
5

The Grid Graphics Model

Chapter preview

This chapter describes the fundamental tools that grid provides for
drawing graphical scenes (including plots). There are basic features
such as functions for drawing lines, rectangles, and text, together with
more sophisticated and powerful concepts such as viewports, layouts,
and units, which allow basic output to be located and sized in very
flexible ways.

This chapter is useful for drawing a wide variety of pictures, including
statistical plots from scratch, and for adding output to lattice plots.

The functions that make up the grid graphics system are provided in an add-
on package called grid. The grid system is loaded into R as follows.

> library(grid)

In addition to the standard on-line documentation available via the help()

function, grid provides both broader and more in-depth on-line documentation
in a series of vignettes, which are available via the vignette() function.

The grid graphics system only provides low-level graphics functions. There
are no high-level functions for producing complete plots. Section 5.1 briefly
introduces the concepts underlying the grid system, but this only provides an
indication of how to work with grid and some of the things that are possible.
An effective direct use of grid functions requires a deeper understanding of
the grid system (see later sections of this chapter and Chapter 6).

149

150 R Graphics

The lattice package described in Chapter 4 provides a good demonstration of
the high-level results that can be achieved using grid. Other examples in this
book are Figure 1.7 in Chapter 1 and Figures 7.1 and 7.18 in Chapter 7.

5.1 A brief overview of grid graphics

This chapter describes how to use grid to produce graphical output. There
are functions to produce basic output, such as lines and rectangles and text,
and there are functions to establish the context for drawing, such as specifying
where output should be placed and what colors and fonts to use for drawing.

Like the traditional system, all grid output occurs on the current device,∗ and
later output obscures any earlier output that it overlaps (i.e.,output follows
the “painters model”). In this way, images can be constructed incrementally
using grid by calling functions in sequence to add more and more output.

There are grid functions to draw primitive graphical output such as lines,
text, and polygons, plus some slightly higher-level graphical components such
as axes (see Section 5.2). Complex graphical output is produced by making a
sequence of calls to these primitive functions.

The colors, line types, fonts, and other aspects that affect the appearance of
graphical output are controlled via a set of graphical parameters (see Section
5.4).

Grid provides no predefined regions for graphical output, but there is a pow-
erful facility for defining regions, based on the idea of a viewport (see Section
5.5). It is quite simple to produce a set of regions that are convenient for
producing a single plot (see the example in the next section), but it is also
possible to produce very complex sets of regions such as those used in the
production of Trellis plots (see Chapter 4).

All viewports have a large set of coordinate systems associated with them
so that it is possible to position and size output in physical terms (e.g., in
centimeters) as well as relative to the scales on axes, and in a variety of other
ways (see Section 5.3).

All grid output occurs relative to the current viewport (region) on a page. In
order to start a new page of output, the user must call the grid.newpage()

∗See Section 1.3.1 for information on devices and selecting a current device when more
than one device is open.

The Grid Graphics Model 151

function. The function grid.prompt() controls whether the user is prompted
when moving to a new page.

As well as the side effect of producing graphical output, grid graphics functions
produce objects representing output. These objects can be saved to produce
a persistent record of a plot, and other grid functions exist to modify these
graphical objects (for example, it is possible to interactively edit a plot). It is
also possible to work entirely with graphical descriptions, without producing
any output. Functions for working with graphical objects are described in
detail in Chapter 6.

5.1.1 A simple example

The following example demonstrates the construction of a simple scatterplot
using grid. This is more work than a single function call to produce the plot,
but it shows some of the advantages that can be gained by producing the plot
using grid.

This example uses the pressure data to produce a scatterplot much like that
in Figure 1.1.

Firstly, some regions are created that will correspond to the “plot region” (the
area within which the data symbols will be drawn) and the “margins” (the
area used to draw axes and labels).

