
DRAWING DIAGRAMS WITH R

Drawing Diagrams with R
by Paul Murrell

R provides a number of well-known high-level facil-
ities for producing sophisticated statistical plots, in-
cluding the “traditional” plots in the graphics pack-
age (R Development Core Team, 2008), the Trellis-
style plots provided by lattice (Sarkar, 2008), and the
grammar-of-graphics-inspired approach of ggplot2
(Wickham, 2009).

However, R also provides a powerful set of low-
level graphics facilities for drawing basic shapes and,
more importantly, for arranging those shapes relative
to each other, which can be used to draw a wide va-
riety of graphical images.

This article highlights some of R’s low-level graph-
ics facilities by demonstrating their use in the pro-
duction of diagrams.

In particular, the focus will be on some of the use-
ful things that can be done with the low-level facili-
ties provided by the grid graphics package (Murrell,
2002, 2005a,b).

Starting at the end

An example of the type of diagram that we are going
to work towards is shown below.

We have several “boxes” that describe table
schema for a database, with lines and arrows be-
tween the boxes to show the relationships between
tables.

book_table
ISBN
title
author
pub

publisher_table
ID
name
country

author_table
ID
name
gender

book_author_table
ID
book
author

gender_table
ID
gender

●●

●

●

To forestall some possible misunderstandings,
the sort of diagram that we are talking about is one
that is designed by hand. This is not a diagram that
has been automatically laid out.

The sort of diagram being addressed is one where
the author of the diagram has a clear idea of what the
end result will roughly look like—the sort of diagram
that can be sketched with pen and paper. The task is
to produce a pre-planned design, using a computer
to get a nice crisp result.

Having said that, a reasonable question is “why
not draw it by hand?”, for example, using a free-
hand drawing program such as Dia (Larsson, 2008).

The advantage of using R code to produce this
sort of image is that code is easier to reproduce,
reuse, maintain, and fine-tune with accuracy. The
thought of creating this sort of diagram by pushing
objects around the screen with a mouse fills me with
dread. Maybe I’m just not a very GUI guy.

Before we look at drawing diagrams with the core
R graphics facilties, it is important to acknowledge
that several contributed R packages already pro-
vide facilities for drawing diagrams. The Rgraphviz
(Gentry et al., 2008) and igraph (Csardi and Nepusz,
2006) packages provide automated layout of node-
and-edge graphs and the shape and diagram pack-
ages (Soetaert, 2008b,a) provide functions for draw-
ing nodes of various shapes with lines and arrows
between them, with manual control over layout.

In this article, we will only be concerned with
drawing diagrams with a small number of elements,
so we do not need the automated layout facilities
of Rgraphviz or igraph. Furthermore, while the
shape and diagram packages provide flexible tools
for building node-and-edge diagrams, the point of
this article is to demonstrate low-level grid func-
tions. We will use a node-and-edge diagram as the
motivation, but the underlying ideas can be applied
to a much wider range of applications.

In each of the following sections, we will meet a
basic low-level graphical tool and demonstrate how
it can be used in the generation of the pieces of an
overall diagram or how the tool can be used to com-
bine pieces together in convenient ways.

Graphical primitives

One of the core low-level facilities of R graphics is the
ability to draw basic shapes. The typical graphical
primitives such as text, circles, lines, and rectangles
are all available.

In this case, the shape of each box in our dia-
gram is not quite as simple as a rectangle because it
has rounded corners. However, a rounded rectangle
is also one of the graphical primitives that the grid
package provides.1

The code below draws a rounded rectangle with
a text label in the middle.

> library(grid)

> grid.roundrect(width=.25)
> grid.text("ISBN")

ISBN

1From R version 1.9.0; prior to that, a simpler rounded rectangle was available via the grid.roundRect() function in the RGraphics
package.

1

VIEWPORTS DRAWING DIAGRAMS WITH R

Viewports

A feature of the boxes in the diagram is that the text
is carefully positioned relative to the rounded rectan-
gle; the text is left-aligned within the rectangle.

This careful positioning requires knowing where
the left edge of the rectangle is on the page. Calcu-
lating those positions is annoyingly tricky and only
becomes more annoying if at some point later the po-
sition of the box is adjusted and the positions of the
text labels have to be calculated all over again.

Using a grid viewport makes this sort of position-
ing very simple. The basic idea is that we can create
a viewport where the box is going to be drawn and
then do all of our drawing within that viewport. Po-
sitioning text at the left edge of a viewport is very
straightforward and if we need to shift the box, we
simply shift the viewport and the text automatically
tags along for the ride.

