
The devNull graphics device

Paul Murrell

November 8, 2004

Introduction

The devNull package implements a graphics device which produces absolutely
no graphical output. Furthermore, the device cannot be queried (e.g., to ask for
its size, or the size of text on the device).

The main purpose of this device is to create a graphics device object within
the graphics engine, mainly so that graphical operations can be recorded on
the device (even though they do not produce any output). This is useful for
recording what a graphics function does without actually drawing anything. It
is used by the grid graphics package (at least).

The secondary purpose of this device is to provide documentation for writing a
third-party graphics device for R. This document describes the necessary steps
for creating a graphics device and the C-level API for graphics devices. The
API is pretty crumby and inconsistent in places, and is not easily extensible,
but at least this provides a description of its current state.

Getting started

The sensible way to organise a third-party graphics device is as a standard add-
on package for R. See the“Writing R Extensions”manual for detailed information
about how to set up the directories and locate files for developing an R package.

A graphics device will require both R code and C code; this package is called
devNull so the R code will go in a directory called devNull/R and the C code
in devNull/src.

R code

The R code for a device should be fairly small and straightforward.

First of all, you need a function to start a new device. This typically takes
arguments to initialise various aspects of the device, such as size, name (if

1

it produces output in a file on disk, rather than on-screen), and the default
font. There are plenty of examples for the standard R graphics devices; see
postscript(), pdf(), and x11().

For devices which allow multiple fonts, functions should be provided to map
the standard font families, "serif", "sans", "mono", and "symbol", to device-
specific fonts. See, for example, postscriptFonts() and X11Fonts().

The null device has a fixed size, produces no files, and has a single, fixed font,
so there are no arguments for the user to specify. The devNull() function does,
however, perform the most crucial operation of a device function, which is to
call C code to create the device and let R know that the device exists.

devNull <- function() {
.Call("do_devNULL", PACKAGE="devNull")

}

.First.lib <- function(lib, pkg) {
library.dynam("devNull", pkg, lib)

}

There is no need to write R code for closing/destroying the device; the R-level
interface for this is provided by the dev.off() function. You will, however,
need to handle finalising the device in C code.

C code

The entry point for C code is the function call made from R to create the device;
in the current case, do_devNull.

In most cases, there will be arguments to handle — if you have used .Call as
above, these will be R objects (SEXPs), from which you will need to extract the
more familiar C values. See “Writing R Extensions” for information on working
with R objects in C code.

The do_devNull function below shows the standard pattern for graphics devices.
The steps are:

� R_CheckDeviceAvailable() makes sure that a device can be created
(there is a hard-coded maximum of 64 devices open at one time). It
will fail with an error if the device can’t be created.

� A new device structure is allocated. This device structure is defined in
$R_HOME/src/include/R_ext/GraphicsDevice.h. We will see a lot more
of it later.

� the device display list is initialised. The display list is used for redrawing
the most recent “page” of output on the device (or for copying that output

2

to another device). Your device will not have to do anything else to
maintain the display list; it is all handled by R’s graphics engine.

� the call to nullDeviceDriver (which we will look at next) does all of
the initialisation of the device. If this fails, we must deallocate the device
structure before bailing out with an error.

� if we successfully initialise the device, we finish up by making sure that R
knows about the device.

#include <Rinternals.h>
#include <Rgraphics.h>
#include <Rdevices.h>
#include <R_ext/GraphicsDevice.h>
#include <R_ext/GraphicsEngine.h>

static Rboolean nullDeviceDriver(NewDevDesc *dev);

SEXP do_devNULL() {
NewDevDesc *dev = NULL;
GEDevDesc *dd;

R_CheckDeviceAvailable();
if (!(dev = (NewDevDesc *) calloc(1, sizeof(NewDevDesc))))

return R_NilValue;
dev->displayList = R_NilValue;
if (!nullDeviceDriver(dev)) {

free(dev);
error("unable to start NULL device");

}
gsetVar(install(".Device"), mkString("NULL"), R_NilValue);
dd = GEcreateDevDesc(dev);
Rf_addDevice((DevDesc*) dd);
GEinitDisplayList(dd);
return R_NilValue;

}

The device driver

The most important call in do_devNull above is to a function, nullDeviceDriver,
that initialises the device structure. In most cases, there will be several argu-
ments coming in here from the R code specifying things such as device size and
fonts and such, but the most important is the pointer to the device structure,
dev. This structure has many different elements which must be initialised:

Device-specific information It is possible to store device-specific informa-
tion in an arbitrary structure attached to the deviceSpecific slot. Most
devices use this slot to hold a set of “local” device settings (such as current
pen colour).

3

It is important that the device-specific structure is deallocated if this cre-
ation function has to bail out with an error at any point. The structure
should also be deallocated in the close device function (i.e., when the
device is destroyed).

Device functions R will call these functions either so that the device can
produce appropriate graphical output (e.g., draw a rectangle) or in order
to query the device for its size or for font size information. We will look
in more detail at these functions later.

Initial graphical settings There are several graphical settings that must be
initialised; the code shows some standard values.

Start device The NULL_Open device function is not used by R’s graphics en-
gine; it is only called in the device driver to do further setting up of the
device. There are no firm rules describing whether to put set up code in
the driver or the “open” function, but one guideline is to put everything in
NULL_Open that needs to be undone in NULL_Close (e.g., opening/closing
a file).

Device physical characteristics These are used to query the device. Some
standard values have been filled in and others just chosen arbitrarily (e.g.,
the device size). The units on several of these values are device-specific

Device capabilities The R graphics engine needs to know what the device is
capable of. For example, if the device can’t do clipping, R will do its best
to clip itself.