The following code creates two viewports. The first viewport is a rectangular
region that leaves space for 5 lines of text at the bottom, 4 lines of text at the
left side, 2 lines at the top, and 2 lines to the right. The second viewport is
in the same location as the first, but it has x- and y-scales corresponding to
the range of the pressure data to be plotted.

> pushViewport(plotViewport(c(5, 4, 2, 2)))

> pushViewport(dataViewport(pressure$temperature,

pressure$pressure,

name="plotRegion"))

The following code draws the scatterplot one piece at a time. Grid output
occurs relative to the most recent viewport, which in this case is the viewport
with the appropriate axis scales. The data symbols are drawn relative to the
x- and y-scales, a rectangle is drawn around the entire plot region, and x- and
y-axes are drawn to represent the scales.

152 R Graphics

> grid.points(pressure$temperature, pressure$pressure,

name="dataSymbols")

> grid.rect()

> grid.xaxis()

> grid.yaxis()

Adding labels to the axes demonstrates the use of the different coordinate
systems available. The label text is drawn outside the edges of the plot region
and is positioned in terms of a number of lines of text (i.e.,the height that a
line of text would occupy).

> grid.text("temperature", y=unit(-3, "lines"))

> grid.text("pressure", x=unit(-3, "lines"), rot=90)

The obvious result of running the above code is the graphical output (see the
top-left image in Figure 5.1). Less obvious is the fact that several objects have
been created. There are objects representing the viewport regions and there
are objects representing the graphical output. The following code makes use
of this fact to modify the plotting symbol from a circle to a triangle (see the
top-right image in Figure 5.1). The object representing the data symbols was
named "dataSymbols" (see the code above) and this name is used to find that
object and modify it using the grid.edit() function.

> grid.edit("dataSymbols", pch=2)

The next piece of code makes use of the objects representing the viewports.
The upViewport() and downViewport() functions are used to navigate be-
tween the different viewport regions to perform some extra annotations. First
of all, a call to the upViewport() function is used to go back to working
within the entire device so that a dashed rectangle can be drawn around the
complete plot. Next, the downViewport() function is used to return to the
plot region to add a text annotation that is positioned relative to the scale on
the axes of the plot (see bottom-right image in Figure 5.1).

> upViewport(2)

> grid.rect(gp=gpar(lty="dashed"))

> downViewport("plotRegion")

> grid.text("Pressure (mm Hg)\nversus\nTemperature (Celsius)",

x=unit(150, "native"), y=unit(600, "native"))

The final scatterplot is still quite simple in this example, but the techniques
that were used to produce it are very general and powerful. It is possible to

The Grid Graphics Model 153

0 100 200 300

0

200

400

600

800

temperature

pr
es

su
re

0 100 200 300

0

200

400

600

800

temperature

pr
es

su
re

0 100 200 300

0

200

400

600

800

temperature

pr
es

su
re

Pressure (mm Hg)
versus

Temperature (Celsius)

Figure 5.1
A simple scatterplot produced using grid. The top-left plot was constructed from
a series of calls to primitive grid functions that produce graphical output. The
top-right plot shows the result of calling the grid.edit() function to interactively
modify the plotting symbol. The bottom-right plot was created by making calls to
upViewport() and downViewport() to navigate between different drawing regions
and adding further output (a dashed border and text within the plot).

154 R Graphics

produce a very complex plot, yet still have complete access to modify and add
to any part of the plot.

In the remaining sections of this chapter, and in Chapter 6, the basic grid
concepts of viewports and units are discussed in full detail. A complete un-
derstanding of the grid system will be useful in two ways: it will allow the
user to produce very complex images from scratch (the issue of making them
available to others is addressed in Chapter 7) and it will allow the user to
work effectively with (e.g., modify and add to) complex grid output that is
produced by other people’s code (e.g. lattice plots).

5.2 Graphical primitives

The most simple grid functions to understand are those that draw something.
There are a set of grid functions for producing basic graphical output such as
lines, circles, and text.∗ Table 5.1 lists the full set of these functions.

