we will use to categorize each billing period are
the start of the first billing period, the dates at which the significant events
occurred, and the start of the last billing period.
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R> breakpoints <- c(min(utilities$start),
as.Date(c("1999-07-31", "2004-04-22",

"2004-09-01", "2005-12-18")),
max(utilities$start))

R> breakpoints

[1] "1998-06-10" "1999-07-31" "2004-04-22" "2004-09-01"
[5] "2005-12-18" "2006-08-17"

We can use the cut() function to convert the start variable, which contains
the billing period start dates, into a phase variable, which is a factor.

R> phase <- cut(utilities$start, breakpoints,
include.lowest=TRUE, labels=FALSE)

R> phase

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[29] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[57] 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 4 4 4 4 5 4 4 4 4 4 4
[85] 4 4 4 4 4 5 5 5 5 5 5 5

Each billing period now has a corresponding phase.

One important point to notice about these phase values is that they are not
strictly increasing. In particular, the 78th value is a 5 amongst a run of 4s.
This reveals that the billing periods in the original file were not entered in
strictly chronological order.

Now that we have each billing period assigned to a corresponding phase, we
can sum the energy usage and costs for each phase. This is an application of
the aggregate() function. The following code subsets the utilities data
frame to remove the first column, the billing period start dates, and then
sums the values in all of the remaining columns for each different phase.

R> phaseSums <- aggregate(utilities[c("therms", "gas", "KWHs",
"elect", "days")],

list(phase=phase), sum)
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R> phaseSums

phase therms gas KWHs elect days
1 1 875 703.27 5883 602.84 406
2 2 5682 5364.23 24173 2269.14 1671
3 3 28 76.89 1605 170.27 124
4 4 1737 2350.63 5872 567.91 483
5 5 577 847.38 3608 448.61 245

We can now divide the totals for each phase by the number of days in each
phase to obtain an average usage and cost per day for each phase.

R> phaseAvgs <- phaseSums[2:5]/phaseSums$days

For inspecting these values, it helps if we round the values to two significant
figures.

R> signif(phaseAvgs, 2)

therms gas KWHs elect
1 2.20 1.70 14 1.5
2 3.40 3.20 14 1.4
3 0.23 0.62 13 1.4
4 3.60 4.90 12 1.2
5 2.40 3.50 15 1.8

The division step above works because when a data frame is divided by a
vector, each variable in the data frame gets divided by the vector. This is
not necessarily obvious from the code; a more explicit way to perform the
operation is to use the sweep() function, which forces us to explicitly state
that, for each row of the data frame (MARGIN=1), we are dividing (FUN="/")
by the corresponding value from a vector (STAT=phase$days).

R> phaseSweep <- sweep(phaseSums[2:5],
MARGIN=1, STAT=phaseSums$days, FUN="/")

Looking at the average daily energy values for each phase, the values that
stand out are the gas usage and cost during phase 3 (after the first two storm
windows were replaced, but before the second set of four storm windows were
replaced). The naive interpretation is that the first two storm windows were
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incredibly effective, but the next four storm windows actually made things
worse again!

At first sight this appears strange, but it is easily explained by the fact that
phase 3 coincided with summer months, as shown below using the table()
function. This code produces a rough count of how many times each month
occurred in each phase. The function months() extracts the names of the
months from the dates in the start variable; each billing period is assigned
to a particular month based on the month that the period started in (which
is why this is a rough count).

R> table(months(utilities$start), phase)[month.name, ]

phase
1 2 3 4 5

January 1 5 0 1 1
February 1 5 0 1 1
March 0 5 0 1 1
April 1 5 0 1 1
May 1 3 1 1 1
June 2 4 1 1 1
July 2 4 1 1 1
August 1 5 1 1 1
September 1 5 0 2 0
October 1 5 0 2 0
November 1 4 0 2 0
December 1 5 0 2 0

Subsetting the resulting table by the predefined symbol month.name just
rearranges the order of the rows of the table; this ensures that the months
are reported in calendar order rather than alphabetical order.

We would expect the gas usage (for heating) to be a lot lower during summer.
This is confirmed by (roughly) calculating the daily average usage and cost
for each month.

Again we must take care to get the answer in calendar order; this time we do
that by creating a factor that is based on converting the start of each billing
period into a month, with the order of the levels of this factor explicitly set
to be month.name.

R> billingMonths <- factor(months(utilities$start),
levels=month.name)
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We then use aggregate() to sum the usage, costs, and days for the billing
periods, grouped by this billingMonths factor.

R> months <-
aggregate(utilities[c("therms", "gas", "KWHs",

"elect", "days")],
list(month=billingMonths),
sum)

Finally, we divide the usage and cost totals by the number of days in the
billing periods. So that we can easily comprehend the results, we cbind()
the month names on to the averages and round the averages using signif().

R> cbind(month=months$month,
signif(months[c("therms", "gas",

"KWHs", "elect")]/months$days,
2))

month therms gas KWHs elect
1 January 7.80 7.50 13 1.2
2 February 5.90 5.90 11 1.0
3 March 3.90 4.00 12 1.1
4 April 1.70 1.90 11 1.0
5 May 0.65 0.99 12 1.3
6 June 0.22 0.57 16 1.8
7 July 0.21 0.59 22 2.3
8 August 0.23 0.60 17 1.8
9 September 1.20 1.30 14 1.3
10 October 3.40 3.50 12 1.1
11 November 5.40 5.50 14 1.2
12 December 7.20 7.10 13 1.2

These results are presented graphically in Figure 9.13.

This example has demonstrated a number of data manipulation techniques
in a more realistic setting. The simple averages that we have calculated
serve to show that any attempt to determine whether the significant events
led to a significant change in energy consumption and cost for this household
is clearly going to require careful analysis.
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Figure 9.13: A plot of the average daily energy usage, by month, for the Utili-

ties data set. Gas usage is represented by the solid line and electricity usage is

represented by the dashed line.

Recap

Simple manipulations of data include sorting values, binning numeric
variables, and producing tables of counts for categorical variables.

Aggregation involves producing a summary value for each group in a
data set.

An“apply”operation calculates a summary value for each variable in a
data frame, or for each row or column of a matrix, or for each component
of a list.

Data frames can be merged just like tables can be joined in a database.
They can also be split apart.

Reshaping involves transforming a data set from a row-per-subject,
“wide”, format to a row-per-observation, “long”, format (among other
things).
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9.9 Text processing

The previous section dealt with techniques that are useful for for manipu-
lating a variety of data structures and a variety of data types.

This section is focused solely on data manipulation techniques for working
with vectors containing character values.

Plain text is a very common format for storing information, so it is very
useful to be able to manipulate text. It may be necessary to convert a data
set from one text format to another. It is also common to search for and
extract important keywords or specific patterns of characters from within a
large set of text.

We will introduce some of the basic text processing ideas via a simple ex-
ample.

9.9.1 Case study: The longest placename

One of the longest placenames
in the world, with a total of 85
characters, is the Maori name for a
hill in the Hawkes Bay region, on
the east coast of the North Island
of New Zealand.

One of the longest placenames in the world is attributed to a hill in the
Hawke’s Bay region of New Zealand. The name (in Maori) is ...

Taumatawhakatangihangakoauauotamateaturipukakapikimaungahoronukupokaiwhenuakitanatahu

... which means “The hilltop where Tamatea with big knees, conqueror
of mountains, eater of land, traveler over land and sea, played his koauau
[flute] to his beloved.”

Children at an Auckland primary school were given a homework assignment
that included counting the number of letters in this name. This task of
counting the number of characters in a piece of text is a simple example of
what we will call text processing and is the sort of task that often comes
up when working with data that have been stored in a text format.
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Counting the number of characters in a piece of text is something that any
programming language will do. Assuming that the name has been saved into
a text file called placename.txt, here is how to use the scan() function to
read the name into R, as a character vector of length 1.

R> placename <- scan(file.path("Placename", "placename.txt"),
"character")

The first argument provides the name and location of the file and the second
argument specifies what sort of data type is in the file. In this case, we are
reading a single character value from a file.

We can now use the nchar() function to count the number of characters in
this text.

R> nchar(placename)

[1] 85

Counting characters is a very simple text processing task, though even with
something that simple, performing the task using a computer is much more
likely to get the right answer. We will now look at some more complex text
processing tasks.

The homework assignment went on to say that, in Maori, the combinations
‘ng’ and ‘wh’ can be treated as a single letter. Given this, how many letters
are in the placename? There are two possible approaches: convert every
‘ng’ and ‘wh’ to a single letter and recount the number of letters, or count
the number of ‘ng’s and ‘wh’s and subtract that from the total number of
characters. We will consider both approaches because they illustrate two
different text processing tasks.

For the first approach, we could try counting all of the ‘ng’s and ‘wh’s
as single letters by searching through the text and converting all of them
into single characters and then redoing the count. In R, we can perform
this search-and-replace task using the gsub() function, which takes three
arguments: a pattern to search for, a replacement value, and the text to
search within. The result is the original text with the pattern replaced.
Because we are only counting letters, it does not matter which letter we
choose as a replacement. First, we replace occurrences of ‘ng’ with an
underscore character.
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R> replacengs <- gsub("ng", "_", placename)
R> replacengs

[1] "Taumatawhakata_iha_akoauauotamateaturipukakapikimau_ahoronukupokaiwhenuakitanatahu"

Next, we replace the occurrences of ‘wh’ with an underscore character.

R> replacewhs <- gsub("wh", "_", replacengs)
R> replacewhs

[1] "Taumata_akata_iha_akoauauotamateaturipukakapikimau_ahoronukupokai_enuakitanatahu"

Finally, we count the number of letters in the resulting text.

R> nchar(replacewhs)

[1] 80

The alternative approach involves just finding out how many ‘ng’s and ‘wh’s
are in the text and subtracting that number from the original count. This
simple step of searching within text for a pattern is yet another common
text processing task. There are several R functions that perform variations
on this task, but for this example we need the function gregexpr() because
it returns all of the matches within a piece of text. This function takes
two arguments: a pattern to search for and the text to search within. The
result is a vector of the starting positions of the pattern within the text,
with an attribute that gives the lengths of each match. Figure 9.14 includes
a diagram that illustrates how this function works.

R> ngmatches <- gregexpr("ng", placename)[[1]]
R> ngmatches

[1] 15 20 54
attr(,"match.length")
[1] 2 2 2

This result shows that the pattern ‘ng’ occurs three times in the placename,
starting at character positions 15, 20, and 54, respectively, and that the
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Figure 9.14: A conceptual view of how various text processing functions work.

In each case, the text is a character vector with three elements (an English trans-

lation of a famous haiku by Matsuo Bashō). From top to bottom, the diagrams

show: searching for the letter "d" using grep(), regexpr(), and gregexpr(); and

splitting the text on the letter "d" using strsplit(). The result of grep() is a

numeric vector indicating which elements match. The result of regexpr() is a

numeric vector indicating the position of the first match in each element, plus an

attribute indicating the length of each match. The result of gregexpr() is a list

of numeric vectors with attributes similar to regexpr() but giving all matches in

each element. The result of strsplit() is a list of character vectors, where each

component is the result of splitting one element of the original text.



i
i

“itdt” — 2012/7/30 — 8:05 — page 331 — #357 i
i

i
i

i
i

Data Processing 331

length of the match is 2 characters in each case. Here is the result of
searching for occurrences of ‘wh’:

R> whmatches <- gregexpr("wh", placename)[[1]]
R> whmatches

[1] 8 70
attr(,"match.length")
[1] 2 2

The return value of gregexpr() is a list to allow for more than one piece
of text to be searched at once. In this case, we are only searching a single
piece of text, so we just need the first component of the result.

We can use the length() function to count how many matches there were
in the text.

R> length(ngmatches)

[1] 3

R> length(whmatches)

[1] 2

The final answer is simple arithmetic.

R> nchar(placename) -
(length(ngmatches) + length(whmatches))

[1] 80

For the final question in the homework assignment, the students had to
count how many times each letter appeared in the placename (treating ‘wh’
and ‘ng’ as separate letters again).

One way to do this in R is by breaking the placename into individual char-
acters and creating a table of counts. Once again, we have a standard text
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processing task: breaking a single piece of text into multiple pieces. The
strsplit() function performs this task in R. It takes two arguments: the
text to break up and a pattern which is used to decide where to split the
text. If we give the value NULL as the second argument, the text is split
at each character. Figure 9.14 includes a diagram that illustrates how this
function works.

R> nameLetters <- strsplit(placename, NULL)[[1]]
R> nameLetters

[1] "T" "a" "u" "m" "a" "t" "a" "w" "h" "a" "k" "a" "t" "a"
[15] "n" "g" "i" "h" "a" "n" "g" "a" "k" "o" "a" "u" "a" "u"
[29] "o" "t" "a" "m" "a" "t" "e" "a" "t" "u" "r" "i" "p" "u"
[43] "k" "a" "k" "a" "p" "i" "k" "i" "m" "a" "u" "n" "g" "a"
[57] "h" "o" "r" "o" "n" "u" "k" "u" "p" "o" "k" "a" "i" "w"
[71] "h" "e" "n" "u" "a" "k" "i" "t" "a" "n" "a" "t" "a" "h"
[85] "u"

Again, the result is a list to allow for breaking up multiple pieces of text
at once. In this case, because we only have one piece of text, we are only
interested in the first component of the list.

One minor complication is that we want the uppercase ‘T’ to be counted as
a lowercase ‘t’. The function tolower() performs this task.

R> lowerNameLetters <- tolower(nameLetters)
R> lowerNameLetters

[1] "t" "a" "u" "m" "a" "t" "a" "w" "h" "a" "k" "a" "t" "a"
[15] "n" "g" "i" "h" "a" "n" "g" "a" "k" "o" "a" "u" "a" "u"
[29] "o" "t" "a" "m" "a" "t" "e" "a" "t" "u" "r" "i" "p" "u"
[43] "k" "a" "k" "a" "p" "i" "k" "i" "m" "a" "u" "n" "g" "a"
[57] "h" "o" "r" "o" "n" "u" "k" "u" "p" "o" "k" "a" "i" "w"
[71] "h" "e" "n" "u" "a" "k" "i" "t" "a" "n" "a" "t" "a" "h"
[85] "u"

Now it is a simple matter of calling the tablefunction to produce a table
of counts of the letters.
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R> letterCounts <- table(lowerNameLetters)
R> letterCounts

lowerNameLetters
a e g h i k m n o p r t u w
22 2 3 5 6 8 3 6 5 3 2 8 10 2

As well as pulling text apart into smaller pieces as we have done so far, we
also need to be able to put several pieces of text together to make a single
larger piece of text.

For example, if we begin with the individual letters of the placename, as in
the character vector nameLetters, how do we combine the letters to make
a single character value? In R, this can done with the paste() function.

The paste() function can be used to combine separate character vectors
or to combine the character values within a single character vector. In this
case, we want to perform the latter task.

We have a character vector containing 85 separate character values.

R> nameLetters

[1] "T" "a" "u" "m" "a" "t" "a" "w" "h" "a" "k" "a" "t" "a"
[15] "n" "g" "i" "h" "a" "n" "g" "a" "k" "o" "a" "u" "a" "u"
[29] "o" "t" "a" "m" "a" "t" "e" "a" "t" "u" "r" "i" "p" "u"
[43] "k" "a" "k" "a" "p" "i" "k" "i" "m" "a" "u" "n" "g" "a"
[57] "h" "o" "r" "o" "n" "u" "k" "u" "p" "o" "k" "a" "i" "w"
[71] "h" "e" "n" "u" "a" "k" "i" "t" "a" "n" "a" "t" "a" "h"
[85] "u"

The following code combines the individual character values to make the
complete placename. The collapse argument specifies that the character
vector should be collapsed into a single character value with, in this case
(collapse=""), nothing in between each character.