All of this applies equally to positioning the text
vertically within the box.

In the code below, we create a viewport for the
overall box, we draw a rounded rectangle occupying
the entire viewport, then we draw text 2mm from the
left hand edge of the viewport and 1.5 lines of text
up from the bottom of the viewport. A second line of
text is also added, 0.5 lines of text from the bottom.

> pushViewport(viewport(width=.25))
> grid.roundrect()
> grid.text("ISBN",

x=unit(2, "mm"),
y=unit(1.5, "lines"),
just="left")

> grid.text("title",
x=unit(2, "mm"),
y=unit(0.5, "lines"),
just="left")

> popViewport()

ISBN
title

Coordinate systems

The positioning of the labels within the viewport in
the previous example demonstrates another useful
feature of the grid graphics system: the fact that loca-
tions can be specified in a variety of coordinate sys-
tems or units . In that example, the text was posi-
tioned horizontally in terms of millimetres and ver-
tically in terms of lines of text (which is based on the
font size in use).

As another example of the use of these different
units, we can size the overall viewport so that it is
just the right size to fit the text labels.

In the following code, the height of the viewport
is based on the number of labels and the width of the

viewport is based on the width of the largest label,
plus a 2mm gap either side. This code also simpli-
fies the labelling by drawing both labels in a single
grid.text() call.

> labels <- c("ISBN", "title")
> vp <-

viewport(width=max(stringWidth(labels))+
unit(4, "mm"),

height=unit(length(labels),
"lines"))

> pushViewport(vp)
> grid.roundrect()
> grid.text(labels,

x=unit(2, "mm"),
y=unit(2:1 - 0.5, "lines"),
just="left")

> popViewport()

ISBN
title

Clipping

Another feature of the boxes that we want to produce
is that they have shaded backgrounds.

Looking closely, there are some relatively com-
plex shapes involved in this shading. For example,
the grey background for the “heading” of each box
has a curvy top, but a flat bottom. These are not sim-
ple rounded rectangles, but some unholy alliance of
a rounded rectangle and a normal rectangle.

It is possible, in theory, to achieve any sort of
shape with R because there is a general polygon
graphical primitive. However, as with the position-
ing of the text labels, determining the exact boundary
of this polygon is not trivial and there are easier ways
to work.

In this case, we can achieve the result we want us-
ing clipping , so that any drawing that we do is only
visible on a restricted portion of the page. R does not
provide clipping to arbitrary regions, but it is pos-
sible to set the clipping region to any rectangular re-
gion.

The basic idea is that we will draw the complete
rounded rectangle, then set the clipping region for
the box viewport so that no drawing can occur in
the last line of text in the box and then draw the
rounded rectangle again, this time with a different
background. If we continue doing this, we end up
with bands of different shading.

The following code creates an overall viewport
for a box and draws a rounded rectangle with a grey
fill. The code then sets the clipping region to start
one line of text above the bottom of the viewport and
draws another rounded rectangle with a white fill.
The effect is to leave just the last line of the original

2

DRAWING CURVES DRAWING DIAGRAMS WITH R

grey rounded rectangle showing beneath the white
rounded rectangle that has had its last line clipped.

> pushViewport(viewport(width=.25))
> grid.roundrect(gp=gpar(fill="grey"))
> grid.clip(y=unit(1, "lines"),

just="bottom")
> grid.roundrect(gp=gpar(fill="white"))
> popViewport()

Drawing curves

Another basic shape that is used in the overall dia-
gram is a nice curve from one box to another.

In addition to the basic functions to draw straight
lines in R, there are functions that draw curves. In
particular, R provides a graphical primitive called an
X-spline (Blanc and Schlick, 1995). The idea of an X-
spline is that we define a set of control points and a
curve is drawn either through or near to the control
points. Each control point has a parameter that spec-
ifies whether to create a sharp corner at the control
point, or draw a smooth curve through the control
point, or draw a smooth curve that passes nearby.

The following code sets up sets of three control
points and draws an X-spline relative to each set of
control points. The first curve makes a sharp corner
at the middle control point, the second curve makes a
smooth corner through the middle control point, and
the third curve makes a smooth corner near the mid-
dle control point. The control points are drawn as
grey dots for reference (code not shown).