The first arguments to most of these functions is a set of locations and di-
mensions for the graphical object to draw. For example, grid.rect() has
arguments x, y, width, and height for specifying the locations and sizes of
the rectangles to draw. An important exception is the grid.text() function,
which requires the text to draw as its first argument.

In most cases, multiple locations and sizes can be specified and multiple prim-
itives will be produced in response. For example, the following function call
produces 100 circles because 100 locations and radii are specified (see Figure
5.2).

> grid.circle(x=seq(0.1, 0.9, length=100),

y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),

r=abs(0.1*cos(seq(0, 2*pi, length=100))))

The grid.move.to() and grid.line.to() functions are unusual in that they
both only accept one location. These functions refer to and modify a “cur-
rent location.” The grid.move.to() function sets the current location and
grid.line.to() draws from the current location to a new location, then sets

∗All of these functions are of the form grid.*() and, for each one, there is a correspond-
ing *Grob() function that creates an object containing a description of primitive graphical
output, but does not draw anything. The *Grob() versions are addressed fully in Chapter
6.

The Grid Graphics Model 155

Table 5.1
Graphical primitives in grid. This is the complete set of low-level functions that
produce graphical output. For each function that produces graphical output (left-
most column), there is a corresponding function that returns a graphical object
containing a description of graphical output instead of producing graphical output
(right-most column). The latter set of functions is described further in Chapter 6.

Function to Function to
Produce Output Description Produce Object

grid.move.to() Set the current location moveToGrob()

grid.line.to() Draw a line from the current lo-
cation to a new location and reset
the current location.

lineToGrob()

grid.lines() Draw a single line through multi-
ple locations in sequence.

linesGrob()

grid.segments() Draw multiple lines between pairs
of locations.

segmentsGrob()

grid.rect() Draw rectangles given locations
and sizes.

rectGrob()

grid.circle() Draw circles given locations and
radii.

circleGrob()

grid.polygon() Draw polygons given vertexes. polygonGrob()

grid.text() Draw text given strings, locations
and rotations.

textGrob()

grid.arrows() Draw arrows at either end of lines
given locations or an object de-
scribing lines.

arrowsGrob()

grid.points() Draw data symbols given loca-
tions.

pointsGrob()

grid.xaxis() Draw x-axis. xaxisGrob()

grid.yaxis() Draw y-axis. yaxisGrob()

156 R Graphics

Figure 5.2
Primitive grid output. A demonstration of basic graphical output produced using
a single call to the grid.circle() function. There are 100 circles of varying sizes,
each at a different (x, y) location.

the current location to be the new location. The current location is not used
by the other drawing functions∗. In most cases, grid.lines() will be more
convenient, but grid.move.to() and grid.line.to() are useful for drawing
lines across multiple viewports (an example is given in Section 5.5.1).

The grid.arrows() function is used to add arrows to lines. A single line
can be specified by x and y locations (through which a line will be drawn),
or the grob argument can be used to specify an object that describes one or
more lines (produced by linesGrob(), segmentsGrob(), or lineToGrob()).
In the latter case, grid.arrows() will add arrows at the ends of the line(s).
The following code demonstrates the different uses (see Figure 5.3). The first
grid.arrows() call specifies locations via the x and y arguments to produce
a single line, at the end of which an arrow is drawn. The second call specifies
a segments graphical object via the grob argument, which describes three
lines, and an arrow is added to the end of each of these lines.

> angle <- seq(0, 2*pi, length=50)

> grid.arrows(x=seq(0.1, 0.5, length=50),

y=0.5 + 0.3*sin(angle))

> grid.arrows(grob=segmentsGrob(6:8/10, 0.2, 7:9/10, 0.8))

∗There is one exception: the grid.arrows() function makes use of the current location
when an arrow is added to a line.to graphical object produced by lineToGrob().