R> paste(nameLetters, collapse="")

[1] "Taumatawhakatangihangakoauauotamateaturipukakapikimaungahoronukupokaiwhenuakitanatahu"

This section has introduced a number of functions for counting letters in
text, transforming text, breaking text apart, and putting it back together
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again. More examples of the use of these functions are given in the next
section and in case studies later on.

9.9.2 Regular expressions

Two of the tasks we looked at when working with the long Maori placename
in the previous case study involved treating both ‘ng’ and ‘wh’ as if they were
single letters by replacing them both with underscores. We performed the
task in two steps: convert all occurrences of ‘ng’ to an underscore, and then
convert all occurrences of ‘wh’ to an underscore. Conceptually, it would be
simpler, and more efficient, to perform the task in a single step: convert all
occurrences of ‘ng’ and ‘wh’ to underscore characters. Regular expressions
allow us to do this.

With the placename in the variable called placename, converting both ‘ng’
and ‘wh’ to underscores in a single step is achieved as follows:

R> gsub("ng|wh", "_", placename)

[1] "Taumata_akata_iha_akoauauotamateaturipukakapikimau_ahoronukupokai_enuakitanatahu"

The regular expression we are using, ng|wh, describes a pattern: the char-
acter ‘n’ followed by the character ‘g’ or the character ‘w’ followed by the
character ‘h’. The vertical bar, |, is a metacharacter. It does not have
its normal meaning, but instead denotes an optional pattern; a match will
occur if the text contains either the pattern to the left of the vertical bar or
the pattern to the right of the vertical bar. The characters ‘n’, ‘g’, ‘w’, and
‘h’ are all literals; they have their normal meaning.

A regular expression consists of a mixture of literal characters, which have
their normal meaning, and metacharacters, which have a special meaning.
The combination describes a pattern that can be used to find matches
amongst text values.

A regular expression may be as simple as a literal word, such as cat, but
regular expressions can also be quite complex and express sophisticated
ideas, such as [a-z]{3,4}[0-9]{3}, which describes a pattern consisting
of either three or four lowercase letters followed by any three digits.

Just like all of the other technologies in this book, there are several differ-
ent versions of regular expressions, however, rather than being numbered,
the different versions of regular expressions have different names: there are
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Basic regular expressions, Extended (POSIX) regular expressions, and Perl-
Compatible regular expressions (PCRE). We will assume Extended regular
expressions in this book, though for the level of detail that we encounter,
the differences between Extended regular expressions and PCRE are not
very important. Basic regular expressions, as the name suggests, have fewer
features than the other versions.

There are two important components required to use regular expressions:
we need to be able to write regular expressions and we need software that
understands regular expressions in order to search text for the pattern spec-
ified by the regular expression.

We will focus on the use of regular expressions with R in this book, but there
are many other software packages that understand regular expressions, so it
should be possible to use the information in this chapter to write effective
regular expressions within other software environments as well. One caveat
is that R consumes backslashes in text, so it is necessary to type a double
backslash in order to obtain a single backslash in a regular expression. This
means that we often avoid the use of backslashes in regular expressions in
R and, when we are forced to use backslashes, the regular expressions will
look more complicated than they would in another software setting.

Something to keep in mind when writing regular expressions (especially
when trying to determine why a regular expression is not working) is that
most software that understands regular expressions will perform “eager”
and “greedy” searches. This means that the searches begin from the start
of a piece of text, the first possible match succeeds (even if a “better”
match might exist later in the text), and as many characters as possible
are matched. In other words, the first and longest possible match is found
by each component of a regular expression. A common problem is to have
a later component of a regular expression fail to match because an earlier
component of the expression has consumed the entire piece of text all by
itself.

For this reason, it is important to remember that regular expressions are
a small computer language of their own and should be developed with just
as much discipline and care as we apply to writing any computer code. In
particular, a complex regular expression should be built up in smaller pieces
in order to understand how each component of the regular expression works
before adding further components.

The next case study looks at some more complex uses and provides some
more examples. Chapter 11 describes several other important metacharac-
ters that can be used to build more complex regular expressions.
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9.9.3 Case study: Rusty wheat

Cereal crops account for almost half of global food
production. Maize, rice, and wheat make up almost
90% of that production, with barley (pictured)
fourth on the list.

As part of a series of field trials conducted by the Institut du Végétal in
France,3 data were gathered on the effect of the disease Septoria tritici on
wheat. The amount of disease on individual plants was recorded using data
collection forms that were filled in by hand by researchers in the field.

In 2007, due to unusual climatic conditions, two other diseases, Puccinia
recondita (“brown rust”) and Puccinia striiformis (“yellow rust”) were also
observed to be quite prevalent. The data collection forms had no specific
field for recording the amount of rust on each wheat plant, so data were
recorded ad hoc in a general area for “diverse observations”.

In this case study, we will not be interested in the data on Septoria tritici.
Those data were entered into a standard form using established protocols,
so the data were relatively tidy.

Instead, we will focus on the yellow rust and brown rust data because these
data were not anticipated, so the data were recorded quite messily. The
data included other comments unrelated to rust and there were variations
in how the rust data were expressed by different researchers.

This lack of structure means that the rust data cannot be read into R
using the functions that expect a regular format, such as read.table() and
read.fwf() (see Section 9.7.3). This provides us with an example where
text processing tools allow us to work with data that have an irregular
structure.

The yellow and brown rust data were transcribed verbatim into a plain text
file, as shown in Figure 9.15.

Fortunately, for the purposes of recovering these results, some basic features
of the data are consistent.

3Thanks to David Gouache, Arvalis—Institut du Végétal.
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lema, rb 2%

rb 2%

rb 3%

rb 4%

rb 3%

rb 2%,mineuse

rb

rb

rb 12

rb

rj 30%

rb

rb

rb 25%

rb

rb

rb

rj 10, rb 4

Figure 9.15: Data recording the occurrence of brown or yellow rust diseases on

wheat plants, in a largely unstructured plain text format. Each line represents one

wheat plant. The text rb followed by a number represents an amount of brown

rust and the text rj followed by a number represents an amount of yellow rust.

Each line of data represents one wheat plant. If brown rust was present,
the line contains the letters rb, followed by a space, followed by a number
indicating the percentage of the plant affected by the rust (possibly with a
percentage sign). If the plant was afflicted by yellow rust, the same pattern
applies except that the letters rj are used. It is possible for both diseases
to be present on the same plant (see the last line of data in Figure 9.15).

The abbreviations rb and rj were used because the French common names
for the diseases are rouille brune and rouille jaune.

For this small set of recordings, the data could be extracted by hand. How-
ever, the full data set contains many more records so we will develop a code
solution that uses regular expressions to recover the rust data from these
recordings.

The first step is to get the data into R. We can do this using the readLines()
function, which will create a character vector with one element for each line
of recordings.
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R> wheat <- readLines(file.path("Wheat", "wheat.txt"))
R> wheat

[1] "lema, rb 2%" "rb 2%" "rb 3%"
[4] "rb 4%" "rb 3%" "rb 2%,mineuse"
[7] "rb" "rb" "rb 12"
[10] "rb" "rj 30%" "rb"
[13] "rb" "rb 25%" "rb"
[16] "rb" "rb" "rj 10, rb 4"

What we want to end up with are two variables, one recording the amount
of brown rust on each plant and one recording the amount of yellow rust.

Starting with brown rust, the first thing we could do is find out which
plants have any brown rust on them. The following code does this using the
grep() function. The result is a vector of indices that tells us which lines
contain the pattern we are searching for. Figure 9.14 includes a diagram
that illustrates how this function works.

R> rbLines <- grep("rb [0-9]+", wheat)
R> rbLines

[1] 1 2 3 4 5 6 9 14 18

The regular expression in this call demonstrates two more important exam-
ples of metacharacters. The square brackets, ‘[’ and ‘]’, are used to describe
a character set that will be matched. Within the brackets we can specify
individual characters or, as in this case, ranges of characters; 0-9 means
any character between ‘0’ and ‘9’.

The plus sign, ‘+’, is also a metacharacter, known as a modifier. It says
that whatever immediately precedes the plus sign in the regular expression
can repeat several times. In this case, [0-9]+ will match one or more digits.

The letters ‘r’, ‘b’, and the space are all literal, so the entire regular expres-
sion will match the letters rb, followed by a space, followed by one or more
digits. Importantly, this pattern will match anywhere within a line; the line
does not have to begin with rb. In other words, this will match rows on
which brown rust has been observed on the wheat plant.

Having found which lines contain information about brown rust, we want
to extract the information from those lines. The indices from the call to
grep() can be used to subset out just the relevant lines of data.



i
i

“itdt” — 2012/7/30 — 8:05 — page 339 — #365 i
i

i
i

i
i

Data Processing 339

R> wheat[rbLines]

[1] "lema, rb 2%" "rb 2%" "rb 3%"
[4] "rb 4%" "rb 3%" "rb 2%,mineuse"
[7] "rb 12" "rb 25%" "rj 10, rb 4"

We will extract just the brown rust information from these lines in two steps,
partly so that we can explore more about regular expressions, and partly
because we have to in order to cater for plants that have been afflicted by
both brown and yellow rust.

The first step is to reduce the line down to just the information about brown
rust. In other words, we want to discard everything except the pattern that
we are looking for, rb followed by a space, followed by one or more digits.
The following code performs this step.

R> rbOnly <- gsub("^.*(rb [0-9]+).*$", "\\1",
wheat[rbLines])

R> rbOnly

[1] "rb 2" "rb 2" "rb 3" "rb 4" "rb 3" "rb 2" "rb 12"
[8] "rb 25" "rb 4"

The overall strategy being used here is to match the entire line of text, from
the first character to the last, but within that line we want to identify and
isolate the important component of the line, the brown rust part, so that
we can retain just that part.

Again, we have some new metacharacters to explain. First is the “hat”
character, ‘^’, which matches the start of the line (or the start of the text).
Next is the full stop, ‘.’. This will match any single character, no matter
what it is. The ‘*’ character is similar to the ‘+’; it modifies the immediately
preceding part of the expression and allows for zero or more occurrences.
An expression like ^.* allows for any number of characters at the start of
the text (including zero characters, or an empty piece of text).

The parentheses, ‘(’ and ‘)’, are used to create subpatterns within a reg-
ular expression. In this case, we are isolating the pattern rb [0-9]+, which
matches the brown rust information that we are looking for. Parentheses
are useful if we want a modifier, like ‘+’ or ‘*’, to affect a whole subpattern
rather than a single character, and they can be useful when specifying the
replacement text in a search-and-replace operation, as we will see below.
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After the parenthesized subpattern, we have another .* expression to allow
for any number of additional characters and then, finally, a dollar sign, ‘$’.
The latter is the counterpart to ‘^’; it matches the end of a piece of text.

Thus, the complete regular expression explicitly matches an entire piece of
text that contains information on brown rust. Why do we want to do this?
Because we are going to replace the entire text with only the piece that we
want to keep. That is the purpose of the backreference, "\\1", in the
replacement text.

The text used to replace a matched pattern in gsub() is mostly just literal
text. The one exception is that we can refer to subpatterns within the
regular expression that was used to find a match. By specifying "\\1", we
are saying reuse whatever matched the subpattern within the first set of
parentheses in the regular expression. This is known as a backreference.
In this case, this refers to the brown rust information.

The overall meaning of the gsub() call is therefore to replace the entire text
with just the part of the text that contains the information about brown
rust.

Now that we have character values that contain only the brown rust infor-
mation, the final step we have to perform is to extract just the numeric data
from the brown rust information. We will do this in three ways in order to
demonstrate several different techniques.

One approach is to take the text values that contain just the brown rust
information and throw away everything except the numbers. The following
code does this using a regular expression.

R> gsub("[^0-9]", "", rbOnly)

[1] "2" "2" "3" "4" "3" "2" "12" "25" "4"

The point about this regular expression is that it uses ^ as the first char-
acter within the square brackets. This has the effect of negating the set of
characters within the brackets, so [^0-9] means any character that is not
a digit. The effect of the complete gsub() call is to replace anything that
is not a digit with an empty piece of text, so only the digits remain.

An alternative approach is to recognize that the text values that we are
dealing with have a very regular structure. In fact, all we need to do is drop
the first three characters from each piece of text. The following code does
this with a simple call to substring().
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R> substring(rbOnly, 4)

[1] "2" "2" "3" "4" "3" "2" "12" "25" "4"

The first argument to substring() is the text to reduce and the second
argument specifies which character to start from. In this case, the first
character we want is character 4. There is an optional third argument that
specifies which character to stop at, but if, as in this example, the third
argument is not specified, then we keep going to the end of the text.

The name of this function comes from the fact that text values, or character
values, are also referred to as strings.

The final approach that we will consider works with the entire original
text, wheat[rbLines], and uses a regular expression containing an extra
set of parentheses to isolate just the numeric content of the brown rust
information as a subpattern of its own. The replacement text refers to this
second subpattern, "\\2", so it reduces the entire line to only the part of
the line that is the numbers within the brown rust information, in a single
step.

R> gsub("^.*(rb ([0-9]+)).*$", "\\2", wheat[rbLines])

[1] "2" "2" "3" "4" "3" "2" "12" "25" "4"

We are not quite finished because we want to produce a variable that con-
tains the brown rust information for all plants. We will use NA for plants
that were not afflicted.

A simple way to do this is to create a vector of NAs and then fill in the rows
for which we have brown rust information. The other important detail in
the following code is the conversion of the textual information into numeric
values using as.numeric().

R> rb <- rep(NA, length(wheat))
R> rb[rbLines] <- as.numeric(gsub("^.*(rb ([0-9]+)).*$",

"\\2", wheat[rbLines]))
R> rb

[1] 2 2 3 4 3 2 NA NA 12 NA NA NA NA 25 NA NA NA 4



i
i

“itdt” — 2012/7/30 — 8:05 — page 342 — #368 i
i

i
i

i
i

342 Introduction to Data Technologies

To complete the exercise, we need to repeat the process for yellow rust.
Rather than repeat the approach used for brown rust, we will investigate
a different solution, which will again allow us to demonstrate more text
processing techniques.

This time, we will use regexpr() rather than grep() to find the lines that
we want. We are now searching for the lines containing yellow rust data.

R> rjData <- regexpr("rj [0-9]+", wheat)
R> rjData

[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 1
attr(,"match.length")
[1] -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 5

The result is a numeric vector with a positive number for lines that contain
yellow rust data and -1 otherwise. The number indicates the character
where the data start. Figure 9.14 includes a diagram that illustrates how
this function works.

In this case, there are only two lines containing yellow rust data (lines 11
and 18) and, in both cases, the data start at the first character.

The result also has an attribute called match.length, which contains the
number of characters that produced the match with the regular expression
that we were searching for. In both cases, the pattern matched a total of 5
characters: the letters r and j, followed by a space, followed by two digits.
This length information is particularly useful because it will allow us to
extract the yellow rust data immediately using substring(). This time we
specify both a start and an end character for the subset of the text.

R> rjText <- substring(wheat, rjData,
attr(rjData, "match.length"))

R> rjText

[1] "" "" "" "" "" "" ""
[8] "" "" "" "rj 30" "" "" ""
[15] "" "" "" "rj 10"

Obtaining the actual numeric data can be carried out using any of the
techniques we described above for the brown rust case.
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The following code produces the final result, including both brown and
yellow rust as a data frame.

