
grid Graphics

Paul Murrell

March 12, 2003

grid is not a set of high-level plotting functions. It is a set of low-level graphics functions and is
intended to provide facilities for producing complete plots with only a moderate amount of code
and a trivial amount of mental effort.

Other packages (such as lattice) can be written using grid to provide high-level plotting functions
for more convenient production of complete plots. Ideally these should still allow a great deal of
annotation and customisation via raw grid functions.

The structure of this document deliberately mirrors the structure of the document “Traditional S
Graphics” in order to help the transition from standard R graphics to grid.

There are three things to know in order to construct a statistical graphic (plot):

1. How to create and control different graphics regions and coordinate systems.

2. How to control which graphics region and coordinate system graphics output goes into.

3. How to produce graphics output (lines, points, text, ...) including how to control its appear-
ance (colour, line type, line width, ...).

1 Creating and Controlling Graphics Regions and
Coordinate Systems

In grid there can be any number of graphics regions. A graphics region is referred to as a
viewport and is created using the viewport() function. A viewport can be positioned anywhere
on a graphics device (page, window, ...), it can be rotated, and it can be clipped to. The following
code describes a viewport which is centred within the page, and is half the width of the page, one
quarter of the height of the page, and rotated 45◦; Figure 1 shows a diagram of this viewport.

> viewport(x = 0.5, y = 0.5, width = 0.5, height = 0.25, angle = 45)

The object returned by the viewport() function is only a description of a graphics region.
A graphics region is only created on a graphics device when a viewport is “pushed” onto that
device. This is achieved using the push.viewport() function. Each device has only one “current
viewport” (by default this is the entire device), but it maintains a “stack” of viewports that have
been pushed. The top viewport on this stack is the current viewport. The push.viewport()
function places a viewport on the top of the stack, and the pop.viewport() function removes a
viewport from the top of the stack. This means that there is always only one graphics region to
draw into, but it is possible to return to a previous graphics region through the appropriate set
of pushing and popping viewports. The following code creates a graphics region in the top-left
corner of the page, does some drawing, then creates another region in the bottom-right corner of
the page, does some drawing there, then returns to the first graphics region and does some more
drawing (see Figure 2).

1



> grid.rect(gp = gpar(lty = "dashed"))

> vp1 <- viewport(x = 0, y = 0.5, w = 0.5, h = 0.5, just = c("left",

+ "bottom"))

> vp2 <- viewport(x = 0.5, y = 0, w = 0.5, h = 0.5, just = c("left",

+ "bottom"))

> push.viewport(vp1)

> grid.rect(gp = gpar(col = "grey"))

> grid.text("Some drawing in graphics region 1", y = 0.8)

> pop.viewport()

> push.viewport(vp2)

> grid.rect(gp = gpar(col = "grey"))

> grid.text("Some drawing in graphics region 2", y = 0.8)

> pop.viewport()

> push.viewport(vp1)

> grid.text("MORE drawing in graphics region 1", y = 0.2)

> pop.viewport()

When several viewports are pushed onto the viewport stack, later viewports are located and
sized within the context of earlier viewports. The following code gives an example; a viewport is
defined which is one-quarter the size of its parent (half the width and half the height), and this
viewport is pushed twice. The first time it gets pushed it is quarter of the size of the page, the
second time it is quarter of the size of the previous viewport on the stack. Figure 3 shows the
output of these commands.

> grid.rect(gp = gpar(lty = "dashed"))

> vp <- viewport(width = 0.5, height = 0.5)

> push.viewport(vp)

> grid.rect(gp = gpar(col = "grey"))

> grid.text("quarter of the page", y = 0.85)

> push.viewport(vp)

> grid.rect()

> grid.text("quarter of the\nprevious viewport")

> pop.viewport(2)

Each viewport has a number of coordinate systems available. The full set is described in Table
1, but there are four main types: absolute coordinates (e.g., “inches”, “cm”) allow locations and
sizes in terms of physical coordinates – there is no dependence on the size of the page; normalised
coordinates (e.g., “npc”) allow locations and sizes as a proportion of the page size (or the current
viewport); relative coordinates (i.e., “native”) allow locations and sizes relative to a user-defined
set of x- and y-ranges; referential coordinates (e.g., “strwidth”) where locations and sizes are based
on the size of some other graphical object.

It is possible to specify the coordinate system for relative coordinates, but all other coordinate
systems are implicitly defined based on the location and size of the viewport and/or the size of
other graphical objects.

2 Directing Graphics Output into Different
Graphics Regions and Coordinate Systems

Graphics output is always relative to the current viewport (on the current device). Selecting which
region you want is a matter of pushing and popping the appropriate viewports.