> x1 <- c(0.1, 0.2, 0.2)
> y1 <- c(0.2, 0.2, 0.8)
> grid.xspline(x1, y1)
> x2 <- c(0.4, 0.5, 0.5)
> y2 <- c(0.2, 0.2, 0.8)
> grid.xspline(x2, y2, shape=-1)
> x3 <- c(0.7, 0.8, 0.8)
> y3 <- c(0.2, 0.2, 0.8)
> grid.xspline(x3, y3, shape=1)

● ●

●

● ●

●

● ●

●

Determining where to place the control points for
a curve between two boxes is another one of those
annoying calculations, so a more convenient option
is provided by a curve graphical primitive in grid.

The idea of this primitive is that we simply spec-
ify the start and end points of the curve and R figures
out a set of reasonable control points to produce an
appropriate X-spline.

It is also straightforward to add an arrow to either
end of any straight or curvy line that R draws.

The following code draws three curves between
pairs of end points. The first curve draws the default
“city-block” line between end points, with a smooth
corner at the turning point, the second curve is sim-
ilar, but with an extra corner added, and the third
curve draws a single wide, smooth corner that is dis-
torted towards the end point. The third curve also
has an arrow at the end.

> x1a <- 0.1; x1b <- 0.2
> y1a <- 0.2; y1b <- 0.8
> grid.curve(x1a, y1a, x1b, y1b)
> x2a <- 0.4; x2b <- 0.5
> y2a <- 0.2; y2b <- 0.8
> grid.curve(x2a, y2a, x2b, y2b,

inflect=TRUE)
> x3a <- 0.7; x3b <- 0.8
> y3a <- 0.2; y3b <- 0.8
> grid.curve(x3a, y3a, x3b, y3b,

ncp=8, angle=135, square=FALSE,
curvature=2,
arrow=arrow(angle=15))

● ● ●

● ● ●

Graphical functions

The use of graphical primitives, viewports, coordi-
nate systems, and clipping, as described so far, can
be used to produce a box of the style shown in the
diagram at the start of the article.

For example, the following code produces a box
containing three labels, with background shading to
assist in differentiating between the labels.

> labels <- c("ISBN", "title",
"author")

> vp <-
viewport(width=max(stringWidth(labels))+

unit(4, "mm"),
height=unit(length(labels),

"lines"))
> pushViewport(vp)
> grid.roundrect()
> grid.clip(y=unit(1, "lines"),

just="bottom")
> grid.roundrect(gp=gpar(fill="grey"))
> grid.clip(y=unit(2, "lines"),

just="bottom")
> grid.roundrect(gp=gpar(fill="white"))
> grid.clip()
> grid.text(labels,

x=unit(rep(2, 3), "mm"),
y=unit(3:1 - .5, "lines"),
just="left")

> popViewport()

3

GRAPHICAL OBJECTS DRAWING DIAGRAMS WITH R

> tableBox <- function(labels, x=.5, y=.5) {
nlabel <- length(labels)
tablevp <-

viewport(x=x, y=y,
width=max(stringWidth(labels)) +

unit(4, "mm"),
height=unit(nlabel, "lines"))

pushViewport(tablevp)
grid.roundrect()
if (nlabel > 1) {

for (i in 1:(nlabel - 1)) {
fill <- c("white", "grey")[i %% 2 + 1]
grid.clip(y=unit(i, "lines"), just="bottom")
grid.roundrect(gp=gpar(fill=fill))

}
}
grid.clip()
grid.text(labels,

x=unit(2, "mm"), y=unit(nlabel:1 - .5, "lines"),
just="left")

popViewport()
}

Figure 1:

ISBN
title
author

However, in the sort of diagram that we want to
produce, there will be several such boxes. Rather
than write separate code for each box, it makes sense
to write a general function that will work for any set
of labels.

Such a function is shown in Figure 1 and the code
below uses this function to draw two boxes side by
side.

> tableBox(c("ISBN", "title",
"author", "pub"),

x=0.3)
> tableBox(c("ID", "name", "country"),

x=0.7)

ISBN
title
author
pub

ID
name
country

This function represents the simplest way to ef-
ficiently reuse graphics code and to provide graph-
ics code for others to use. However, there are ben-
efits to be gained from going beyond this procedu-
ral programming style to a slightly more complicated
object-oriented approach.

Graphical objects

In order to achieve the complete diagram introduced
at the start of this article, we need one more step: we

need to draw lines and arrows from one box to an-
other.

We already know how to draw lines and curves
between two points; the main difficulty that remains
is calculating the exact position of the start and end
points, because these locations depend on the loca-
tions and dimensions of the boxes.