R> rj <- as.numeric(substring(rjText, 4))
R> data.frame(rb=rb, rj=rj)

rb rj
1 2 NA
2 2 NA
3 3 NA
4 4 NA
5 3 NA
6 2 NA
7 NA NA
8 NA NA
9 12 NA
10 NA NA
11 NA 30
12 NA NA
13 NA NA
14 25 NA
15 NA NA
16 NA NA
17 NA NA
18 4 10

Recap

Text processing includes: searching within text for a pattern; replacing
the text that matches a pattern; splitting text into smaller pieces; com-
bining smaller pieces of text into larger pieces of text; and converting
other types of data into text.
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9.10 Data display

As we have seen in most of the sections so far in this chapter, most of the
tasks that we perform with data, using a programming language, work with
the data in RAM. We access data structures that have been stored in RAM
and we create new data structures in RAM.

Something that we have largely ignored to this point is how we get to see
the data on the computer screen.

The purpose of this section is to address the topic of formatting data values
for display.

RAM

Screen

The important thing to keep in mind is that we do not typically see raw
computer memory on screen; what we see is a display of the data in a format
that is fit for human consumption.

There are two main ways that information is displayed on a computer screen:
as text output or as graphical output (pictures or images). R has sophis-
ticated facilities for graphical output, but that is beyond the scope of this
book and we will not discuss those facilities here. Instead, we will focus on
displaying text output to the screen.

For a start, we will look a little more closely at how R automatically displays
values on the screen.

9.10.1 Case study: Point Nemo (continued)

In this section we will work with a subset of the temperature values from
the Point Nemo data set (see Section 1.1).

The temperature values have previously been read into R as the temp vari-
able in the data frame called pointnemodelim (see Section 9.7.4). In this
section, we will only work with the first 12 of these temperature values,
which represent the first year’s worth of monthly temperature recordings.



i
i

“itdt” — 2012/7/30 — 8:05 — page 345 — #371 i
i

i
i

i
i

Data Processing 345

R> twelveTemps <- pointnemodelim$temp[1:12]
R> twelveTemps

[1] 278.9 280.0 278.9 278.9 277.8 276.1 276.1 275.6 275.6
[10] 277.3 276.7 278.9

The data structure that we are dealing with is a numeric vector. The values
in twelveTemps are stored in RAM as numbers.

However, the display that we see on screen is text. The values are numeric,
so the characters in the text are mostly digits, but it is important to realize
that everything that R displays on screen for us to read is a text version of
the data values.

The function that displays text versions of data values on screen is called
print(). This function gets called automatically to display the result of an
R expression, but we can also call it directly, as shown below. The display
is exactly the same as when we type the name of the symbol by itself.

R> print(twelveTemps)

[1] 278.9 280.0 278.9 278.9 277.8 276.1 276.1 275.6 275.6
[10] 277.3 276.7 278.9

One reason for calling print() directly is that this function has arguments
that control how values are displayed on screen. For example, when display-
ing numeric values, there is an argument digits that controls how many
significant digits are displayed.

In the following code, we use the digits argument to only display three
digits for each temperature value. This has no effect on the values in RAM;
it only affects how the numbers are converted to text for display on the
screen.

R> print(twelveTemps, digits=3)

[1] 279 280 279 279 278 276 276 276 276 277 277 279

The print() function is a generic function (see Section 9.6.8), so what gets
displayed on screen is very different for different sorts of data structures;
the arguments that provide control over the details of the display will also
vary.
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Although print() has some arguments that control how information is
displayed, it is not completely flexible. For example, when printing out a
numeric vector, as above, it will always print out the index, in this case [1],
at the start of the line.

If we want to have complete control over what gets displayed on the screen,
we need to perform the task in two steps: first, generate the text that we
want to display, and then call the cat() function to display the text on the
screen.

For simple cases, the cat() function will automatically coerce values to a
character vector. For example, the following code uses cat() to display the
twelveTemps numeric vector on screen. The fill argument says that a
new line should be started after 60 characters have been used.

R> cat(twelveTemps, fill=60)

278.9 280 278.9 278.9 277.8 276.1 276.1 275.6 275.6 277.3
276.7 278.9

The difference between this display and what print() displays is that there
is no index at the start of each row. This is the usefulness of cat(): it just
displays values and does not perform any formatting of its own. This means
that we can control the formatting when we generate text values and then
just use cat() to get the text values displayed on screen.

In summary, the problem of producing a particular display on screen is
essentially a problem of generating a character vector in the format that we
require and then calling cat().

The next section looks at the problem of generating character vectors in a
particular format.

9.10.2 Converting to text

We have previously seen two ways to convert data values to character values:
some functions, e.g., as.character(), perform an explicit type coercion
from an original data structure to a character vector; and some functions,
e.g., paste(), automatically coerce their arguments to character vectors.
In this section, we will look at some more functions that perform explicit
coercion to character values.

The following code coerces the twelveTemps numeric vector to a character
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vector using as.character().

R> as.character(twelveTemps)

[1] "278.9" "280" "278.9" "278.9" "277.8" "276.1" "276.1"
[8] "275.6" "275.6" "277.3" "276.7" "278.9"

One thing to notice about this result is that the second value, "280", is only
three characters long, whereas all of the other values are five characters long.

This is a small example of a larger problem that arises when converting
values, particularly numbers, to text; there are often many possible ways
to perform the conversion. In the case of converting a real number to text,
one major problem is how many decimal places to use.

There are several functions in R that we can use to resolve this problem.

The format() function produces character values that have a “common
format.” What that means depends on what sorts of values are being for-
matted, but in the case of a numeric vector, it means that the resulting
character values are all of the same length. In the following result, the
second value is five characters long, just like all of the other values.

R> format(twelveTemps)

[1] "278.9" "280.0" "278.9" "278.9" "277.8" "276.1" "276.1"
[8] "275.6" "275.6" "277.3" "276.7" "278.9"

The format() function has several arguments that provide some flexibility
in the result, but its main benefit is that it displays all values with a common
appearance.

For complete control over the conversion to text values, there is the sprintf()
function.

The following code provides an example of the use of sprintf() that con-
verts the twelveTemps numeric vector into a character vector where every
numeric value is converted to a character value with two decimal places and
a total of nine characters, followed by a space and a capital letter ‘K’ (for
degrees Kelvin).
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R> sprintf(fmt="%9.2f K", twelveTemps)

[1] " 278.90 K" " 280.00 K" " 278.90 K" " 278.90 K"
[5] " 277.80 K" " 276.10 K" " 276.10 K" " 275.60 K"
[9] " 275.60 K" " 277.30 K" " 276.70 K" " 278.90 K"

The first argument to sprintf(), called fmt, defines the formatting of the
values. The value of this argument can include special codes, like %9.2f.
The first special code within the fmt argument is used to format the second
argument to sprintf(), in this case the numeric vector twelveTemps.

There are a number of special codes for controlling the formatting of different
types of values; the components of the format in this example are shown
below.

start of special code: %9.2f K
real number format: %9.2f K

nine characters in total: %9.2f K
two decimal places: %9.2f K

literal text: %9.2f K

With the twelveTemps formatted like this, we can now use cat() to display
the values on the screen in a format that is quite different from the display
produced by print().

R> twelveTemps

[1] 278.9 280.0 278.9 278.9 277.8 276.1 276.1 275.6 275.6
[10] 277.3 276.7 278.9

R> cat(sprintf("%9.2f K", twelveTemps), fill=60)

278.90 K 280.00 K 278.90 K 278.90 K 277.80 K
276.10 K 276.10 K 275.60 K 275.60 K 277.30 K
276.70 K 278.90 K

This sort of formatting can also be useful if we need to generate a plain text
file with a particular format. Having generated a character vector as above,
this can easily be written to an external text file using the writeLines()
function or by specifying a filename for cat() to write to. If the file
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argument is specified in a call to cat(), then output is written to an external
file rather than being displayed on the screen.

9.10.3 Results for reports

One reason for using a particular format for displaying results is so that the
results can be conveniently included in a research report.

For example, way back in Section 2.1, we saw a very basic web page report
about the Pacific and Eurasian Poles of Inaccessibility. The web page is
reproduced in Figure 9.16.

This web page includes a summary table showing the range of temperature
values for both Poles of Inaccessibility. R code that generates the table of
ranges is shown below.

R> pointnemotemps <-
read.fwf(file.path("LAS", "pointnemotemp.txt"),

skip=8, widths=c(-23, 5),
col.names=c("temp"))

R> eurasiantemps <-
read.fwf(file.path("LAS", "eurasiantemp.txt"),

skip=8, widths=c(-23, 5),
col.names=c("temp"))

R> allTemps <- cbind(pacific=pointnemotemps$temp,
eurasian=eurasiantemps$temp)

R> ranges <- round(rbind(min=apply(allTemps, 2, min),
max=apply(allTemps, 2, max)))

R> ranges

pacific eurasian
min 276 252
max 283 307

The HTML code that includes this table in the web page is reproduced
below. This is the most basic way to make use of R output; simply copy the
R display directly into another document, with a monospace font.
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Figure 9.16: A simple web page that displays information about the surface

temperature data for the Pacific and Eurasian Poles of Inaccessibility (viewed

with the Firefox web browser on Windows XP). This is a reproduction of Figure

2.1.
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<pre>
pacific eurasian

min 276 252
max 283 307

</pre>

However, this approach produces a very plain display. A more sophisticated
approach is to format the R result using the same technology as is used to
produce the report. For example, in the case of a web page report, we could
create an HTML table to display the result.

Several R packages provide functions to carry out this task. For example,
the hwriter package has an hwrite() function that converts an R table
into text describing an HTML table.

R> library(hwriter)
R> cat(hwrite(ranges))

<table border="1">
<tr>
<td></td><td>pacific</td><td>eurasian</td></tr>
<tr>
<td>min</td><td>276</td><td>252</td></tr>
<tr>
<td>max</td><td>283</td><td>307</td></tr>
</table>

This approach allows us to integrate R results within a report more naturally
and more aesthetically.

It is worth noting that this is just a text processing task; we are converting
the values from the R table into text values and then combining those text
values with HTML tags, which are just further text values.

This is another important advantage of carrying out tasks by writing com-
puter code; we can use a programming language to write computer code.
We can write code to generate our instructions to the computer, which is a
tremendous advantage if the instructions are repetitive, for example, if we
write the same HTML report every month.

Another option for producing HTML code from R data structures is the
xtable package; this package can also format R data structures as LATEX
tables.
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Although a detailed description is beyond the scope of this book, it is also
worth mentioning the Sweave package, which allows HTML (or LATEX)
code to be combined with R code within a single document, thereby avoiding
having to cut-and-paste results from R to a separate report document by
hand.

Recap

When we view data values that have been stored in RAM, what we see
displayed on screen is typically a text version of the data values.

The conversion of data values to a text representation is sometimes
ambiguous and requires us to provide a specification of what the result
should be.

It is possible to format the display of R data structures so that they can
be integrated nicely within research reports.

9.11 Programming

A computer program is often described as “data structures + algorithms.”

Most of this chapter has been concerned with data structures—how infor-
mation is stored in computer memory—and a number of tools that allow us
to convert one data structure into another sort of data structure in a single
step.

Algorithms are the series of steps that we take in order to carry out more
complex tasks. Algorithms are what we use to combine smaller tasks into
computer programs.

The difference between data structures and algorithms is like the difference
between the ingredients that we need to cook a meal and the recipe that we
use to cook the meal. The focus of this book is on data structures. Much
of what we need to achieve when processing a data set can be performed
in only a few steps, with only one or two expressions. This book is mostly
about boiling an egg rather than baking a soufflé.

However, as we perform more complex data processing tasks, it becomes
useful to know something about how to combine and manage a larger num-
ber of expressions.

In this section, we will look at some slightly more advanced ideas for writing



i
i

“itdt” — 2012/7/30 — 8:05 — page 353 — #379 i
i

i
i

i
i

Data Processing 353

VARIABLE : Mean Near-surface air temperature (kelvin)

FILENAME : ISCCPMonthly_avg.nc

FILEPATH : /usr/local/fer_data/data/

SUBSET : 24 by 24 points (LONGITUDE-LATITUDE)

TIME : 16-JAN-1995 00:00

113.8W 111.2W 108.8W 106.2W 103.8W 101.2W 98.8W ...

27 28 29 30 31 32 33 ...

36.2N / 51: 272.1 270.3 270.3 270.9 271.5 275.6 278.4 ...

33.8N / 50: 282.2 282.2 272.7 272.7 271.5 280.0 281.6 ...

31.2N / 49: 285.2 285.2 276.1 275.0 278.9 281.6 283.7 ...

28.8N / 48: 290.7 286.8 286.8 276.7 277.3 283.2 287.3 ...

26.2N / 47: 292.7 293.6 284.2 284.2 279.5 281.1 289.3 ...

23.8N / 46: 293.6 295.0 295.5 282.7 282.7 281.6 285.2 ...

...

Figure 9.17: The first few lines of output from the Live Access Server for the

near-surface air temperature of the earth for January 1995, over a coarse 24 by

24 grid of locations covering Central America.

computer code. This treatment will barely scratch the surface of the topics
available; the aim is to provide a very brief introduction to some useful ideas
for writing larger amounts of more complex programming code.

We will use a case study to motivate the need for these more advanced
techniques.

9.11.1 Case study: The Data Expo (continued)

The data for the 2006 JSM Data Expo (Section 5.2.8) were obtained from
NASA’s Live Access Server as a set of 505 text files.

Seventy-two of those files contain near-surface air temperature measure-
ments, with one file for each month of recordings. Each file contains average
temperatures for the relevant month at 576 different locations. Figure 9.17
shows the first few lines of the temperature file for the first month, January
1995.

With the data expo files stored in a local directory, NASA/Files, the com-
plete set of 72 filenames for the files containing temperature recordings can
be generated by the following code (only the first six filenames are shown).
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R> nasaAirTempFiles <-
file.path("NASA", "Files",

paste("temperature", 1:72, ".txt",
sep=""))

R> head(nasaAirTempFiles)

[1] "NASA/Files/temperature1.txt"
[2] "NASA/Files/temperature2.txt"
[3] "NASA/Files/temperature3.txt"
[4] "NASA/Files/temperature4.txt"
[5] "NASA/Files/temperature5.txt"
[6] "NASA/Files/temperature6.txt"

We will conduct a simple task with these data: calculating the near-surface
air temperature for each month, averaged over all locations. In other words,
we will calculate a single average temperature from each file. The result will
be a vector of 72 monthly averages.

As a starting point, the following code reads in the data from just a single
file, using the first filename, temperature1.txt, and averages all of the
temperatures in that file.

R> tempDF <- read.fwf(nasaAirTempFiles[1],
skip=7,
widths=c(-12, rep(7, 24)))

R> tempMatrix <- as.matrix(tempDF)
R> mean(tempMatrix)

[1] 295.1849

The call to read.fwf() ignores the first 7 lines of the file and the first 12
characters on each of the remaining lines of the file. This just leaves the
temperature values, which are stored in RAM as a data frame, tempDF.
This data frame is then converted into a matrix, tempMatrix, so that, in
the final step, the mean() function can calculate the average across all of
the temperature values.

At this point, we have simple code that uses the functions and data struc-
tures that have been described in previous sections. The next step is to
repeat this task for all 72 air temperature files.
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One way to do that is to write out 72 almost identical copies of the same
piece of code, but, unsurprisingly, there are ways to work much more effi-
ciently. The next section describes how.

9.11.2 Control flow

In a programming language, if our code contains more than one expression,
the expressions are run one at a time, in the order that they appear.

For example, consider the following two expressions from the code in the
previous section.

tempMatrix <- as.matrix(tempDF)
mean(tempMatrix)

In this code, the expression mean(tempMatrix) relies on the fact that the
previous expression has already been run and that there is a matrix data
structure stored in RAM for it to access via the symbol tempMatrix.

However, programming languages also provide ways to modify this basic rule
and take control of the order in which expressions are run. One example of
this is the idea of a loop, which is a way to allow a collection of expressions
to be run repeatedly.