The selection of which coordinate system to use within the current viewport is made using the
unit() function. The unit() function creates an object which is a combination of a value and a
coordinate system (plus some extra information for certain coordinate systems). Here are some
examples from the help(unit) page:

2



0

1

0

1

0.
5n

pc

0.
25

np
c

0.5npc

0.5npc

Figure 1: A diagram of a simple grid viewport (produced using the grid.show.viewport()
function.

Some drawing in graphics region 1

Some drawing in graphics region 2

MORE drawing in graphics region 1

Figure 2: Defining and drawing in multiple graphics regions.

3



Coordinate
System Name Description
"npc" Normalised Parent Coordinates. Treats the

bottom-left corner of the current viewport as the
location (0, 0) and the top-right corner as (1, 1).

"native" Locations and sizes are relative to the x- and y-
scales for the current viewport.

"inches" Locations and sizes are in terms of physical inches.
For locations, (0, 0) is at the bottom-left of the
viewport.

"cm" Same as "inches", except in centimetres.
"mm" Millimetres.
"points" Points. There are 72.27 points per inch.
"bigpts" Big points. There are 72 big points per inch.
"picas" Picas. There are 12 points per pica.
"dida" Dida. 1157 dida equals 1238 points.
"cicero" Cicero. There are 12 dida per cicero.
"scaledpts" Scaled points. There are 65536 scaled points per

point.
"char" Locations and sizes are specified in terms of mul-

tiples of the current nominal fontheight.
"lines" Locations and sizes are specified in terms of mul-

tiples of the height of a line of text (dependent on
both the current fontsize and the current line-
height).

"snpc" Square Normalised Parent Coordinates. Loca-
tions and size are expressed as a proportion of
the smaller of the width and height of the current
viewport.

"strwidth" Locations and sizes are expressed as multiples of
the width of a given string (dependent on the
string and the current fontsize).

"strheight" Locations and sizes are expressed as multiples of
the height of a given string (dependent on the
string and the current fontsize).

"grobwidth" Locations and sizes are expressed as multiples of
the width of a given graphical object (dependent
on the current state of the graphical object).

"grobheight" Locations and sizes are expressed as multiples of
the height of a given graphical object (dependent
on the current state of the graphical object).

Table 1: The full set of coordinate systems available in grid viewports.

4



> unit(1, "npc")

[1] 1npc

> unit(1:3/4, "npc")

[1] 0.25npc 0.5npc 0.75npc

> unit(1:3/4, "npc")[2]

[1] 0.5npc

> unit(1:3/4, "npc") + unit(1, "inches")

[1] 0.25npc+1inches 0.5npc+1inches 0.75npc+1inches

> min(unit(0.5, "npc"), unit(1, "inches"))

[1] min(0.5npc, 1inches)

> unit.c(unit(0.5, "npc"), unit(2, "inches") + unit(1:3/4, "npc"),

+ unit(1, "strwidth", "hi there"))

[1] 0.5npc 2inches+0.25npc 2inches+0.5npc 2inches+0.75npc
[5] 1strwidth

Notice that unit objects are treated much like numeric vectors. You can index a unit object, it
is possible to do simple arithmetic (including min and max), and there are several unit-versions of
common functions (e.g., unit.c, unit.rep, and unit.length; unit.pmin, and unit.pmax)).

grid functions that have arguments specifying locations and sizes typically assume a default
coordinate system is being used. Most often this default is “npc”. In other words, if a raw numeric
value, x, is specified this is implicitly taken to mean unit(x, "npc"). The viewport() function
is one that assumes “npc” coordinates, so in all of the viewport examples to this point, we have
only used “npc” coordinates to position viewports within the page or within each other. It is
also possible to position viewports using any of the coordinate systems described in Table 1. The
following code first pushes a viewport with a user-defined x-scale, then pushes another viewport
which is centred at the x-value 60 and half-way up the first viewport, and is 3 inches high1 and as
wide as the text “coordinates for everyone”. Figure 4 shows the resulting output.

> push.viewport(viewport(y = unit(3, "lines"), width = 0.9, height = 0.8,

+ just = "bottom", xscale = c(0, 100)))

> grid.rect(gp = gpar(col = "grey"))

> grid.xaxis()

> push.viewport(viewport(x = unit(60, "native"), y = unit(0.5,

+ "npc"), width = unit(1, "strwidth", "coordinates for everyone"),

+ height = unit(3, "inches")))

> grid.rect()

> grid.text("coordinates for everyone")

> pop.viewport(2)

1If you want to check the figure, the scaling factor is 3.5/6 (i.e., the rectangle in the figure should be 1.75" or
3.94cm high).