The calculations could be done by hand for each
individual cureve, but as we have seen before, there
are easier ways to work.

The crucial idea for this step is that we want to
create not just a graphical function that encapsulates
how to draw a box, but define a graphical object that
encapsulates information about a box.

The code in Figure 2 defines such a graphical
object, plus a few other things that we will get to
shortly.

The first thing to concentrate on is the boxGrob()
function. This function creates a "box" graphical ob-
ject. In order to do this, all it has to do is call the
grob() function and supply all of the information
that we want to record about "box" objects. In this
case, we just record the labels to be drawn within the
box and the location where we want to draw the box.

This function does not draw anything. For exam-
ple, the following code creates two "box" objects, but
produces no graphical output whatsoever.

> box1 <- boxGrob(c("ISBN", "title",
"author", "pub"),

x=0.3)
> box2 <- boxGrob(c("ID", "name", "country"),

x=0.7)

4

GRAPHICAL OBJECTS DRAWING DIAGRAMS WITH R

> boxGrob <- function(labels, x=.5, y=.5) {
grob(labels=labels, x=x, y=y, cl="box")

}
> drawDetails.box <- function(x, ...) {

tableBox(x$labels, x$x, x$y)
}

> xDetails.box <- function(x, theta) {
nlines <- length(x$labels)
height <- unit(nlines, "lines")
width <- unit(4, "mm") + max(stringWidth(x$labels))
grobX(roundrectGrob(x=x$x, y=x$y, width=width, height=height),

theta)
}

> yDetails.box <- function(x, theta) {
nlines <- length(x$labels)
height <- unit(nlines, "lines")
width <- unit(4, "mm") + max(stringWidth(x$labels))
grobY(rectGrob(x=x$x, y=x$y, width=width, height=height),

theta)
}

Figure 2:

The grid.draw() function can be used to draw
any graphical object, but we need to supply the de-
tails of how "box" objects get drawn. This is the pur-
pose of the second function in Figure 2.

This function is a method for the drawDetails()
function; it says how to draw "box" objects. In this
case, the function is very simple because it can call
the tableBox() function that we defined in Figure 1.

The important detail is that the boxGrob()
function specified a special class , cl="box", for
"box" objects, which meant that we could define a
drawDetails() method specifically for this sort of
object and control what gets drawn.

With this drawDetails() method defined, we
can draw the boxes that we created earlier by call-
ing the grid.draw() function. This function will
draw any grid graphical object by calling the appro-
priate method for the drawDetails() generic func-
tion (among other things). The following code calls
grid.draw() to draw the two boxes.

> grid.draw(box1)
> grid.draw(box2)

ISBN
title
author
pub

ID
name
country

At this point, we appear to have achieved only a
more complicated equivalent of the previous graph-
ics function. However, there are a number of other
functions that can do useful things with grid graphi-
cal objects.

For example, the grobX() and grobY() functions
can be used to calculate locations on the boundary
of a graphical object. As with grid.draw(), which
has to call drawDetails() to find out how to draw

a particular class of graphical object, these functions
call generic functions to find out how to calculate lo-
cations on the boundary for a particular class of ob-
ject. The generic functions are called xDetails() and
yDetails() and methods for our special "box" class
are defined in the last two functions in Figure 2.

These methods work by passing the buck. They
both create a rounded rectangle at the correct loca-
tion and the right size for the box, then call grobX()
(or grobY()) to determine a location on the bound-
ary of the rounded rectangle. In other words, they
rely on code within the grid package that already ex-
ists to calculate the boundary of rounded rectangles.

With these methods defined, we are now in a po-
sition to draw a curved line between our boxes. The
key idea is that we can use grobX() and grobY() to
specify a start and end point for the curve. For exam-
ple, we can start the curve at the right hand edge of
box1 by specifying grobX(box1, "east"). The ver-
tical position is slightly trickier because we do not
want the line starting at the top or bottom of the box,
but we can simply add or subtract the appropriate
number of lines of text to get the right spot.

The following code uses these ideas to draw a
curve from the pub label of box1 to the ID label of
box2. The curve has two corners (inflect=TRUE)
and it has a small arrow at the end.

This call to grid.curve() is relatively verbose,
but in a diagram containing many similar curves,
this burden can be significantly reduced by writing
a simple function that hides away the common fea-
tures, such as the specification of the arrow head.

The major gain from this object-oriented ap-
proach is that the start and end points of this curve

5

CONCLUSION BIBLIOGRAPHY

are described by simple expressions that will auto-
matically update if the locations of the boxes are
modified.