Returning to our example of calculating an average value for each of 72
different files, the following code shows how to calculate these averages using
a loop in R.

R> avgTemp <- numeric(72)
R> for (i in 1:72) {

tempDF <- read.fwf(nasaAirTempFiles[i],
skip=7,
widths=c(-12,
rep(7, 24)))

tempMatrix <- as.matrix(tempDF)
avgTemp[i] <- mean(tempMatrix)

}

The first expression is just a set-up step that creates a vector of 72 zeroes.
This vector will be used to store the 72 average values as we calculate them.
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The components of the actual loop are shown below.

keywords: for (i in 1:72) {
parentheses: for (i in 1:72) {
loop symbol: for (i in 1:72) {

loop symbol values: for (i in 1:72) {
open bracket: for (i in 1:72) {

loop body: tempDF <- read.fwf(nasaAirTempFiles[i],
skip=7,
widths=c(-12,
rep(7, 24)))

tempMatrix <- as.matrix(tempDF)
avgTemp[i] <- mean(tempMatrix)

close bracket: }

The keywords, for and in, the brackets, and the parentheses will be the
same in any loop that we write. The most important bits are the loop
symbol, in this case the symbol i, and the values that the loop symbol can
take, in this case, 1:72.

The idea of a loop is that the expressions in the body of the loop are run
several times. Specifically, the expressions in the body of the loop are run
once for each value of the loop symbol. Also, each time the loop repeats, a
different value is assigned to the loop symbol.

In this example, the value 1 is assigned to the symbol i and the expressions
in the body of the loop are run. Then, the value 2 is assigned to the symbol
i and the body of the loop is run again. This continues until we assign the
value 72 to the symbol i and run the body of the loop, and then the loop
ends.

If we look closely at the expressions in the body of the loop, we can see that
the loop symbol, i, is used twice. In the first case, nasaAirTempFiles[i],
this means that each time through the loop we will read a different air
temperature file. In the second case, avgTemp[i], this means that the
average that we calculate from the air temperature file will be stored in a
different element of the vector avgTemp, so that by the end of the loop, we
have all 72 averages stored together in the vector.

The important idea is that, although the code in the body of the loop
remains constant, the code in the body of the loop can do something slightly
different each time the loop runs because the loop symbol changes its value
every time the loop runs.

The overall result is that we read all 72 files, calculate an average from each
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one, and store the 72 averages in the vector avgTemp, which is shown below.

R> avgTemp

[1] 295.1849 295.3175 296.3335 296.9587 297.7286 298.5809
[7] 299.1863 299.0660 298.4634 298.0564 296.7019 295.9568
[13] 295.3915 296.1486 296.1087 297.1007 298.3694 298.1970
[19] 298.4031 298.0682 298.3148 297.3823 296.1304 295.5917
[25] 295.5562 295.6438 296.8922 297.0823 298.4793 299.3575
[31] 299.7984 299.7314 299.6090 298.4970 297.9872 296.8453
[37] 296.9569 296.9354 297.0240 298.0668 299.1821 300.7290
[43] 300.6998 300.3715 300.1036 299.2269 297.8642 297.2729
[49] 296.8823 297.4288 297.5762 298.2859 299.1076 299.1938
[55] 299.0599 299.5424 298.9135 298.2849 297.0981 296.2639
[61] 296.1943 296.5868 297.5510 298.6106 299.7425 299.5219
[67] 299.7422 300.3411 299.5781 298.6965 297.0830 296.3813

9.11.3 Writing functions

When we have to write code to perform the same task several times, one
approach, as described in the previous section, is to write a loop.

In this section, we will look at another option: writing functions.

In our example, we want to calculate an overall average for each of 72 sepa-
rate files. One way to look at this task is that there are 72 filenames stored
in a character vector data structure and we want to perform a calculation
for each element of this data structure. As we saw in Section 9.8.7, there
are several R functions that are designed to perform a task on each element
of a data structure.

What we can do in this case is use sapply() to call a function once for each
of the filenames in the vector nasaAirTempFiles.

The call to the sapply() function that we would like to make is shown
below.

sapply(nasaAirTempFiles, calcMonthAvg)

The bad news is that the function calcMonthAvg() does not exist! There
is no predefined function that can read a NASA air temperature file and
return the average of all of the values in the file.
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The good news is that we can very easily create this function ourselves.

Here is code that creates a function called calcMonthAvg() to perform this
task.

R> calcMonthAvg <- function(filename) {
tempDF <- read.fwf(filename,

skip=7,
widths=c(-12, rep(7, 24)))

tempMatrix <- as.matrix(tempDF)
mean(tempMatrix)

}

This code creates a function and assigns it to the symbol calcMonthAvg.
In most examples in this chapter, we have stored data structures in RAM,
but in this case, we have stored a function in RAM; we have stored some
computer code in RAM. Just like with any other symbol, we can retrieve
the function from RAM by referring to the symbol calcMonthAvg.

R> calcMonthAvg

function (filename)
{

tempDF <- read.fwf(filename, skip = 7,
widths = c(-12, rep(7, 24)))

tempMatrix <- as.matrix(tempDF)
mean(tempMatrix)

}

However, because this is a function, we can do more than just retrieve its
value; we can also call the function. This is done just like any other function
call we have ever made. We append parentheses to the symbol name and
include arguments within the parentheses. The following code calls our new
function to calculate the average for the first air temperature file.

R> calcMonthAvg(nasaAirTempFiles[1])

[1] 295.1849

In order to understand what happens when we call our function, we need



i
i

“itdt” — 2012/7/30 — 8:05 — page 359 — #385 i
i

i
i

i
i

Data Processing 359

to take a closer look at the components of the code that was used to create
the function.

function name: calcMonthAvg <- function(filename) {
keyword: calcMonthAvg <- function(filename) {

parentheses: calcMonthAvg <- function(filename) {
argument symbol: calcMonthAvg <- function(filename) {

open bracket: calcMonthAvg <- function(filename) {
function body: tempDF <- read.fwf(filename,

skip=7,
widths=c(-12,

rep(7, 24)))
tempMatrix <- as.matrix(tempDF)
mean(tempMatrix)

close bracket: }

The keyword function, the brackets, and the parentheses will be the same
for every function that we write. The important bits are the name we choose
for the function and the argument symbols that we choose for the function.

The idea of a function is that the expressions that make up the body of the
function will be run when the function is called. Also, when the function is
called, the value that is provided as the argument in the function call will
be assigned to the argument symbol.

In this case, the argument symbol is filename and this symbol is used once
in the body of the function, in the call to read.fwf(). This means that the
argument to the function is used to select which file the function will read
and calculate an average value for.

The value returned by a function is the value of the last expression within
the function body. In this case, the return value is the result of the call to
the mean() function.

As a simple example, the following code is a call to our calcMonthAvg()
function that calculates the overall average temperature from the contents
of the file temperature1.txt.

R> calcMonthAvg(nasaAirTempFiles[1])

[1] 295.1849

That function call produces exactly the same result as the following code.
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R> tempDF <- read.fwf(nasaAirTempFiles[1],
skip=7,
widths=c(-12, rep(7, 24)))

R> tempMatrix <- as.matrix(tempDF)
R> mean(tempMatrix)

The advantage of having defined the function calcMonthAvg() is that it is
now possible to calculate the monthly averages from all of the temperature
files using sapply().

We supply the vector of filenames, nasaAirTempFiles, and our new func-
tion, calcMonthAvg(), and sapply() calls our function for each filename.
The USE.NAMES argument is employed here to avoid having large, messy
names on each element of the result.

R> sapply(nasaAirTempFiles, calcMonthAvg,
USE.NAMES=FALSE)

[1] 295.1849 295.3175 296.3335 296.9587 297.7286 298.5809
[7] 299.1863 299.0660 298.4634 298.0564 296.7019 295.9568
[13] 295.3915 296.1486 296.1087 297.1007 298.3694 298.1970
[19] 298.4031 298.0682 298.3148 297.3823 296.1304 295.5917
[25] 295.5562 295.6438 296.8922 297.0823 298.4793 299.3575
[31] 299.7984 299.7314 299.6090 298.4970 297.9872 296.8453
[37] 296.9569 296.9354 297.0240 298.0668 299.1821 300.7290
[43] 300.6998 300.3715 300.1036 299.2269 297.8642 297.2729
[49] 296.8823 297.4288 297.5762 298.2859 299.1076 299.1938
[55] 299.0599 299.5424 298.9135 298.2849 297.0981 296.2639
[61] 296.1943 296.5868 297.5510 298.6106 299.7425 299.5219
[67] 299.7422 300.3411 299.5781 298.6965 297.0830 296.3813

This is the same as the result that was produced from an explicit loop (see
page 355), but it uses only a single call to sapply().

9.11.4 Flashback: Writing functions, writing code, and
the DRY principle

The previous example demonstrates that it is useful to be able to define our
own functions for use with functions like apply(), lapply(), and sapply().
However, there are many other good reasons for being able to write func-
tions. In particular, functions are useful for organizing code, simplifying
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code, and for making it easier to maintain code.

For example, the code below reproduces the loop that we wrote in Section
9.11.2, which calculates all 72 monthly averages.

for (i in 1:72) {
tempDF <- read.fwf(nasaAirTempFiles[i],

skip=7,
widths=c(-12,
rep(7, 24)))

tempMatrix <- as.matrix(tempDF)
avgTemp[i] <- mean(tempMatrix)

}

We can use the calcMonthAvg() function to make this code much simpler
and easier to read.

for (i in 1:72) {
avgTemp[i] <- calcMonthAvg(nasaAirTempFiles[i])

}

This sort of use for functions is just an extension of the ideas of laying
out and documenting code for the benefit of human readers that we saw in
Section 2.4.

A further advantage that we can obtain from writing functions is the ability
to reuse our code.

The calcMonthAvg() function nicely encapsulates the code for calculating
the overall average temperature from one of these NASA files. If we ever
need to perform this calculation in another analysis, rather than writing the
code again, we can simply make use of this function again.

In this sense, functions are another example of the DRY principle because
a function allows us to create and maintain a single copy of a piece of
information—in this case, the computer code to perform a specific task.

9.11.5 Flashback: Debugging

All of the admonitions about writing code in small pieces and changing one
thing at a time, which were discussed first in Section 2.6.2, are even more
important when writing code in a programming language because the code
tends to be more complex.
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A specific point that can be made about writing R code, especially code that
involves many expressions, is that each individual expression can be run, one
at a time, in the R environment. If the final result of a collection of R code
is not correct, the first thing to do is to run the individual expressions, one
at a time, in order, and check that the result of each expression is correct.
This is an excellent way to track down where a problem is occurring.

Matters become far more complicated once we begin to write our own func-
tions, or even if we write loops. If the code within a function is not per-
forming as expected, the debug() function is very useful because it allows
us to run the code within a function one expression at a time.

Another useful simple trick, for both functions and loops, is to use the
functions from Section 9.10 to write messages to the screen that show the
values from intermediate calculations.

Recap

A loop is an expression that repeats a body of code multiple times.

Functions allow a piece of code to be reused.

In their simplest form, functions are like macros, simply a recording of
a series of steps.

The best way to debug R code is to run it one expression at a time.

9.12 Other software

This chapter has focused on the R language for simple programming tasks.

The tools described in this chapter are the core tools for working with the
fundamental data structures in R. In specific areas of research, particularly
where data sets have a special format, there may be R packages that provide
more sophisticated and convenient tools for working with a specific data
format.

A good example of this is the zoo package for working with time series
data. Other examples are the packages within the Bioconductor project4

that provide tools for working with the results of microarray experiments.

The choice of R as a data processing tool was based on the fact that R is

4http://www.bioconductor.org/

http://www.bioconductor.org/
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a relatively easy programming language to learn and it has good facilities
for manipulating data. R is also an excellent environment for data analysis,
so learning to process data with R means that it is possible to prepare and
analyze a data set within a single system.

However, there are two major disadvantages to working with data using R:
R is slower than many other programming languages, and R holds all data
in RAM, so it can be awkward to work with extremely large data sets.

There are a number of R packages that enhance R’s ability to cope gracefully
with very large data sets. One approach is to store the data in a relational
database and use the packages that allow R to talk to the database software,
as described in Section 9.7.8. Several other packages solve the problem by
storing data in mass storage rather than RAM and just load data as required
into RAM; two examples are the filehash and ff packages.

If R is too slow for a particular task, it may be more appropriate to use a
different data processing tool.

There are many alternative programming languages, such as C, Perl, Python,
and Java, that will run much faster than R. The trade-off with using one
of these programming languages is likely to involve writing more code, and
more complex code, in order to produce code that runs faster.

It is also worth mentioning that many simple software tools exist, especially
for processing text files. In particular, on Linux systems, there are programs
such as sort for sorting files, grep for finding patterns in files, cut for
removing pieces from each line of a file, and sed and awk for more powerful
rearrangements of file contents. These tools are not as flexible or powerful
as R, but they are extremely fast and will work on files of virtually any size.
The Cygwin project5 makes these tools available on Windows.

5http://www.cygwin.com/

http://www.cygwin.com/
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Summary

A programming language provides great flexibility and power because it can
be used to control the computer hardware, including accessing data from mass
storage, processing data values within RAM, and displaying data on screen.

R is a good programming language for working with data because it is relatively
easy to learn and it provides many tools for processing data.

A data structure is the format in which a collection of data values is stored
together within RAM. The basic data structures in R are vectors, matrices,
data frames, and lists.

Standard data processing tasks include: reading data from external files into
RAM; extracting subsets of data; sorting, transforming, aggregating, and re-
shaping data structures; searching and reformatting text data; and formatting
data for display on screen.



i
i

“itdt” — 2012/7/30 — 8:05 — page 365 — #391 i
i

i
i

i
i

R

10
R Reference

R is a popular programming language and interactive environment for pro-
cessing and analyzing data.

This chapter provides brief reference information for the R language. See
Section 9.2 for a brief introduction to the R software environment that is
used to run R code.

10.1 R syntax

R code consists of one or more expressions. This section describes several
different sorts of expressions.

10.1.1 Constants

The simplest type of expression is just a constant value. The most common
constant values in R are numbers and text. There are various ways to
enter numbers, including using scientific notation and hexadecimal syntax.
Text must be surrounded by double-quotes or single-quotes, and special
characters may be included within text using various escape sequences. The
help pages ?NumericConstants and ?Quotes provide a detailed description
of the various possibilities.

Any constant not starting with a number and not within quotes is a symbol.

There are a number of reserved symbols with predefined meanings: NA (miss-
ing value), NULL (an empty data structure), NaN (Not a Number), Inf and
-Inf ([minus] infinity), TRUE and FALSE, and the symbols used for control
flow as described below.

Section 10.1.5 will describe how to create new symbols.

365
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10.1.2 Arithmetic operators

R has all of the standard arithmetic operators such as addition (+), subtrac-
tion (-), division (/), multiplication (*), and exponentiation (^). R also has
operators for integer division (%/%) and remainder on integer division (%%;
also known as modulo arithmetic).

10.1.3 Logical operators

The comparison operators <, >, <=, >=, ==, and != are used to determine
whether values in one vector are larger or smaller or equal to the values in
another vector. The %in% operator determines whether each value in the
left operand can be matched with one of the values in the right operand.
The result of these operators is a logical vector.

The logical operators || (or) and && (and) can be used to combine two
logical values and produce another logical value as the result. The operator
! (not) negates a logical value. These operators allow complex conditions
to be constructed.

The operators | and & are similar, but they combine two logical vectors.
The comparison is performed element by element, so the result is also a
logical vector.

Section 10.3.4 describes several functions that perform comparisons.

10.1.4 Function calls

A function call is an expression of the form:

functionName(arg1, arg2)

A function can have any number of arguments, including zero. Every argu-
ment has a name.