The Grid Graphics Model 157

Figure 5.3
Drawing arrows using the grid.arrows() function. Arrows can be added to: a
single line through multiple points, as generated by grid.lines() (e.g., the sine
curve in the left half of the figure); multiple straight line segments, as generated by
grid.segments() (e.g., the three straight lines in the right half of the figure); the
result of a line-to operation, as generated by grid.line.to() (example not shown
here).

In simple usage, the grid.polygon() function draws a single polygon through
the specified x and y locations (automatically joining the last location to the
first to close the polygon). It is possible to produce multiple polygons from a
single call (which is much faster than making multiple calls) if the id argument
is specified. In this case, a polygon is drawn for each set of x and y locations
corresponding to a different value of id. The following code demonstrates
both usages (see Figure 5.4). The two grid.polygon() calls use the same x

and y locations, but the second call splits the locations into three separate
polygons using the id argument.

> angle <- seq(0, 2*pi, length=10)[-10]

> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

gp=gpar(fill="grey"))

> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:3, each=3),

gp=gpar(fill="grey"))

The grid.xaxis() and grid.yaxis() functions are not really graphical prim-
itives as they produce relatively complex output consisting of both lines and
text. They are included here because they complete the set of grid functions
that produce graphical output. The main argument to these functions is the

158 R Graphics

Figure 5.4
Drawing polygons using the grid.polygon() function. By default, a single polygon
is produced from multiple (x, y) locations (the nonagon on the left), but it is
possible to associate subsets of the locations with separate polygons using the id

argument (the three triangles on the right).

at argument. This is used to specify where tick-marks should be placed. If the
argument is not specified, sensible tick-marks are drawn based on the current
scales in effect (see Section 5.5 for information about viewport scales). The
values specified for the at argument are always relative to the current scales
(see the concept of the "native" coordinate system in Section 5.3). These
functions are much less flexible and general than the traditional axis() func-
tion. For example, they do not provide automatic support for generating
labels from time- or date-based at locations.

Drawing curves

There is no native curve-drawing function in grid, but an approximation to a
smooth curve consisting of many straight line segments is often sufficient. The
example on the left of Figure 5.3 demonstrates how a series of line segments
can appear very much like a smooth curve, if enough line segments are used.

5.2.1 Standard arguments

All primitive graphics functions accept a gp argument that allows control over
aspects such as the color and line type of the relevant output. For example, the
following code specifies that the boundary of the rectangle should be dashed

The Grid Graphics Model 159

and colored red.

> grid.rect(gp=gpar(col="red", lty="dashed"))

Section 5.4 provides more information about setting graphical parameters.

All primitive graphics functions also accept a vp argument that can be used
to specify a viewport in which to draw the relevant output. The following
code shows a simple example of the syntax (the result is a rectangle drawn in
the left half of the page); Section 5.5 describes viewports and the use of vp
arguments in full detail.

> grid.rect(vp=viewport(x=0, width=0.5, just="left"))

Finally, all primitive graphics functions also accept a name argument. This can
be used to identify the graphical object produced by the function. It is useful
for interactively editing graphical output and when working with graphical
objects (see Chapter 6). The following code demonstrates how to associate a
name with a rectangle.

> grid.rect(name="myrect")

5.3 Coordinate systems

When drawing in grid, there are always a large number of coordinate systems
available for specifying the locations and sizes of graphical output. For ex-
ample, it is possible to specify an x location as a proportion of the width of
the drawing region, or as a number of inches (or centimeters, or millimeters)
from the left-hand edge of the drawing region, or relative to the current x-
scale. The full set of coordinate systems available is shown in Table 5.2. The
meaning of some of these will only become clear with an understanding of
viewports (Section 5.5) and graphical objects (Chapter 6).∗

With so many coordinate systems available, it is necessary to specify which
coordinate system a location or size refers to. The unit() function is used

∗Absolute units, such as inches, may not be rendered with full accuracy on screen devices
(see the footnote on page 100).

160 R Graphics

Table 5.2
The full set of coordinate systems available in grid.