> grid.curve(grobX(box1, "east"),
grobY(box1, "south") +
unit(0.5, "lines"),

grobX(box2, "west"),
grobY(box2, "north") -
unit(0.5, "lines"),

inflect=TRUE,
arrow=
arrow(type="closed",

angle=15,
length=unit(2, "mm")),

gp=gpar(fill="black"))

ISBN
title
author
pub

ID
name
country

Conclusion

This article has demonstrated a number of useful
low-level graphical facilities in R with an example of
how they can be combined to produce a diagram
consisting of non-trivial nodes with smooth curves
between them.

The code examples provided in this article have
ignored some details in order to keep things simple.
For example, there are no checks that the arguments
have sensible values in the functions tableBox() and
boxGrob(). However, for creating one-off diagrams,
this level of detail is not necessary anyway.

One detail that would be encountered quite
quickly in practice, in this particular sort of dia-
gram, is that a curve from one box to another that
needs to go across-and-down rather than across-and-
up would require the addition of curvature=-1 to
the grid.curve() call.

Another thing that is missing is complete code to
produce the example diagram from the beginning of
this article, where there are five interconnected boxes
and the boxes have some additional features, such
as a distinct “header” line at the top. This complete
code was excluded to save on space, but a simple R
package is provided at http://www.stat.auckland.
ac.nz/~paul/ with code to draw that complete dia-
gram and the package also contains a more complete
implementation of code to create and draw "box"
graphical objects.

One final point is that using R graphics to draw
diagrams like this is not fast. In keeping with the S
tradition, the emphasis is on developing code quickly
and on having code that is not a complete nightmare
to maintain. In this case particularly, the speed of

developing a diagram comes at the expense of the
time taken to draw the diagram. For small, one-off
diagrams this is not likely to be an issue, but the
approach described in this article would not be ap-
propriate, for example, for drawing a node-and-edge
graph of the internet.

Bibliography

C. Blanc and C. Schlick. X-splines: a spline model
designed for the end-user. In SIGGRAPH ’95: Pro-
ceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 377–386,
New York, NY, USA, 1995. ACM. ISBN 0-89791-
701-4.

G. Csardi and T. Nepusz. The igraph software
package for complex network research. InterJour-
nal, Complex Systems:1695, 2006. URL http://
igraph.sf.net.

J. Gentry, L. Long, R. Gentleman, S. Falcon, F. Hahne,
and D. Sarkar. Rgraphviz: Provides plotting capabil-
ities for R graph objects, 2008. R package version
1.18.1.

A. Larsson. Dia, 2008. http://www.gnome.org/
projects/dia/.

P. Murrell. The grid graphics package. R News, 2(2):
14–19, June 2002. URL http://CRAN.R-project.
org/doc/Rnews/.

P. Murrell. R Graphics. Chapman & Hall/CRC,
2005a. URL http://www.stat.auckland.ac.nz/
~paul/RGraphics/rgraphics.html. ISBN 1-584-
88486-X.

P. Murrell. Recent changes in grid graphics. R
News, 5(1):12–20, May 2005b. URL http://CRAN.
R-project.org/doc/Rnews/.

R Development Core Team. R: A Language and Envi-
ronment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2008. URL
http://www.R-project.org. ISBN 3-900051-07-0.

D. Sarkar. Lattice: Multivariate Data Visualization with
R. Springer, 2008. URL http://amazon.com/o/
ASIN/0387759689/. ISBN 9780387759685.

K. Soetaert. diagram: Functions for visualising simple
graphs (networks), plotting flow diagrams, 2008a. R
package version 1.2.

K. Soetaert. shape: Functions for plotting graphical
shapes, colors, 2008b. R package version 1.2.

H. Wickham. ggplot2. Springer, 2009. http://had.
co.nz/ggplot2/.

6

http://www.stat.auckland.ac.nz/~paul/
http://www.stat.auckland.ac.nz/~paul/
http://igraph.sf.net
http://igraph.sf.net
http://www.gnome.org/projects/dia/
http://www.gnome.org/projects/dia/
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://www.R-project.org
http://amazon.com/o/ASIN/0387759689/
http://amazon.com/o/ASIN/0387759689/
http://had.co.nz/ggplot2/
http://had.co.nz/ggplot2/

	Drawing Diagrams with R
	Graphical primitives
	Viewports
	Coordinate systems
	Clipping
	Drawing curves
	Graphical functions
	Graphical objects
	Conclusion