Arguments can be specified by position or by name (name overrides posi-
tion). Arguments may have a default value, which they will take if no value
is supplied for the argument in the function call.

All of the following function calls are equivalent (they all generate a numeric
vector containing the integers 1 to 10):
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R

seq(1, 10) # positional arguments
seq(from=1, to=10) # named arguments
seq(to=10, from=1) # names trump position
seq(1, 10, by=1) # 'by' argument has default

Section 10.3 provides details about a number of important functions for
basic data processing.

10.1.5 Symbols and assignment

Anything not starting with a digit, that is not a special keyword, is treated
as a symbol. Values may be assigned to symbols using the <- operator;
otherwise, any expression involving a symbol will produce the value that
has been previously assigned to that symbol.

R> x <- 1:10

R> x

[1] 1 2 3 4 5 6 7 8 9 10

10.1.6 Loops

A loop is used to repeatedly run a group of expressions.

A for loop runs expressions a fixed number of times. It has the following
general form:

for (symbol in sequence) {
expressions

}

The expressions are run once for each element in the sequence, with the
relevant element of the sequence assigned to the symbol .

A while loop runs expressions until a condition is met. It has the following
general form:
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while (condition) {
expressions

}

The while loop repeats until the condition is FALSE. The condition is an
expression that should produce a single logical value.

10.1.7 Conditional expressions

A conditional expression is used to make expressions contingent on a con-
dition.

A conditional expression in R has the following form:

if (condition) {
expressions

}

The condition is an expression that should produce a single logical value,
and the expressions are only run if the result of the condition is TRUE.

The curly braces are not necessary, but it is good practice to always include
them; if the braces are omitted, only the first complete expression following
the condition is run.

It is also possible to have an else clause.

if (condition) {
trueExpressions

} else {
falseExpressions

}

10.2 Data types and data structures

Individual values are either character values (text), numeric values (num-
bers), or logical values (TRUE or FALSE). R also supports complex values
with an imaginary component.

There is a distinction within numeric values between integers and real values,
but integer values tend to be coerced to real values if anything is done to
them. If an integer is required, it is best to use a function that explicitly
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generates integer values, such as as.integer().

On a 32-bit operating system, in an English locale, a character value uses 1
byte per character; an integer uses 4 bytes, as does a logical value; and a real
number uses 8 bytes. The function object.size() returns the approximate
number of bytes used by an R data structure in memory.

R> object.size(1:1000)

4024 bytes

R> object.size(as.numeric(1:1000))

8024 bytes

The simplest data structure in R is a vector. All elements of a vector must
have the same basic type. Most operators and many functions accept vector
arguments and return a vector result.

Matrices and arrays are multidimensional analogues of the vector. All ele-
ments must have the same type.

Data frames are collections of vectors where each vector must have the same
length, but different vectors can have different types. This data structure
is the standard way to represent a data set in R.

Lists are like vectors that can have different types of data structures in each
component. In the simplest case, each component of a list may be a vector
of values. Like the data frame, each component can be a vector of a different
basic type, but for lists there is no requirement that each component has the
same size. More generally, the components of a list can be more complex
data structures, such as matrices, data frames, or even other lists. Lists can
be used to efficiently represent hierarchical data in R.

10.3 Functions

This section provides a list of some of the functions that are useful for
working with data in R. The descriptions of these functions are very brief
and only some of the arguments to each function are mentioned. For a
complete description of the function and its arguments, the relevant function
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help page should be consulted (see Section 10.4).

10.3.1 Session management

This section describes some functions that are useful for querying and con-
trolling the R software environment during an interactive session.

ls()
List the symbols that have had values assigned to them during the
current session.

rm(...)
rm(list)

Delete one or more symbols (the value that was assigned to the symbol
is no longer accessible). The symbols to delete are specified by name
or as a list of names.

To delete all symbols in the current session, use rm(list=ls()) (care-
fully).

options(...)
Set a global option for the R session by specifying a new value with an
appropriate argument name in the form optionName=optionValue or
query the current setting for an option by specifying "optionName".

Typing options() with no arguments returns a list of all current
option settings.

q()
Exit the current R session.

10.3.2 Generating vectors

c(...)
Create a new vector by concatenating or combining the values (or
vectors of values) given as arguments. All values must be of the same
type (or they will be coerced to the same type).

This function can also be used to concatenate lists.

seq(from, to, by)
seq(from, to, length.out)
seq(from, to, along.with)

Generate a sequence of numbers from the value from to (not greater
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than) the value to in steps of by, or for a total of length.out values,
or so that the sequence has the same length as along.with.

The function seq_len(n) is faster for producing the sequence from 1
to n and seq_along(x) is faster for producing the sequence from 1 to
the number of values in x. These may be useful for producing very
long sequences.

The colon operator, :, provides a short-hand syntax for sequences of
integer values in steps of 1. The expression from:to is equivalent to
seq(from, to).

rep(x, times)
rep(x, each)
rep(x, length.out)

Repeat all values in a vector times times, or each value in the vector
each times, or all values in the vector until the total number of values
is length.out.

append(x, values, after)
Insert the values into the vector x at the position specified by after.

unlist(x)
Convert a list structure into a vector by concatenating all components
of the list. This is especially useful when a function call returns a list
where each component is a vector.

rev(x)
Reverse the elements of a vector.

unique(x)
Remove any duplicated values from x.

10.3.3 Numeric functions

sum(..., na.rm=FALSE)
Sum the value of all arguments. If NA values are included, the result
is NA (unless na.rm=TRUE).

mean(x)
Calculate the arithmetic mean of the values in x.

max(..., na.rm=FALSE)
min(..., na.rm=FALSE)
range(..., na.rm=FALSE)

Calculate the minimum, maximum, or range of all values in all argu-
ments.
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The functions which.min() and which.max() return the index of the
minimum or maximum value within a vector.

diff(x)
Calculate the difference between successive values of x. The result
contains one fewer values than there are in x.

cumsum(x)
cumprod(x)

The cumulative sum or cumulative product of the values in x.

10.3.4 Comparisons

identical(x, y)
Tests whether x and y are equivalent down to the details of their
representation in computer memory.

all.equal(target, current, tolerance)
Tests whether target and current differ by only a tiny amount, where
“tiny” is defined by tolerance). This is useful for testing whether
numeric values are equal.

match(x, table)
Determine the location of each element of x in the set of values in
table. The result is a numeric index the same length as x.

The %in% operator is similar (x %in% table), but returns a logical
vector the same length as x reporting whether each element of x was
found in table.

The pmatch() function performs partial matching (whereas match()
is exact).

is.null(x)
is.na(x)
is.infinite(x)
is.nan(x)

These functions should be used to test for the special values NULL, NA,
Inf, and NaN.

any(...)
all(...)

Test whether all or any values in one or more logical vectors are TRUE.
The result is a single logical value.
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10.3.5 Type coercion

as.character(x)
as.logical(x)
as.numeric(x)
as.integer(x)

Convert the data structure x to a vector of the appropriate type.

as.Date(x, format)
as.Date(x, origin)

Convert character values or numeric values to Date values.

Character values are converted automatically if they are in ISO 8601
format; otherwise, it may be necessary to describe the date format
via the format argument. The help page for the strftime() function
describes the syntax for specifying date formats.

When converting numeric values, a reference date must be provided,
via the origin argument.

The Sys.Date() function returns today’s date as a date value.

The months() function resolves date values just to month names.
There are also functions for weekdays() and quarters().

floor(x)
ceiling(x)
round(x, digits)

Round a numeric vector, x, to digits decimal places or to an in-
teger value. floor() returns largest integer not greater than x and
ceiling() returns smallest integer not less than x.

signif(x, digits)
Round a numeric vector, x, to digits significant digits.

10.3.6 Exploring data structures

attributes(x)
attr(x, which)

Extract a list of all attributes, or just the attributes named in the
character vector which, from the data structure x.
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names(x)
rownames(x)
colnames(x)
dimnames(x)

Extract the names attribute from a vector or list, or the row names
or column names from a two-dimensional data structure, or the list of
names for all dimensions of an array.

summary(object)
Produces a summary of object. The information displayed will de-
pend on the class of object.

length(x)
The number of elements in a vector, or the number of components in
a list. Also works for data frames and matrices, though the result may
be less intuitive; it gives the number of columns for a data frame and
the total number of values in a matrix.

dim(x)
nrow(x)
ncol(x)

The dimensions of a matrix, array, or data frame. nrow() and ncol()
are specifically for two-dimensional data structures, but dim() will
also work for higher-dimensional structures.

head(x, n=6)
tail(x, n=6)

Return just the first or last n elements of a data structure; the first
elements of a vector, the first few rows of a data frame, and so on.

class(x)
Return the class of the data structure x.

str(object)
Display a summarized, low-level view of a data structure. Typically,
the output is less pretty and more detailed than the output from
summary().

10.3.7 Subsetting

Subsetting is generally performed via the square bracket operator, [ (e.g.,
candyCounts[1:4]). In general, the result is of the same class as the original
data structure that is being subsetted. The subset may be a numeric vector,
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a character vector (names), or a logical vector (the same length as the
original data structure).

When subsetting data structures with more than one dimension—e.g., data
frames, matrices, or arrays—the subset may be several vectors, separated
by commas (e.g., candy[1:4, 4]).

The double square bracket operator, [[, selects only one component of a
data structure. This is typically used to extract a component from a list.

subset(x, subset, select)
Extract the rows of the data frame x that satisfy the condition in
subset and the columns that are named in select.

An important special case of subsetting for statistical data sets is the issue
of removing missing values from a data set. The function na.omit() can
be used to remove all rows containing missing values from a data frame.

10.3.8 Data import/export

R provides general functions for working with the file system.

getwd()
setwd(dir)

Get the current working directory or set it to dir. This is where R
will look for files (or start looking for files).

list.files(path, pattern)
List the names of files in the directory given by path, filtering results
with the specified pattern (a regular expression).

For Linux users who are used to using filename globs with the ls shell
command, this use of regular expressions for filename patterns can
cause confusion. Such users may find the glob2rx() function helpful.

The complete names of the files, including the path, can be obtained
by specifying full.names=TRUE. Given a full filename, consisting of a
path and a filename, basename() strips off the path to leave just the
filename, and dirname() strips off the filename to leave just the path.

file.path(...)
Given the names of nested directories, combine them using an appro-
priate separator to form a path.

file.choose()
Interactively select a file (on Windows, using a dialog box interface).
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file.exists()
file.remove()
file.rename()
file.copy()
dir.create()

These functions perform the standard file manager tasks of copying,
deleting, and renaming files and creating new directories.

There are a number of functions for reading data from external text files
into R.

readLines(con)
Read the text file specified by the filename or path given by con. The
file specification can also be a URL. The result is a character vector
with one element for each line in the file.

read.table(file, header=FALSE, skip=0, sep="")
Read the text file specified by the character value in file, treating
each line of text as a case in a data set that contains values for each
variable in the data set, with values separated by the character value
in sep. Ignore the first skip lines in the file. If header is TRUE, treat
the first line of the file as variable names.

The default behavior is to treat columns that contain only numbers
as numeric and to treat everything else as a factor. The arguments
as.is and stringsAsFactors can be used to produce character vari-
ables rather than factors. The colClasses argument provides further
control over the type of each column.

This function can be slow on large files because of the work it does to
determine the type of values in each column.

The result of this function is a data frame.

read.fwf(file, widths)
Read a text file in fixed-width format. The name of the file is specified
by file and widths is a numeric vector specifying the width of each
column of values.

The result is a data frame.

read.csv(file)
A front end for read.table() with default argument settings designed
for reading a text file in CSV format.

The result is a data frame.
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read.delim(file)
A front end for read.table() with default argument settings designed
for reading a tab-delimited text file.

The result is a data frame.

scan(file, what)
Read data from a text file and produce a vector of values. The type of
the value provided for the argument what determines how the values
in the text file are interpreted. If this argument is a list, then the
result is a list of vectors, each of a type corresponding to the relevant
component of what.

This function is more flexible and faster than read.table() and its
kin, but the result may be less convenient to work with.

In most cases, these functions that read a data set from a text file produce
a data frame as the result. The functions automatically determine the data
type for each column of the data frame, treating anything that is not a
number as a factor, but arguments are provided to explicitly specify the
data types for columns. Where names of columns are provided in the text
file, these functions may modify the names so that they do not cause syntax
problems, but again arguments are provided to stop these modifications
from happening.

The XML package provides functions for reading and manipulating XML
documents.

The package foreign contains various functions for reading data from ex-
ternal files in the various binary formats of popular statistical programs.
Other popular scientific binary formats can also be read using an appropri-
ate package, e.g., ncdf for the netCDF format.

Most of the functions for reading files have a corresponding function to write
the relevant format.

writeLines(text, con)
Write a character vector to a text file. Each element of the character
vector is written as a separate line in the file.

write.table(x, file, sep=" ")
Write a data frame to a text file using a delimited format. The sep
argument allows control over the delimiter.

The function write.csv() provides useful defaults for producing files
in CSV format.
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sink(file)
Redirect R output to a text file. Instead of displaying output on the
screen, output is saved into a file. The redirection is terminated by
calling sink() with no arguments.

The function capture.output() provides a convenient way to redirect
output for a single R expression.

Most of these functions read or write an entire file worth of data in one
go. For large data sets, it is also possible to read or write data in smaller
pieces. The functions file() and close() allow a file to be held open
while reading or writing. Functions that read from files typically have an
argument that specifies a number of lines or bytes of information to read,
and functions that write to files typically provide an append argument to
ensure that previous content is not overwritten.

One important case not mentioned so far is the export and import of data
in an R-specific format, which is useful for sharing data between colleagues
who all use R.

save(..., file)
Save the symbols named in ... (and their values), in an R-specific
format, to the specified file.

load(file)
Load R symbols (and their values) from the specified file (that has
been created by a previous call to save()).

dump(list, file)
Write out a text representation of the R data structures named in the
character vector list. The data structures can be recreated in R by
calling source() on the file.

source(file)
Parse and evaluate the R code in file. This can be used to read data
from a file created by dump() or much more generally to run any R
code that has been stored in a file.

10.3.9 Transformations

transform(data, ...)
Redefine existing columns within a data frame and append new columns
to a data frame.

Each argument in ... is of the form columnName=columnValue.
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ifelse(test, yes, no)
The test argument is a logical vector. This function creates a new
vector consisting of the values in the vector yes when the correspond-
ing element of test is TRUE and the values in no when test is FALSE.
The switch() function is similar, but allows for more than two values
in test.

cut(x, breaks)
Transform the continuous vector x into a factor. The breaks argument
can be an integer that specifies how many different levels to break x
into, or it can be a vector of interval boundaries that are used to cut
x into different levels.
An additional labels argument allows labels to be specified for the
levels of the new factor.

10.3.10 Sorting

sort(x, decreasing=FALSE)
Sort the elements of a vector. Character values are sorted alphabeti-
cally (which may depend on the locale or language setting).

order(..., decreasing=FALSE)
Determine an ordering based on the elements of one or more vec-
tors. In the simple case of a single vector, sort(x) is equivalent to
x[order(x)]. The advantage of this function is that it can be used to
reorder more than just a single vector, plus it can produce an ordering
from more than one vector; it can break ties in one variable using the
values from another variable.

10.3.11 Tables of counts

table(...)
Generate table of counts for one or more factors. The result is a
"table" data structure, with as many dimensions as there are argu-
ments.
The margin.table() function reduces a table to marginal totals,
prop.table() converts table counts to proportions of marginal to-
tals, and addmargins() adds margin totals to an existing table.

xtabs(formula, data)
Similar to table() except factors to cross-tabulate are expressed in
a formula. Symbols in the formula will be searched for in the data
frame given by the data argument.
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ftable(...)
Similar to table() except that the result is always a two-dimensional
"ftable" data structure, no matter how many factors are used. This
makes for a more readable display.