Coordinate
System Name Description

"native" Locations and sizes are relative to the x- and y-
scales for the current viewport.

"npc" Normalized Parent Coordinates. Treats the
bottom-left corner of the current viewport as the
location (0, 0) and the top-right corner as (1, 1).

"snpc" Square Normalized Parent Coordinates. Locations
and sizes are expressed as a proportion of the
smaller of the width and height of the current
viewport.

"inches" Locations and sizes are in terms of physical inches.
For locations, (0, 0) is at the bottom-left of the
viewport.

"cm" Same as "inches", except in centimeters.

"mm" Millimeters.

"points" Points. There are 72.27 points per inch.

"bigpts" Big points. There are 72 big points per inch.

"picas" Picas. There are 12 points per pica.

"dida" Dida. 1157 dida equals 1238 points.

"cicero" Cicero. There are 12 dida per cicero.

"scaledpts" Scaled points. There are 65536 scaled points per
point.

"char" Locations and sizes are specified in terms of mul-
tiples of the current nominal font size (dependent
on the current fontsize and cex).

"lines" Locations and sizes are specified in terms of mul-
tiples of the height of a line of text (dependent on
the current fontsize, cex, and lineheight).

"strwidth"

"strheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given string (depen-
dent on the string and the current fontsize, cex,
fontfamily, and fontface).

"grobwidth"

"grobheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given graphical object
(dependent on the type, location, and graphical
settings of the graphical object).

The Grid Graphics Model 161

to associate a numeric value with a coordinate system. This function creates
an object of class "unit" (hereafter referred to simply as a unit), which acts
very much like a normal numeric object — it is possible to perform basic
operations such as sub-setting units, and adding and subtracting units.

Each value in a unit can be associated with a different coordinate system and
each location and dimension of a graphical object is a separate unit, so for
example, a rectangle can have its x-location, y-location, width, and height all
specified relative to different coordinate systems.

The following pieces of code demonstrate some of the flexibility of grid units.
The first code examples show some different uses of the unit() function: a
single value is associated with a coordinate system, then several values are
associated with a coordinate system (notice the recycling of the coordinate
system value), then several values are associated with different coordinate
systems.

> unit(1, "mm")

[1] 1mm

> unit(1:4, "mm")

[1] 1mm 2mm 3mm 4mm

> unit(1:4, c("npc", "mm", "native", "lines"))

[1] 1npc 2mm 3native 4lines

The next code examples show how units can be manipulated in many of the
ways that normal numeric vectors can: firstly by sub-setting, then simple ad-
dition (again notice the recycling), then finally the use of a summary function
(max() in this case).

> unit(1:4, "mm")[2:3]

[1] 2mm 3mm

> unit(1, "npc") - unit(1:4, "mm")

[1] 1npc-1mm 1npc-2mm 1npc-3mm 1npc-4mm

162 R Graphics

> max(unit(1:4, c("npc", "mm", "native", "lines")))

[1] max(1npc, 2mm, 3native, 4lines)

Some operations on units are not as straightforward as with numeric vectors,
but require the use of functions written specifically for units. For exam-
ple, the length of units must be obtained using the unit.length() function
rather than length(), units must be concatenated (in the sense of the c()

function) using unit.c(), and there are special functions for repeating units
and for calculating parallel maxima and minima (unit.rep(), unit.pmin(),
and unit.pmax()).

The following code provides an example of using units to locate and size a
rectangle. The rectangle is at a location 40% of the way across the drawing
region and 1 inch from the bottom of the drawing region. It is as wide as the
text "very snug", and it is one line of text high (see Figure 5.5).

> grid.rect(x=unit(0.4, "npc"), y=unit(1, "inches"),

width=stringWidth("very snug"),

height=unit(1, "lines"),

just=c("left", "bottom"))

5.3.1 Conversion functions

As demonstrated in the previous section, a unit is not simply a numeric value.
Units only reduce to a simple numeric value (a physical location on a graphics
device) when drawing occurs. A consequence of this is that a unit can mean
very different things, depending on when it gets drawn (this should become
more apparent with an understanding of graphical parameters in Section 5.4
and viewports in Section 5.5).