The newDevStruct slot must be set to 1.

static Rboolean nullDeviceDriver(NewDevDesc *dev) {
dev->deviceSpecific = NULL;
/*
* Device functions
*/
dev->open = NULL_Open;
dev->close = NULL_Close;
dev->activate = NULL_Activate;
dev->deactivate = NULL_Deactivate;
dev->size = NULL_Size;
dev->newPage = NULL_NewPage;
dev->clip = NULL_Clip;
dev->strWidth = NULL_StrWidth;
dev->text = NULL_Text;
dev->rect = NULL_Rect;
dev->circle = NULL_Circle;
dev->line = NULL_Line;
dev->polyline = NULL_Polyline;
dev->polygon = NULL_Polygon;
dev->locator = NULL_Locator;
dev->mode = NULL_Mode;

4

dev->hold = NULL_Hold;
dev->metricInfo = NULL_MetricInfo;
/*
* Initial graphical settings
*/
dev->startfont = 1;
dev->startps = 10;
dev->startcol = R_RGB(0, 0, 0);
dev->startfill = R_TRANWHITE;
dev->startlty = LTY_SOLID;
dev->startgamma = 1;
/*
* Start device
*/
if(!NULL_Open(dev)) {

return FALSE;
}
/*
* Device physical characteristics
*/
dev->left = 0;
dev->right = 1000;
dev->bottom = 0;
dev->top = 1000;
dev->cra[0] = 10;
dev->cra[1] = 10;
dev->xCharOffset = 0.4900;
dev->yCharOffset = 0.3333;
dev->yLineBias = 0.1;
dev->ipr[0] = 1.0/72;
dev->ipr[1] = 1.0/72;
/*
* Device capabilities
*/
dev->canResizePlot= FALSE;
dev->canChangeFont= FALSE;
dev->canRotateText= TRUE;
dev->canResizeText= TRUE;
dev->canClip = TRUE;
dev->canHAdj = 2;
dev->canChangeGamma = FALSE;
dev->displayListOn = TRUE;

dev->newDevStruct = 1;
return TRUE;

}

5

Device functions

All of the null graphics device functions will do nothing. Some comments are
provided for what could be done in other cases and, in a couple of cases,
it is important how nothing gets done. The null device functions also show
what parameters the graphics engine will call these functions with. The file
$R_HOME/src/include/R_ext/GraphicsDevice.h contains more detailed infor-
mation about what each function should do.

Graphical output The majority of the device functions are concerned with
producing graphical output (rectangles, lines, text). The R_GE_gcontext
points to a structure containing graphical parameter settings (line width,
colours, fonts). The file $R_HOME/src/include/R_ext/GraphicsEngine.h
contains a definition of this structure.

static void NULL_Circle(double x, double y, double r,
R_GE_gcontext *gc,
NewDevDesc *dev) {

}
static void NULL_Line(double x1, double y1, double x2, double y2,

R_GE_gcontext *gc,
NewDevDesc *dev) {

}
static void NULL_Polygon(int n, double *x, double *y,

R_GE_gcontext *gc,
NewDevDesc *dev) {

}
static void NULL_Polyline(int n, double *x, double *y,

R_GE_gcontext *gc,
NewDevDesc *dev) {

}
static void NULL_Rect(double x0, double y0, double x1, double y1,

R_GE_gcontext *gc,
NewDevDesc *dev) {

}
static void NULL_Text(double x, double y, char *str,

double rot, double hadj,
R_GE_gcontext *gc,
NewDevDesc *dev) {

}
static void NULL_NewPage(R_GE_gcontext *gc,

NewDevDesc *dev) {
}

Controlling the device NULL_Close should undo anything that NULL_Open
did, especially any memory allocation. As mentioned, NULL_Open is not
called by the graphics engine.

static void NULL_Close(NewDevDesc *dev) {

6

}
Rboolean NULL_Open(NewDevDesc *dev) {

return TRUE;
}

Device state Several functions provide a way to affect the current state of the
device.

static void NULL_Activate(NewDevDesc *dev) {
}
static void NULL_Clip(double x0, double x1, double y0, double y1,

NewDevDesc *dev) {
}
static void NULL_Deactivate(NewDevDesc *dev) {
}
static void NULL_Mode(int mode, NewDevDesc *dev) {
}

Querying the device These functions provide a way for the graphics engine
to query the device for information. If the device does not support font
metric information, return 0 for all values. NULL_Locator is a crude,
modal way of obtaining a mouse-click from a device; return FALSE if the
device does not support mouse interaction.

static Rboolean NULL_Locator(double *x, double *y, NewDevDesc *dev) {
return FALSE;

}
static void NULL_MetricInfo(int c,

R_GE_gcontext *gc,
double* ascent, double* descent,
double* width, NewDevDesc *dev) {

*ascent = 0.0;
*descent = 0.0;
*width = 0.0;

}
static void NULL_Size(double *left, double *right,

double *bottom, double *top,
NewDevDesc *dev) {

*left = dev->left;
*right = dev->right;
*bottom = dev->bottom;
*top = dev->top;

}
static double NULL_StrWidth(char *str,

R_GE_gcontext *gc,
NewDevDesc *dev) {

return 0.0;
}

I still don’t know what NULL_dot and NULL_Hold are (or were) for.

7

static void NULL_dot(NewDevDesc *dev) {
}
static void NULL_Hold(NewDevDesc *dev) {
}

8