10.3.12 Aggregation

aggregate(x, by, FUN)
Call the function FUN for each subset of x defined by the grouping
factors in the list by. It is possible to apply the function to multiple
variables (x can be a data frame) and it is possible to group by multiple
factors (the list by can have more than one component). The result is
a data frame. The names used in the by list are used for the relevant
columns in the result. If x is a data frame, then the names of the
variables in the data frame are used for the relevant columns in the
result.

10.3.13 The “apply” functions

apply(X, MARGIN, FUN, ...)
Call a function on each row or each column of a data frame or matrix.
The function FUN is called for each row of the matrix X, if MARGIN=1;
if MARGIN=2, the function is called for each column of X. All other
arguments are passed as arguments to FUN.

The data structure that is returned depends on the value returned by
FUN. In the simplest case, where FUN returns a single value, the result
is a vector with one value per row (or column) of the original matrix
X.

sweep(x, MARGIN, STATS, FUN="-")
If MARGIN=1, for row i of x, subtract element i of STATS. For example,
subtract row averages from all rows.

More generally, call the function FUN with row i of x as the first argu-
ment and element i of STATS as the second argument.

If MARGIN=2, call FUN for each column of x rather than for each row.

tapply(X, INDEX, FUN, ...)
Call a function once for each subset of the vector X, where the subsets
correspond to unique values of the factor INDEX. The INDEX argument
can be a list of factors, in which case the subsets are unique combina-
tions of the levels of these factors.
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The result depends on how many factors are given in INDEX. For the
simple case where there is only one factor and FUN returns a single
value, the result is a vector.

lapply(X, FUN, ...)
Call the function FUN once for each component of the list X. The result
is a list. Additional arguments are passed on to each call to FUN.

sapply(X, FUN, ...)
Similar to lapply(), but will simplify the result to a vector if possible
(e.g., if all components of X are vectors and FUN returns a single value).

mapply(FUN, ..., MoreArgs)
A“multivariate”apply. Similar to lapply(), but will call the function
FUN on the first element of each of the supplied arguments, then on
the second element of each argument, and so on. MoreArgs is a list of
arguments to pass to each call to FUN.

rapply(object, f)
A “recursive” apply. Calls the function f on each component of the
list object, but if a component is itself a list, then f is called on each
component of that list as well, and so on.

10.3.14 Merging

rbind(...)
Create a new data frame by combining two or more data frames that
have the same columns. The result is the union of the rows of the
original data frames. This function also works for matrices.

cbind(...)
Create a new data frame by combining two or more data frames that
have the same number of rows. The result is the union of the columns
of the original data frames. This function also works for matrices.

merge(x, y)
Create a new data frame by combining two data frames in a database
join operation. The two data frames will usually have different columns,
though they will typically share at least one column, which is used to
match the rows. Additional arguments allow the matching column to
be specified explicitly.

The default join is an inner join on columns that x and y have in
common. Additional arguments allow for the equivalent of inner joins
and outer joins.
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10.3.15 Splitting

split(x, f)
Split a vector or data frame, x, into a list of smaller vectors or data
frames. The factor f is used to determine which elements of the origi-
nal vector or which rows of the original matrix end up in each subset.

unsplit(value, f)
Combine a list of vectors into a single vector. The factor f determines
the order in which the elements of the vectors are combined.

This function can also be used to combine a list of data frames into a
single data frame (as long as the data frames have the same number
of columns); in this case, f determines the order in which the rows of
the data frames are combined.

10.3.16 Reshaping

stack(x)
Stack the existing columns of data frame x together into a single col-
umn and add a new column that identifies which original column each
value came from.

aperm(a, perm)
Reorder the dimensions of an array. The perm argument specifies the
order of the dimensions.

The special case of transposing a matrix is provided by the t() func-
tion.

Functions from the reshape package:

melt(data, measure.var)
melt(data, id.var)

Convert the data, typically a data frame, into “long” form, where
there is a row for every measurement or “dependent” value. The
measure.var argument gives the names or numeric indices of the vari-
ables that contain measurements. All other variables are treated as
labels characterizing the measurements (typically factors). Alterna-
tively, the id.var argument specifies the label variables and all others
are treated as measurements.

In the resulting data frame, there is a new, single column of measure-
ments with the name value and an additional variable of identifying
labels, named variable.
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cast(data, formula)
Given data in a long form, i.e., produced by melt(), restructure the
data according to the given formula. In the new arrangement, vari-
ables mentioned on the left-hand side of the formula vary across rows
and variables mentioned on the right-hand side vary across columns.

In a simple repeated-measures scenario consisting of measurements at
two time points, the data may consist of a variable of subject IDs plus
two variables containing measurements at the two time points.

R> library(reshape)
R> wide <- data.frame(ID=1:3,

T1=rnorm(3),
T2=sample(100:200, 3))

R> wide

ID T1 T2
1 1 0.6996518 140
2 2 1.0153558 175
3 3 -1.0828140 119

If we melt the data, we produce a data frame with a column named
ID, a column named variable with values T1 or T2, and a column
named value, containing all of the measurements.

R> long <- melt(wide,
id.var=c("ID"),
measure.var=c("T1", "T2"))

R> long

ID variable value
1 1 T1 0.6996518
2 2 T1 1.0153558
3 3 T1 -1.0828140
4 1 T2 140.0000000
5 2 T2 175.0000000
6 3 T2 119.0000000

This form can be recast back to the original wide form as follows.
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R> cast(long, ID ~ variable)

ID T1 T2
1 1 0.6996518 140
2 2 1.0153558 175
3 3 -1.0828140 119

The function recast() combines a melt and cast in a single operation.

10.3.17 Text processing

nchar(x)
Count the number of characters in each element of the character vector
x. The result is a numeric vector the same length as x.

grep(pattern, x)
Search for the regular expression pattern in the character vector x.
The result is a numeric vector identifying which elements of x matched
the pattern. If there are no matches, the result has length zero.

The function agrep() allows for approximate matching.

regexpr(pattern, text)
Similar to grep() except that the result is a numeric vector containing
the character location of the match within each element of text (-1 if
there is no match). The result also has an attribute, match.length,
containing the length of the match.

gregexpr(pattern, text)
Similar to regexpr(), except that the result is the locations (and
lengths) of all matches within each piece of text. The result is a list.

gsub(pattern, replacement, x)
Search for the regular expression pattern in the character vector x
and replace all matches with the character value in replacement. The
result is a vector containing the modified text.

The g stands for “global” so all matches are replaced; there is a sub()
function that just replaces the first match.

The functions toupper() and tolower() convert character values to
all uppercase or all lowercase.

substr(x, start, stop)
For each character value in x, return a subset of the text consisting of
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the characters at positions start through stop, inclusive. The first
character is at position 1.

The function substring() works very similarly, with the extra con-
venience that the end character defaults to the end of the text.

More specialized text subsetting is provided by the strtim() function,
which removes characters from the end of text to enforce a maximum
length, and abbreviate(), which reduces text to a given length by
removing characters in such a way that each piece of text remains
unique.

strsplit(x, split)
For each character value in x, break the text into separate character
values, using split as the delimiter. The result is a list, with one
character vector component for each element of the original vector x.

paste(..., sep, collapse)
Combine text, placing the character value sep in between. The result
is a character vector the same length as the longest of the arguments,
so shorter arguments are recycled. If the collapse argument is not
NULL, the result vector is then collapsed to a single character value,
with the text collapse placed in between each element of the result.

10.3.18 Data display

print(x)
This function generates most of the output that we see on the screen.
The important thing to note is that this function is generic, so the
output will depend on the class of x. For different classes there are
also different arguments to control the way the output is formatted.
For example, there is a digits argument that controls the number
of significant digits that are printed for numeric values, and there is
a quote argument that controls whether double-quotes are printed
around character values.

format(x)
The usefulness of this function is to produce a character representation
of a data structure where all values have a similar format; for example,
all numeric values are formatted to have the same number of characters
in total.

sprintf(fmt, ...)
Generates a character vector using the template given by fmt. This
is a character value with special codes embedded. Each special code
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provides a placeholder for values supplied as further arguments to the
sprintf() function and the special code controls the formatting of
the values. The help page for this function contains a description of
the special codes and their meanings.

The usefulness of this function is to obtain fine control over formatting
that is not available in print() or format().

strwrap(x, width)
Break long pieces of text, by inserting newlines, so that each line is
less than the given width.

cat(..., sep=" ", fill=FALSE)
Displays the values in ... on screen. This function converts its ar-
guments to character vectors if necessary and performs no additional
formatting of the text it is given.

The fill argument can be used to control when to start a new line
of output, and the sep argument specifies text to place between argu-
ments.

10.3.19 Debugging

The functions from the previous section are useful to display intermediate
results from within a loop or function.

debug(fun)
Following a call to this function, the function fun will be run one
expression at a time, rather than all at once. After each expression,
the values of symbols used within the function can be explored by
typing the symbol name. Typing ‘n’ (or just hitting Enter) runs the
next expression; ‘c’ runs all remaining expressions; and ‘Q’ quits from
the function.

10.4 Getting help

The help() function is special in that it provides information about other
functions. This function displays a help page, which is online documenta-
tion that describes what a function does. This includes an explanation of
all of the arguments to the function and a description of the result produced
by the function. Figure 10.1 shows the beginning of the help page for the
Sys.sleep() function, which is obtained by typing help(Sys.sleep).
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Sys.sleep package:base R Documentation

Suspend Execution for a Time Interval

Description:

Suspend execution of R expressions for a given number of

seconds

Usage:

Sys.sleep(time)

Arguments:

time: The time interval to suspend execution for, in seconds.

Details:

Using this function allows R to be given very low priority

and hence not to interfere with more important foreground

tasks. A typical use is to allow a process launched from R

to set itself up and read its input files before R execution

is resumed.

Figure 10.1: The beginning of the help page for the function Sys.sleep() as

displayed within an xterm on a Linux system. This help page is displayed by the

expression help(Sys.sleep).
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A special shorthand using the question mark character, ?, is provided for
getting the help page for a function. Instead of typing help(Sys.sleep),
it is also possible to simply type ?Sys.sleep.

There is also a web interface to the help system, which is initiated by typing
help.start().

Many help pages also have a set of examples to demonstrate the proper
use of the function, and these examples can be run using the example()
function.

10.5 Packages

R functions are organized into collections of functions called packages. A
number of packages are installed with R by default and several packages
are loaded automatically in every R session. The search() function shows
which packages are currently available, as shown below:

R> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "package:utils" "package:datasets"
[7] "package:methods" "Autoloads" "package:base"

The top line of the help page for a function shows which package the function
comes from. For example, Sys.sleep() comes from the base package (see
Figure 10.1).

Other packages may be loaded using the library() function. For example,
the foreign package provides functions for reading in data sets that have
been stored in the native format of a different statistical software system.
In order to use the read.spss() function from this package, the foreign
package must be loaded as follows:

R> library(foreign)

The search() function confirms that the foreign package is now loaded
and all of the functions from that package are now available.
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R> search()

[1] ".GlobalEnv" "package:foreign" "package:stats"
[4] "package:graphics" "package:grDevices" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"
[10] "package:base"

There are usually 25 packages distributed with R. Over a thousand other
packages are available for download from the web via the Comprehensive R
Archive Network (CRAN), http://cran.r-project.org. These packages
must first be installed before they can be loaded. A new package can be
installed using the install.packages() function (on Windows, there is an
option on the Packages menu).

10.6 Searching for functions

Given the name of a function, it is not difficult to find out what that function
does and how to use the function by reading the function’s help page. A
more difficult job is to find the name of a function that will perform a
particular task.

The help.search() function can be used to search for functions relating to
a keyword within the current R installation. The RSiteSearch() function
performs a more powerful and comprehensive web-based search of functions
in almost all known R packages, R mailing list archives, and the main R
manuals. This is based on Jonathan Baron’s search site, http://finzi.
psych.upenn.edu/search.html. There is also a Google customized search
available, http://www.rseek.org, which provides a convenient categoriza-
tion of the search results. This was set up and is maintained by Sasha
Goodman.

Another problem that arises is that, while information on a single function
is easy to obtain, it can be harder to discover how several related functions
work together. One way to get a broader overview of functions in a package
is to read a package vignette (see the vignette() function). There are also
overviews of certain areas of research or application provided by CRAN Task
Views (one of the main links on the CRAN web site) and there is a growing
list of books on R (see the home page of the R Project).

http://cran.r-project.org
http://finzi.psych.upenn.edu/search.html
http://finzi.psych.upenn.edu/search.html
http://www.rseek.org
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10.7 Further reading

The Home Page of the R Project
http://www.r-project.org/
The starting point for finding information about R. Includes manuals,
particularly“An Introduction to R”and“R Data Import/Export”, and
FAQ’s.

CRAN—the Comprehensive R Archive Network
http://cran.r-project.org/
Where to download R and the various add-on packages for R.

R News
http://cran.r-project.org/doc/Rnews/
The newsletter of the R Project. Issue 4(1) has an excellent article on
working with dates in R.

Introductory Statistics with R
by Peter Dalgaard
2nd Edition (2008) Springer.
Introduction to using R for basic statistical analysis.

Data Manipulation with R
by Phil Spector
(2008) Springer.
Broad coverage of data manipulation functions in R.

R Coding Conventions
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.
html
An unofficial set of guidelines for laying out R code and choosing sym-
bol names for R code.

http://www.r-project.org/
http://cran.r-project.org/
http://cran.r-project.org/doc/Rnews/
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
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11
Regular Expressions
Reference

Regular expressions provide a very powerful way to describe general patterns
in text.

This chapter only provides a quick reference for regular expressions. See
Section 9.9.2 for an explanation of what regular expressions are, what they
are useful for, and for more realistic examples of their usage.

Small examples are provided throughout this chapter in order to demon-
strate the meaning of various features of regular expressions. In each case,
a regular expression will be used to search for a pattern within the following
text:

The cat sat on the mat.

A successful match will be indicated by highlighting the matched letters
within the text. For example, if the pattern being searched for is the word
"on", the the result will be displayed as shown below, with the pattern on
the left and the resulting match(es) on the right.

"on" ⇒ The cat sat on the mat.

11.1 Literals

In a regular expression, any character that is not a metacharacter has its
normal literal meaning. This includes the lowercase and uppercase alphabet
and the digits, plus some punctuation marks, such as the colon and the
exclamation mark. Many other punctuation characters and symbols are
metacharacters and have a special meaning.

For example, the regular expression "cat" means: the letter ‘c’, followed by
the letter ‘a’, followed by the letter ‘t’.

"cat" ⇒ The cat sat on the mat.

391
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11.2 Metacharacters

The simplest example of a metacharacter is the full stop.

‘.’
The full stop character matches any single character of any sort (apart
from a newline).

For example, the regular expression ".at" means: any letter, followed
by the letter ‘a’, followed by the letter ‘t’.

".at" ⇒ The cat sat on the mat.

11.2.1 Character sets

‘[’ and ‘]’
Square brackets in a regular expression are used to indicate a character
set. A character set will match any character in the set.

For example, the regular expression "[Tt]he" means: an uppercase
‘T’ or a lowercase ‘t’, followed by the letter ‘h’, followed by the letter
‘e’.

"[Tt]he" ⇒ The cat sat on the mat.

Within square brackets, common ranges may be specified by start
and end characters, with a dash in between, e.g., 0-9 for the Arabic
numerals.

For example, the regular expression "[a-z]at" means: any (English)
lowercase letter, followed by the letter ‘a’, followed by the letter ‘t’.

"[a-z]at" ⇒ The cat sat on the mat.