5



quarter of the page

quarter of the
previous viewport

Figure 3: The result of pushing the same viewport onto the viewport stack twice.

0 20 40 60 80 100

coordinates for everyone

Figure 4: A viewport positioned using a variety of coordinate systems.

6



2.1 Layouts

grid provides an alternative method for positioning viewports within each other based on layouts2.
A layout may be specified for any viewport. Any viewport pushed immediately after a viewport
containing a layout may specify its location with respect to that layout. In the following simple
example, a viewport is pushed with a layout with 4 rows and 5 columns, then another viewport is
pushed which occupies the second and third columns of the third row of the layout.

> push.viewport(viewport(layout = grid.layout(4, 5)))

> grid.rect(gp = gpar(col = "grey"))

> grid.segments(c(1:4/5, rep(0, 3)), c(rep(0, 4), 1:3/4), c(1:4/5,

+ rep(1, 3)), c(rep(1, 4), 1:3/4), gp = gpar(col = "grey"))

> push.viewport(viewport(layout.pos.col = 2:3, layout.pos.row = 3))

> grid.rect(gp = gpar(lwd = 3))

> pop.viewport(2)

Layouts introduce a special sort of unit called “null”. These can be used in layouts to specify
relative column-widths or row-heights. In the following, slightly more complex, example, the layout
specifies something similar to a standard plot arrangement; there are bottom and left margins 3
lines of text wide, top and right margins 1cm wide, and two rows and columns within these margins
where the bottom row is twice the height of the top row (see Figure 6).

> grid.show.layout(grid.layout(4, 4, widths = unit(c(3, 1, 1, 1),

+ c("lines", "null", "null", "cm")), heights = c(1, 1, 2, 3),

+ c("cm", "null", "null", "lines")))

3 Producing Graphics Output

grid provides a standard set of graphical primitives: lines, text, points, rectangles, polygons, and
circles. There are also two higher level components: x- and y-axes. Table 2 lists the grid functions
that produce these primitives.

NOTE: all of these graphical primitives are available in all graphical regions and coordinate
systems.

grid.text Can specify angle of rotation.
grid.rect
grid.circle
grid.polygon
grid.points Can specify type of plotting symbol.
grid.lines
grid.segments
grid.grill Convenience function for drawing grid lines
grid.move.to
grid.line.to

grid.xaxis Top or bottom axis
grid.yaxis Left or right axis

Table 2: grid graphical primitives.

2The primary reference for layouts is [1]. Layouts in grid represent an extension of the idea to allow a greater
range of units for specifying row heights and column widths. grid also differs in the way that children of the layout
specify their location within the layout.

7



Figure 5: A viewport positioned using a layout.

(1, 1)1cm

3lines

(1, 2)

1null

(1, 3)

1null

(1, 4) 1cm

1cm

(2, 1)1null (2, 2) (2, 3) (2, 4) 1null

(3, 1)2null (3, 2) (3, 3) (3, 4) 2null

(4, 1)3lines

3lines

(4, 2)

1null

(4, 3)

1null

(4, 4)

1cm

3lines

Figure 6: A more complex layout.

8



3.1 Controlling the Appearance of Graphics Output

grid recognises a fixed set of graphical parameters for modifying the appearance of graphical
output (see Table 3).

col colour of lines, text, ...
fill colour for filling rectangles, circles, polygons, ...
lwd line width
lty line type
fontsize The size of text (in points)
fontface The font face (bold, italic, ...)
fontfamily The font family

Table 3: grid graphical parameters.

Graphical parameter settings may be specified for both viewports and graphical objects. A
graphical parameter setting for a viewport will hold for all graphical output within that viewport
and for all viewports subsequently pushed onto the viewport stack, unless the graphical object or
viewport specifies a different parameter setting.

A description of graphical parameter settings is created using the gpar() function, and this
description is associated with a viewport or a graphical object via the gp argument. The following
code demonstrates the effect of graphical parameter settings (see Figure 7).

> push.viewport(viewport(gp = gpar(fill = "grey", fontface = "italic")))

> grid.rect()

> grid.rect(width = 0.8, height = 0.6, gp = gpar(fill = "white"))

> grid.text("This text and the inner rectangle\nhave specified their own gpar settings",

+ y = 0.75, gp = gpar(fontface = "plain"))

> grid.text("This text and the outer rectangle\naccept the gpar settings of the viewport",

+ y = 0.25)

> pop.viewport()

4 Plots from First Principles

This is the only way to produce a plot using grid itself. However, just like in standard graphics,
it is quite straightforward to create a simple plot by hand. The following code produces the
equivalent of a standard plot(1:10) (see Figure 8).