If a hat character appears as the first character within square brackets,
the set is inverted so that a match occurs if any character other than
the set specified within the square brackets is found.

For example, the regular expression "[^c]at" means: any letter except
‘c’, followed by the letter ‘a’, followed by the letter ‘t’.

"[^c]at" ⇒ The cat sat on the mat.
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Table 11.1: Some POSIX regular expression character classes.

[:alpha:] Alphabetic (only letters)
[:lower:] Lowercase letters
[:upper:] Uppercase letters
[:digit:] Digits
[:alnum:] Alphanumeric (letters and digits)
[:space:] White space
[:punct:] Punctuation

Within square brackets, most metacharacters revert to their literal
meaning. For example, [.] means a literal full stop.

For example, the regular expression "at[.]" means: the letter ‘a’,
followed by the letter ‘t’, followed by a full stop.

"at." ⇒ The cat sat on the mat.

"at[.]" ⇒ The cat sat on the mat.

In POSIX regular expressions, common character ranges can be specified
using special character sequences of the form [:keyword:] (see Table 11.1).
The advantage of this approach is that the regular expression will work in
different languages. For example, [a-z] will not capture all characters in
languages that include accented characters, but [[:alpha:]] will.

For example, the regular expression "[[:lower:]]at" means: any lowercase
letter in any language, followed by the letter ‘a’, followed by the letter ‘t’.

"[[:lower:]]at" ⇒ The cat sat on the mat.

11.2.2 Anchors

Anchors do not match characters. Instead, they match zero-length features
of a piece of text, such as the start and end of the text.

‘^’
The “hat” character matches the start of a piece of text or the start of
a line of text. Putting this at the start of a regular expression forces
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the match to begin at the start of the text. Otherwise, the pattern
can be matched anywhere within the text.

For example, the regular expression "^[Tt]he" means: at the start of
the text an uppercase ‘T’ or a lowercase ‘t’, followed by the letter ‘h’,
followed by the letter ‘e’.

"[Tt]he" ⇒ The cat sat on the mat.

"^[Tt]he" ⇒ The cat sat on the mat.

‘$’
The dollar character matches the end of a piece of text. This is useful
for ensuring that a match finishes at the end of the text.

For example, the regular expression "at.$" means: the letter ‘a’,
followed by the letter ‘t’, followed by any character, at the end of the
text.

"at." ⇒ The cat sat on the mat.

"at.$" ⇒ The cat sat on the mat.

11.2.3 Alternation

‘|’
The vertical bar character subdivides a regular expression into alter-
native subpatterns. A match is made if either the pattern to the left
of the vertical bar or the pattern to the right of the vertical bar is
found.

For example, the regular expression "cat|sat" means: the letter ‘c’,
followed by the letter ‘a’, followed by the letter ‘t’, or the letter ‘s’,
followed by the letter ‘a’, followed by the letter ‘t’.

"cat|sat" ⇒ The cat sat on the mat.

Pattern alternatives can be made a subpattern within a large regular expres-
sion by enclosing the vertical bar and the alternatives within parentheses
(see Section 11.2.5 below).
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11.2.4 Repetitions

Three metacharacters are used to specify how many times a subpattern can
repeat. The repetition relates to the subpattern that immediately precedes
the metacharacter in the regular expression. By default, this is just the
previous character, but if the preceding character is a closing square bracket
or a closing parenthesis then the modifier relates to the entire character set
or the entire subpattern within the parentheses (see Section 11.2.5 below).

‘?’
The question mark means that the subpattern can be missing or it
can occur exactly once.

For example, the regular expression "at[.]?" means: the letter ‘a’,
followed by the letter ‘t’, optionally followed by a full stop.

"at[.]" ⇒ The cat sat on the mat.

"at[.]?" ⇒ The cat sat on the mat.

‘*’
The asterisk character means that the subpattern can occur zero or
more times.

‘+’
The plus character means that the subpattern can occur one or more
times.

For example, the regular expression "[a-z]+" means: any number of
(English) lowercase letters in a row.

"[a-z]+" ⇒ The cat sat on the mat.

As an example of how regular expressions are “greedy”, the regular
expression "c.+t" means: the letter ‘c’, followed by any number of
any character at all, followed by the letter ‘t’.

"c.+t" ⇒ The cat sat on the mat.
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11.2.5 Grouping

‘(’ and ‘)’
Parentheses can be used to define a subpattern within a regular expres-
sion. This is useful for providing alternation just within a subpattern
of a regular expression and for applying a repetition metacharacter to
more than a single character.

For example, the regular expression "(c|s)at" means: the letter ‘c’
or the letter ‘s’, followed by the letter ‘a’, followed by the letter ‘t’.

"(c|s)at" ⇒ The cat sat on the mat.

The regular expression "(.at )+" means one or more repetitions of
the following pattern: any letter at all, followed by the letter ‘a’,
followed by the letter ‘t’, followed by a space.

"(.at )+" ⇒ The cat sat on the mat.

Grouping is also useful for retaining original portions of text when perform-
ing a search-and-replace operation (see Section 11.2.6).

11.2.6 Backreferences

It is possible to refer to previous subpatterns within a regular expression
using backreferences.

‘\n’
When parentheses are used in a pattern to delimit subpatterns, each
subpattern may be referred to using a special escape sequence: \1
refers to the first subpattern (reading from the left), \2 refers to the
second subpattern, and so on.

For example, the regular expression "c(..) s\\1" means: the letter
‘c’, followed by any two letters, followed by a space, followed by the
letter ‘s’, followed by whichever two letters followed the letter ‘c’.

"c(..) s\\1" ⇒ The cat sat on the mat.

When performing a search-and-replace operation, backreferences may be
used to specify that the text matched by a subpattern should be used as
part of the replacement text.
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For example, in the first replacement below, the literal text ‘cat’ is replaced
with the literal text ‘cot’, but in the second example, any three-letter word
ending in ‘at’ is replaced by a three-letter word with the original starting
letter but ending in ‘ot’.

R> gsub("cat", "cot", text)

[1] "The cot sat on the mat."

R> gsub("(.)at", "\\1ot", text)

[1] "The cot sot on the mot."

Notice that, within an R expression, the backslash character must be escaped
as usual, so the replacement text referring to the first subpattern would have
to written like this: "\\1".

Some more realistic examples of the use of backreferences are given in Sec-
tion 9.9.3.

11.3 Further reading

Mastering Regular Expressions
by Jeffrey Friedl
3rd Edition (2006) O’Reilly.
Exhaustive treatment of regular expressions in all their various incar-
nations.

Regular Expression Pocket Reference
by Tony Stubblebine
2nd Edition (2007) O’Reilly.
Quick reference for regular expressions.

Regular-Expressions.info
http://www.regular-expressions.info
Comprehensive online resource.

http://www.regular-expressions.info
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Conclusion

This book has described how a number of important data technologies work
and it has provided guidelines on the right way to use those technologies.

We have covered technologies for storing data, accessing data, processing
data, and publishing data on the web. We have also focused on writing
computer languages.

We have looked at the advantages and disadvantages of different storage
options, we have looked at how to design data storage efficiently, and we
have discussed how to write good computer code.

There are a number of important ideas to take away from this book.

One of these is that the computer is a very flexible and powerful tool, and
it is a tool that is ours to control. Files and documents, especially those in
open standard formats, can be manipulated using a variety of software tools,
not just one specific piece of software. A programming language is a tool
that allows us to manipulate data stored in files and to manipulate data held
in RAM in unlimited ways. Even with a basic knowledge of programming,
we can perform a huge variety of data processing tasks.

A related idea is that computer code is the preferred approach to commu-
nicating our instructions to the computer. This approach allows us to be
precise and expressive, it provides a complete record of our actions, and it
allows others to replicate our work.

Writing computer code to process, store, or display data is a task that should
be performed with considerable discipline. It is important to develop code
in small pieces and in careful stages, and it is important to produce code
that is tidy and sensibly structured. This discipline is essential to writing
code that will produce the correct result both now and in the future.

Another important idea is the DRY principle. Information, whether data
or computer code, should be organized in such a way that there is only one
copy of each important unit of information. We saw this idea most clearly
in terms of data storage, in the design of XML documents and in the design
of relational databases. But the ideas of organizing information efficiently
can influence how we work in many ways. The DRY principle can also be

399
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applied to how we write computer code, particularly in the use of loops and
functions. It can also be applied to how we collect our code within files and
how we organize files within directories or folders.

The aim of this book is to expose and demystify some of the details and
underlying principles of how data technologies work, so that we can unlock
the power and potential of the “universal computing machines” that sit on
our desktops.
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This book makes use of a number of images that are in the public domain
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Section 1.1.
Author: Particle Dynamics Group, Department of Oceanography, Texas
A&M University.
Source: http://www-ocean.tamu.edu/∼pdgroup/jpegs/waves.jpg

License: Used and distributed with permission.

Section 5.1.
Author: Bill Casselman.
Source: http://upload.wikimedia.org/wikipedia/commons/0/0b/Ybc7289-bw.jpg

License: Creative Commons Attribution 2.5.

Section 5.2.8.
Author: T3rminatr
Source: http://commons.wikimedia.org/wiki/Image:Orbital_Planes.svg

License: Public Domain.

Section 5.4.3.
Author: Klaus Gena.
Source: http://openclipart.org/people/KlausGena/KlausGena_Tuned_Lada_VAZ_2101.svg

License: Public Domain.

Section 7.2.5.
Author: Denelson83 http://en.wikipedia.org/wiki/User:Denelson83.
Source: http://commons.wikimedia.org/wiki/Image:Flag_of_the_Commonwealth_of_Nations.svg

License: Public Domain.

Section 9.1.
Author: Nukkio http://www.nukkio.altervista.org/index.htm.
Source: http://openclipart.org/people/ernes/ernes_orologio_clock.svg

License: Public Domain.
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! (exclamation)
in R, 221, 366

!= (not equal)
in R, 221, 366
in SQL, 190

<> (not equal)
in SQL, 190

" (double-quote)
in R, 220, 239, 365
in CSV, 76
in HTML, 16
in XML, 102, 146

' (single-quote)
in R, 220, 365
in SQL, 190

( (parenthesis)
in R, 221, 222, 356, 359
in DTD, 112, 148
in regular expressions, 339,

396
in SQL, 172, 175, 191, 193

* (asterisk)
in R, 220, 366
in R formulas, 262
in DTD, 112, 148
in regular expressions, 339,

395
in SQL, 168, 188

+ (plus)
in DTD, 148
in regular expressions, 395

. (full stop)
in regular expressions, 392

/ (forwardslash)
in R, 220, 366

: (colon)
in R, 236, 371
in CSS, 37

; (semi-colon)

in CSS, 37
< (less than)

in R, 221, 366
in SQL, 190

< (angle bracket)
in HTML, 17, 45
in XML, 104, 147

<- (assignment), 225, 367
<= (less than or equal)

in R, 221, 366
in SQL, 190

= (equals)
in SQL, 190

== (equals)
in R, 221, 366

> (greater than)
in R, 221, 366
in SQL, 190

>= (greater than or equal)
in R, 221, 366
in SQL, 190

? (question mark)
in R, 388
in DTD, 148
in regular expressions, 395

[ (square bracket)
in R, 244, 374
in regular expressions, 338,

392
in XPath, 185

[[ (double square bracket)
in R, 249, 375

# (hash)
in R, 227

$ (dollar)
in regular expressions, 394

& (ampersand)
in R, 221, 366
in HTML, 18, 45

407
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in XML, 104, 147
{ (bracket)

in R, 356, 359
in CSS, 37, 53

~ (tilde)
in R, 262

\ (backslash)
in R, 335, 397

^ (hat)
in R, 220, 366
in regular expressions, 339,

393
| (vertical bar)

in R, 221, 366
in DTD, 148, 150
in regular expressions, 334,

394
in XPath, 185

<a>, 20, 47
abbreviate(), 385
addmargins(), 379
aggregate(), 299–303, 306, 308,

315, 322, 325, 380
aggregating, 298–303
agrep(), 384
algorithm, 352
all(), 372
all.equal(), 242, 372
ampersand, see &
anchor, see <a>, see regular

expression
and (logic), see &
any(), 372
aperm(), 382
append(), 371
apply(), 305–309, 360, 380
argument, see function
arithmetic

in R, 220–221, 366
in SQL, 163
with dates, 261

array, see data structure
array(), 241

as.character(), 226, 254, 255,
346, 347, 373

as.Date(), 261, 272, 273, 278,
373

as.integer(), 373
as.logical(), 373
as.numeric(), 254, 255, 341, 373
ASCII, see encoding
assignment, 224, 367, see <-
asterisk, see *
atomic columns, 127, 134
att.get.ncdf(), 278
<!ATTLIST>, 112, 149
attr(), 258, 373
attribute

in R, 256, 373
in database design, 123
in DTD, 110, 112, 149
CDATA, 113, 149
ID, 113, 140, 149
IDREF, 141, 149

in HTML, 16, 20, 43, 51
in netCDF, 278
in XML, 102, 146

design, 105, 106, 108
in XPath, 184, 282

attribute declaration, see
<!ATTLIST>

attributes(), 257, 373

background-color:, 57
backreference, 340, 396
backslash, see \
base package, 388
basename(), 375
binary, 84
binary format, see file format
binning, 293–294
Bioconductor project, 362
bit (computer memory), 71
block-level (HTML), see element
<body>, 19, 46
BOM (byte order mark), 79
border-color:, 57
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border-style:, 57
border-width:, 57
<br>, 49
bracket, see {
bug (computer code), 33
by(), 302, 303, 308
byte, 71

c(), 232–234, 240, 245, 310, 370
C (programming language), 363
call, see function
camelCase, 228
capture.output(), 378
cardinality, see relationship
caret, see ^
Cascading Style Sheets, see CSS
case study

Commonwealth swimming,
166, 176

Counting candy, 232
NCEA, 303
New Zealand schools, 288
Over the limit, 96
Point Nemo, 1

data display, 344
importing into R, 269
netCDF, 86
plain text format, 72
web page, 11
XML, 110
XPath, 182

Rusty wheat, 336
The Data Expo, 80

database, 154
database design, 133
database joins, 171
database queries, 159
programming, 353
self join, 179
SQL and R, 286
XML design, 139

The longest placename, 327
The Population Clock, 204
Utilities, 319

YBC 7289, 64
casefolding, see tolower() and

toupper()
cast(), 316, 318, 319, 383
cat(), 346, 348, 349, 386
categorical variable, 231, 296
cbind(), 310, 311, 325, 381
<![CDATA[, 104, 147
ceiling(), 373
Central Processing Unit, see

CPU
character set, see regular

expression
character value, 219, 230, 327,

368
coercing to, 346–349

character vector, 230
class

of data structure, 259, 374
of element, 51
selector (CSS), 55

class(), 259, 374
clear:, 58
close(), 378
coercion, see type coercion
collation, see SELECT
colnames(), 240, 258, 374
colon, see :
color:, 57
column alias, see SELECT
Comma-Separated Value, see

CSV
command line

in R, 214–217
in SQLite, 181–182

comment (computer code), 28
in R, 227
in HTML, 28, 44
in XML, 147

Commonwealth swimming, see
case study

component (of list), see data
structure
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composite primary key, see
primary key

Comprehensive R Archive
Network, see CRAN

computer hardware, see
hardware

computer memory, see memory
concatenate, see c() and

paste()
condition

in R, 221, 366–368
in SQL, 159, 190, 191
in XPath, 185

content (HTML), see element
control flow, 355–357, 367–368
Counting candy, see case study
CPU, 201
CRAN, 214, 389
CREATE TABLE, 194

CONSTRAINT clause, 194
cross join, see join
CSS, 53–60
CSV, see file format
cumprod(), 372
cumsum(), 372
cut(), 293, 322, 379

Data Control Language, see SQL
Data Definition Language, see

SQL
Data Documentation Initiative,

see DDI
data export, see file, writing
data frame, see data structure
data import, see file, reading
data integrity, 117, 126, 136, 138,

237
Data Manipulation Language,

see SQL
data model, 75, 119, 138
data query, see SQL and XPath
data structure, 230–242,

252–266, 368
array, 231, 241–242

data frame, 231, 237–239
factor, 231, 237

levels, 237
list, 231, 239–241

component, 231, 240
matrix, 231, 241–242
vector, 230, 234–237

element, 230
data type

in R, 230, 368
in a database, 120
in memory, 72, 84, 91
in SQL, 194

data.frame(), 238, 254, 255
database, 118–142

and R, 284–287
design, 122–132
join, see join
query, see SQL
software, 141

Database Management System,
see DBMS

database query, see SQL
date value, 92, 261–262

coercing to, see as.Date()
ISO 8601, 92

date-time value, 92
dbConnect(), 285
dbDisconnect(), 285
dbDriver(), 285
dbGetQuery(), 285
DBI package, 284
DBMS, 119
DDI, 114
debug(), 362, 386
debugging, 33–35, 361–362, 386
DELETE, 197
delimited format, see file format
delimiter, 69
denormalization, 132
diff(), 372
dim(), 263, 305, 374
dimnames(), 239, 240, 374
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dir.create(), 376
dirname(), 375
display:, 58
<div>, 50
<!DOCTYPE>

in HTML, 17, 44
in XML, 113, 150

document, see file
Document Type Declaration, see

<!DOCTYPE>
Document Type Definition, see

DTD
documentation, 26–28, 32, 227
dollar sign, see $
Don’t Repeat Yourself, see DRY

principle
DROP TABLE, 197
DRY principle, 35–36, 39, 41, 74,

113, 133, 361
DTD, 110–114, 147–151
dump(), 378
duplicative columns, 127, 128,

134

<!ELEMENT>, 112, 148
element

content, 13, 43
empty

in DTD, 112, 148
in HTML, 15, 43
in XML, 103, 146

in DTD, 110, 112, 148
in HTML, 13–16, 19, 43,

46–51
block-level, 45
inline, 45

in XML, 102, 145
design, 105, 106, 108

in XPath, 183
element (of vector), see data

structure
element declaration, see

<!ELEMENT>
empty element, see element

encoding, 78–80, 145
ASCII, 78
Latin1, 78
Latin2, 78
multi-byte, 79
UNICODE, 79
UTF-16, 79
UTF-8, 79

end tag, see tag
entity

in database design, 123
in HTML, 45
in XML, 147

equal sign, see = and ==
equality

in R, see ==
in SQL, see =

error message, 30–31
escape sequence, 17–18, see \

in CSV, 76
in HTML, 45
in regular expressions, 396
in XML, 104, 147

example(), 388
Excel, 95, see file format

and R, 279, 285
expression (R), 219, 365
eXtensible Markup Language,

see XML

factor, see data structure
factor(), 237
FALSE, 221, 226, 236, 365, 368
ff package, 363
file, 71

header, 69, 87
path, 268
reading, 267–284
writing, 267, 275

file(), 378
file format, 71

binary, 83–93
CSV, 76
delimited, 69–70
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Excel, 94
fixed-width, 70–71
netCDF, 87–89
PDF, 90–91
plain text, 69–83
self-describing, 115
spreadsheet, 94–99

file.choose(), 268, 375
file.copy(), 376
file.exists(), 376
file.path(), 268, 375
file.remove(), 376
file.rename(), 376
filehash package, 363
Firefox, 33
first normal form, see normal

form
fixed-width format, see file

format
float:, 58
floor(), 373
font-family:, 56
font-size:, 56
font-style:, 37, 56
font-weight:, 56
for loop, 356, 367
foreign package, 276, 377, 388
foreign key, 121

in relationships, 123
notation, 122

format, see file format
format(), 347, 385, 386
formula (R), 262–263, 298, 318
forwardslash, see /
free(), 284
ftable(), 380
full join, see join
full stop, see .
function (R)

argument, 222–224, 366–367
default value, 224

call, 222–224, 366–367
generic, 265–266, 345

writing, 357–360

gdata package, 281
generic function, see function
get.var.ncdf(), 277
getNodeSet(), 282, 283
getwd(), 375
glob2rx(), 375
greater than sign, see > and >=
gregexpr(), 329–331, 384
grep(), 330, 338, 342, 384
gsub(), 328, 340, 384

<h3>, 19, 47
hardware, 200–203
hash sign, see #
<head>, 46
head(), 264, 374
header, see file
height:, 57
help(), 386
help page, see help()
help.search(), 389
hexadecimal, 72
hierarchical (structure), 75, 107,

138, 241
<hr>, 20, 49
HTML, 43–51

and R, 349–352
and CSS, 59–60

<html>, 46
HTML Tidy, 29
hwrite(), 351
hwriter package, 351
hyperlink, 11, 20, 47
HyperText Markup Language,

see HTML

identical(), 372
if expression, 368
ifelse(), 290, 291, 379
<img>, 20, 47
indenting, 24–26, 103, 163, 227

automatic, 22
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index, see subsetting
inequality, see != and <>
Inf, 226, 365
infinity, see Inf
inline (HTML), see element
inner join, see join
input, 202
INSERT, 195
install.packages(), 389
installing, see package
integer value, 368

coercing to, 373
is.infinite(), 372
is.na(), 250, 372
is.nan(), 372
is.null(), 372
ISO 8601, see date value

Java, 363
join (database), 166–180

cross join, 169–170, 189
full outer join, 179
in R, 313, 381
inner join, 170–174, 189
left outer join, 178
outer join, 176–179, 190
right outer join, 179
self join, 179–180, 190

keyboard, 202
keyword, 11

highlighting, 22
in R, 226, 356, 359
in DTD, 112
in SQL, 159, 188

lapply(), 307–310, 314, 360, 381
Latin1, see encoding
Latin2, see encoding
left join, see join
length(), 263, 331, 374
less than sign, see < and <=
levels(), 258

levels (of factor), see data
structure

<li>, 49
library(), 388
libxml, 104
line ending, 76–78
line numbering, 22
<link>, 46
font-style:<link>, 39
list, see <ol>, see <ul>, see data

structure
list(), 240
list.files(), 375
literal, see escape sequence, see

regular expression
load(), 378
loading, see package
logical value, 221, 236, 368
logical vector, 236
long format, 315
loop (R), 355–357, 367–368
ls(), 370

mapply(), 381
margin:, 58
margin.table(), 379
markup (XML), 102, 105
mass storage (computer

hardware), 202
match(), 372
matrix, see data structure
matrix(), 241
max(), 298, 300, 371
mean(), 298, 300, 306, 309, 354,

359, 371
melt(), 316, 317, 382, 383
memory, see assignment

persistent, 202
representing numbers, 84
representing text, 73
temporary, 201

merge(), 312, 313, 381
merging, 310–313
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metacharacter, see regular
expression

metadata, 4, 67
and XML design, 109
in a file, 69, 270
in a spreadsheet, 96
in data structures, 256
in netCDF, 278
storing, 93

Microsoft Excel, see Excel
min(), 298, 300, 371
Minitab, 276
missing value, see NA
modifier, see regular expression
months(), 324, 373
multi-level, see hierarchical

NA, 226, 365
na.omit(), 375
name, see symbol
names(), 258, 374
NaN, 226, 365
ncdf package, 276, 278, 377
NCEA, see case study
nchar(), 328, 384
ncol(), 374
netCDF, see file format
network (computer hardware),

202
New Zealand schools, see case

study
normal form, 127

first, 127–129
second, 129–131
third, 131–132

normalization, 127–132
not (logic), see !
Not a Number, see NaN
nrow(), 374
NULL, 226, 365
numeric value, 219, 230, 368

coercing to text, 347
numeric vector, 230
numerical precision, see precision

object.size(), 369
ODBC, 281, 285
odbcClose(), 285
odbcConnect(), 285
ODF, 94
Office Open XML, see OOXML
<ol>, 49
OOXML, 94
Open DataBase Connectivity, see

ODBC
open source, xxii
open standard, xxii, 86, 94, 158
OpenDocument Format, see

ODF
operators (R)

arithmetic, 220, 366
logical, 221, 366

option (R), 242, 370
options(), 242, 370
or (logic), see |
order(), 294, 295, 379
ordering, see sorting
outer join, see join
output, 202

in R, 344–352
Over the limit, see case study

<p>, 20, 46
package (R), 218, 388–389

installing, 218, 389
loading, 218, 388

padding:, 58
paragraph, see <p>
parenthesis, see (

matching, 22
paste(), 265, 333, 346, 385
path, see file
pattern, see regular expression
PCRE, 335
PDF, see file format
Perl, 363
Perl-Compatible Regular

Expressions, see PCRE
plain text format, see file format
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plus sign, see +
pmatch(), 372
Point Nemo, see case study
Portable Document Format, see

PDF
Portable Operating System

Interface, see POSIX
POSIX, 335, 393
<pre>, 20, 50
precision, 85, 242
predicate, 185
primary key, 120

composite, 120
in first normal form, 127
in relationships, 123
in second normal form, 129
in third normal form, 131
notation, 122
surrogate, 136

print(), 345, 346, 348, 385, 386
programming, 352–362
programming language, 199–203
prompt

in R, 214
in SQLite, 156

prop.table(), 379
property (CSS), 36, 37, 53, 56–58
proprietary, xxii, 86, 94
Python, 363

q(), 217, 370
quarters(), 373
question mark, see ?
quote mark, see ’ and "

R (language), 365–386
R (software), 214–218
RAM, 201
random access, 90
Random Access Memory, see

RAM
range(), 302, 308, 371
rapply(), 381
rbind(), 310, 311, 381

RDBMS, 119
read.csv(), 268, 376
read.delim(), 377
read.fwf(), 268, 269, 273, 336,

354, 359, 376
read.spss(), 388
read.table(), 268, 270, 271,

274, 281, 304, 320, 336,
376, 377

read.xls(), 279, 281
readLines(), 269, 274, 281, 337,

376
real number, see numeric value
recast(), 384
recycling rule, 237, 252–253
regexpr(), 330, 342, 384
regular expression, 391–397

alternation, 394
anchor, 393–394
character set, 338, 392–393
grouping, 396
literal, 334, 340, 391, 393
metacharacter, 334,

338–341, 392–397
modifier, 395

relational database, see database
relationship

and normalization, 132
cardinality, 123
in database design, 123–125
in XML design, 139

Relax NG, 114
rep(), 234, 235, 371
repeat, see rep()
reserved word, see keyword
reshape package, 316–318, 382
reshaping, 315–319
rev(), 371
right join, see join
rm(), 370
RMySQL package, 284
RODBC package, 284, 285
root element (XML), 103, 146
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in DTD, 150
in XPath, 184

round(), 373
rounding, see integer value
rownames(), 240, 258, 374
RSiteSearch(), 389
RSQLite package, 284–286
rule (CSS), 37, 53
Rusty wheat, see case study

sapply(), 307, 309, 310, 357,
360, 381

SAS, 276
save(), 378
scan(), 328, 377
schema

in database notation, 121
in DTD, 110, 147
in SQL, 194

screen (computer hardware), 202
SDMX, 114
search(), 388
search-and-replace, 328
searching (text), 329, 338
second normal form, see normal

form
SELECT, 159–180, 187–193

all columns, 168
collation, 165
column alias, 164
column function, 164
FROM clause, 159, 189–190
GROUP BY clause, 164,

192–193
ORDER BY clause, 161, 192
SELECT clause, 159, 188–189
table alias, 171
WHERE clause, 161, 190–191

selector (CSS), 37, 53–56
self join, see join
self-describing, see file format
semantics, 18
semi-colon, see ;
separator, see delimiter

seq(), 235, 370
seq_along(), 371
seq_len(), 371
sequence, see seq()
sequential access, 90
setwd(), 267, 375
signif(), 325, 373
sink(), 378
sort(), 294, 379
sorting, 294–296

in SQL, 161
source(), 216, 378
<span>, 50
split(), 313, 314, 382
splitting, 313–315
spreadsheet, see file format
sprintf(), 347, 348, 385, 386
SPSS, 276
SQL, 187–197

and R, 284–287
DCL, 158
DDL, 158
DML, 158

SQLite, 180–182
and R, 284

sqlQuery(), 285
square bracket, see [ and [[
stack(), 382
standard, see open standard
start tag, see tag
Stata, 276
Statistical Data and Metadata

eXchange, see SDMX
storage format, see file format
str(), 264, 314, 374
stratified, see hierarchical
strftime(), 373
string, see character value
strsplit(), 330, 332, 385
strtim(), 385
Structured Query Language, see

SQL
strwrap(), 386
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<style>, 37, 46, 59
stylesheet, see CSS
sub(), 384
subpattern (regular expressions),

339, 396
and backreferences, 396
and modifiers, 395
as alternative, 394

subquery, 175–176, 193
subset(), 247, 375
subsetting, 243–252

and assignment, 250
factors, 251

substr(), 384
substring(), 340–342, 385
sum(), 298, 300, 371
summary(), 263, 265, 374
surrogate key, see primary key
Sweave package, 352
sweep(), 323, 380
switch(), 379
symbol (R), 224–226

predefined, 226
syntax, 13

highlighting, 22
Sys.Date(), 261, 373
Sys.sleep(), 386, 388
Systat, 276

t(), 382
<table>, 47
table(), 296–298, 324, 332, 379,

380
table alias, see SELECT
table of counts, 296–298
tag

in HTML, 11, 15, 43
attributes, 16, 43
nesting, 16

in XML, 102, 145
attributes, 146
case-sensitivity, 102
empty elements, 103, 146

tail(), 264, 374

tapply(), 380
<td>, 47
text, see character value
text editor, 21–22
text-align:, 57
The Data Expo, see case study
The longest placename, see case

study
The Population Clock, see case

study
third normal form, see normal

form
<title>, 46
tolerance, see precision
tolower(), 332, 384
toupper(), 384
<tr>, 47
transform(), 292, 378
transformation, 290–294
transpose, see t()
TRUE, 221, 226, 236, 365, 368
type, see data type
type coercion, 210, 253–255, 373

to character, see character
value

to date, see date value

<ul>, 49
UNICODE, see encoding
Uniform Resource Locator, see

URL
unique(), 371
unlist(), 283, 371
unsplit(), 382
UPDATE, 197
URL, 46, 47

and R, 376
UTF-16, see encoding
UTF-8, see encoding
Utilities, see case study

valid (XML), 114, 147
vector, see data structure
vignette(), 389
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W3C, 29
CSS, 53

validation, 53
HTML, 43

validation, 29
XML, 145

validation, 104
web browser, 33
weekdays(), 373
well-formed (XML), 114, 147
which.max(), 372
which.min(), 372
while loop, 367–368
whitespace, 26

delimiter, 70, 268
in R, 227
in HTML, 20
in XML, 147

whitespace:, 58
wide format, 315
width:, 57
word (computer memory), 71
word processor, 21
working directory (R), 267–268,

375
workspace (R), 217–218
World Wide Web Consortium,

see W3C
write.csv(), 275, 377
write.table(), 377
writeLines(), 222–224, 348, 377

xlsReadWrite package, 279
XML, 145–147

and R, 281–284
and DTD, 150
literal, 147

XML package, 218, 281, 282,
287, 377

XML Schema, 114
xmllint, 104
xmlParse(), 283
xmlTreeParse(), 281
XPath, 182–185

and R, 281–284
XQuery, 182
xtable package, 351
xtabs(), 259, 263, 298, 379

Yahoo! User Interface Library,
see YUI

YBC 7289, see case study
YUI, 60

zoo package, 362
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