> grid.rect(gp = gpar(lty = "dashed"))

> x <- y <- 1:10

> push.viewport(plotViewport(c(5.1, 4.1, 4.1, 2.1)))

> push.viewport(dataViewport(x, y))

> grid.rect()

> grid.xaxis()

> grid.yaxis()

> grid.points(x, y)

> grid.text("1:10", x = unit(-3, "lines"), rot = 90)

> pop.viewport(2)

Now consider a more complex example, where we create a barplot with a legend (see Figure 9).
There are two main parts to this because grid has no predefined barplot function; the construction
of the barplot will itself be instructive, so we will start with just that.

The data to be plotted are as follows: we have four measures to represent at four levels; the
data are in a matrix with the measures for each level in a column.

9



This text and the inner rectangle
have specified their own gpar settings

This text and the outer rectangle
accept the gpar settings of the viewport

Figure 7: The effect of different graphical parameter settings.

2 4 6 8 10

2

4

6

8

10

●

●

●

●

●

●

●

●

●

●

1:
10

Figure 8: The grid equivalent of plot(1:10).

10



> barData <- matrix(sample(1:4, 16, replace = T), ncol = 4)

We will use colours to differentiate the measures.

> boxColours <- 1:4

We create the barplot within a function so that we can easily reproduce it when we combine it
with the legend.

> bp <- function(barData) {

+ nbars <- dim(barData)[2]

+ nmeasures <- dim(barData)[1]

+ barTotals <- rbind(rep(0, nbars), apply(barData, 2, cumsum))

+ barYscale <- c(0, max(barTotals) * 1.05)

+ push.viewport(plotViewport(c(5, 4, 4, 1), yscale = barYscale,

+ layout = grid.layout(1, nbars)))

+ grid.rect()

+ grid.yaxis()

+ for (i in 1:nbars) {

+ push.viewport(viewport(layout.pos.col = i, yscale = barYscale))

+ grid.rect(x = rep(0.5, nmeasures), y = unit(barTotals[1:nmeasures,

+ i], "native"), height = unit(diff(barTotals[, i]),

+ "native"), width = 0.8, just = "bottom", gp = gpar(fill = boxColours))

+ pop.viewport()

+ }

+ pop.viewport()

+ }

Now we turn our attention to the legend. We need some labels and we will enforce the constraint
that the boxes in the legend should be 0.5" square:

> legLabels <- c("Group A", "Group B", "Group C", "Something Longer")

> boxSize <- unit(0.5, "inches")

The following draws the legend elements in a column, with each element consisting of a box with
a label beneath.

> leg <- function(legLabels) {

+ nlabels <- length(legLabels)

+ push.viewport(viewport(layout = grid.layout(nlabels, 1)))

+ for (i in 1:nlabels) {

+ push.viewport(viewport(layout.pos.row = i))

+ grid.rect(width = boxSize, height = boxSize, just = "bottom",

+ gp = gpar(fill = boxColours[i]))

+ grid.text(legLabels[i], y = unit(0.5, "npc") - unit(1,

+ "lines"))

+ pop.viewport()

+ }

+ pop.viewport()

+ }

Now that we have the two components, we can arrange them together to form a complete image.
Notice that we can perform some calculations to make sure that we leave enough room for the
legend, including 1 line of text as left and right margins. We also impose top and bottom margins
on the legend to match the plot margins.

11



> grid.rect(gp = gpar(lty = "dashed"))

> legend.width <- max(unit(rep(1, length(legLabels)), "strwidth",

+ as.list(legLabels)) + unit(2, "lines"), unit(0.5, "inches") +

+ unit(2, "lines"))

> push.viewport(viewport(layout = grid.layout(1, 2, widths = unit.c(unit(1,

+ "null"), legend.width))))

> push.viewport(viewport(layout.pos.col = 1))

> bp(barData)

> pop.viewport()

> push.viewport(viewport(layout.pos.col = 2))

> push.viewport(plotViewport(c(5, 0, 4, 0)))

> leg(legLabels)

> pop.viewport(3)

5 grid and lattice

The lattice package is built on top of grid and provides a quite sophisticated example of writing
high-level plotting functions using grid. Because lattice consists of grid calls, it is possible to
both add grid output to lattice output, and lattice output to grid output.

5.1 Adding grid to lattice

Panel functions in lattice can include grid calls. The following example adds a horizontal line
at 0 to a standard xyplot (see Figure 10):

> x <- rnorm(100)

> y <- rnorm(100)

> g <- sample(1:8, 100, replace = T)

> print.trellis(xyplot(y ~ x | g, panel = function(x, y) {

+ panel.xyplot(x, y)

+ grid.lines(unit(c(0, 1), "npc"), unit(0, "native"), gp = gpar(col = "grey"))

+ }))

The following example writes a left-justified label in each strip (see Figure 11):

> x <- rnorm(100)

> y <- rnorm(100)

> g <- sample(1:8, 100, replace = T)

> print.trellis(xyplot(y ~ x | g, strip = function(which.given,

+ which.panel, var.name, factor.levels, shingle.intervals,

+ strip.names = "", style, bg, fg, par.strip.text) {

+ grid.text(paste("Variable ", which.given, ": Level ", which.panel[which.given],

+ sep = ""), unit(1, "mm"), 0.5, just = "left")

+ }))

5.2 Adding lattice to grid

It is also possible to use a lattice plot as an element of a grid image. The following example
splits up the page so that there is an xyplot beside a panel of text (see Figure 12). First of all,
the lattice plot is created, but not drawn. grid is used to create some regions and the lattice plot
is drawn into one of those regions.

12



0

2

4

6

8

10

Group A

Group B

Group C

Something Longer

Figure 9: A barplot plus legend from first principles using grid.

x

y

●

●

●

●

●

●

−2

−1

0

1

2

−3 −2 −1 0 1 2 3

g

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

g

●

●

●● ●

●

●
●

●

●

●
●

●

● ●
●

−3 −2 −1 0 1 2 3

g

●

●

●

●

●

●

●

●
●

●

●

●

g

●

●

●

●

●

●

●●

●

●

●

g

●

●

●

●

●

●
●

●

●

●

●

●

●

●

−2

−1

0

1

2

g

●

●●

●

●

●

●

●

●

●

●
●

●

−2

−1

0

1

2

g

●

●

●
●
●

●

●

●

●

●
●

●

●

g

−3 −2 −1 0 1 2 3

Figure 10: A lattice panel function using grid.

13



> x <- rnorm(100)

> y <- rnorm(100)

> g <- sample(1:8, 100, replace = T)

> someText <- "A panel of text\nproduced using\nraw grid code\nthat describes\nthe plot\nto the right."

> latticePlot <- xyplot(y ~ x | g, layout = c(2, 4))

> grid.rect(gp = gpar(lty = "dashed"))

> push.viewport(viewport(layout = grid.layout(1, 2, widths = unit.c(unit(1,

+ "strwidth", someText) + unit(2, "cm"), unit(1, "null")))))

> push.viewport(viewport(layout.pos.col = 1))

> grid.rect(gp = gpar(fill = "light grey"))

> grid.text(someText, x = unit(1, "cm"), y = unit(1, "npc") - unit(1,

+ "inches"), just = c("left", "top"))

> pop.viewport()

> push.viewport(viewport(layout.pos.col = 2))

> print.trellis(latticePlot, newpage = FALSE)

> pop.viewport(2)

References

[1] Paul R. Murrell. Layouts: A mechanism for arranging plots on a page. Journal of Computa-
tional and Graphical Statistics, 1999.

14



x

y

●●

●

●
●

●

●

●

●
●

●
●●

−2

−1

0

1

2

−3 −2 −1 0 1 2

Variable 1: Level 1

●

●●

●
●

Variable 1: Level 2

●

●

●

●

●
●

●
●

●●

●

●

−3 −2 −1 0 1 2

Variable 1: Level 3

●

●

●

●

●

●

●

●

●

●

●

●

Variable 1: Level 4

●

●

●

●

●

●

●

●

●

Variable 1: Level 5

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

−2

−1

0

1

2

Variable 1: Level 6

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●−2

−1

0

1

2

Variable 1: Level 7

●

●

●
●

●

●

●
●

●

●●

●

●

●

●
●

●

Variable 1: Level 8

−3 −2 −1 0 1 2

Figure 11: A lattice strip function using grid.

A panel of text
produced using
raw grid code
that describes
the plot
to the right.

x

y

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−3
−2
−1

0
1
2

−2 −1 0 1 2

g

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

g
●

●
●●

●

●

●

●

●
●

●

●

g

●

●
●

●

●

●
●

●

●

●

−3
−2
−1
0
1
2

g

●

●

●

●

●

●
●

●

●

●

●

●

●

−3
−2
−1

0
1
2

g

●

●

●
●

●

●
●

●

●

●

g

●●

●
●

●●

●

●

●

●

g

●

●

●

●

●●

●

●●●

●

●

−3
−2
−1
0
1
2

g

−2 −1 0 1 2

Figure 12: A lattice plot used as a component of a larger grid image.

15