In some cases, it can be useful to convert a unit to a simple numeric value.
For example, it is sometimes necessary to know the current scale limits for
numerical calculations. There are several functions that can assist with this
problem: convertUnit(), convertX(), convertY(), convertWidth(), and
convertHeight(). The following code demonstrates how to calculate the
current scale limits for the x-dimension. First of all, a scale is defined on the
x-axis with the range c(-10, 50) (see Section 5.5 for more about viewports).

> pushViewport(viewport(xscale=c(-10, 50)))

The next expression performs a query to obtain the current x-axis scale. The
expression unit(0:1, "npc") represents the left and right boundaries of the

The Grid Graphics Model 163

very snug
1

in
ch

0.4npc

Figure 5.5
A demonstration of grid units. A diagram demonstrating how graphical output
can be located and sized using grid units to associate numeric values with different
coordinate systems. The grey border represents the current viewport. A black
rectangle has been drawn with its bottom-left corner 40% of the way across the
current viewport and 1 inch above the bottom of the current viewport. The rectangle
is 1 line of text high and as wide as the text “very snug” (as it would be drawn in
the current font).

current drawing region and convertX() is used to convert these locations into
values in the "native" coordinate system, which is relative to the current
scales.

> convertX(unit(0:1, "npc"), "native", valueOnly=TRUE)

[1] -10 50

WARNING: These conversion functions must be used with care. The out-
put from these functions is only valid for the current device size. If, for
example, a window on screen is resized, or output is copied from one device to
another device with a different physical size, these calculations may no longer
be correct. In other words, only rely on these functions when it is known
that the size of the graphics device will not change. See Appendix B for more
information on this topic and for a way to be able to use these functions on
devices that may be resized. The discussion on the use of these functions
in drawDetails() methods and the function grid.record() is also relevant
(see “Calculations during drawing” in Section 7.3.10).

164 R Graphics

5.3.2 Complex units

There are two peculiarities of the "strwidth", "strheight", "grobwidth",
and "grobheight" coordinate systems that require further explanation. In
all of these cases, a value is interpreted as a multiple of the size of some
other object. In the former two cases, the other object is just a text string
(e.g., "a label"), but in the latter two cases, the other object can be any
graphical object (see Chapter 6). It is necessary to specify the other object
when generating a unit for these coordinate systems and this is achieved via
the data argument. The following code shows some simple examples.

> unit(1, "strwidth", "some text")

[1] 1strwidth

> unit(1, "grobwidth", textGrob("some text"))

[1] 1grobwidth

A more convenient interface for generating units, when all values are rela-
tive to a single coordinate system, is also available via the stringWidth(),
stringHeight(), grobWidth(), and grobHeight() functions. The following
code is equivalent to the previous example.

> stringWidth("some text")

[1] 1strwidth

> grobWidth(textGrob("some text"))

[1] 1grobwidth

In this particular example, the "strwidth" and "grobwidth" units will be
identical as they are based on identical pieces of text. The difference is that
a graphical object can contain not only the text to draw, but other informa-
tion that may affect the size of the text, such as the font family and size.
In the following code, the two units are no longer identical because the text

grob represents text drawn at font size of 18, whereas the simple string rep-
resents text at the default size of 10. The convertWidth() function is used
to demonstrate the difference.

The Grid Graphics Model 165

> convertWidth(stringWidth("some text"), "inches")

[1] 0.7175inches

> convertWidth(grobWidth(textGrob("some text",

gp=gpar(fontsize=18))),

"inches")

[1] 1.07625inches

For units that contain multiple values, there must be an object specified
for every "strwidth", "strheight", "grobwidth", and "grobheight" value.
Where there is a mixture of coordinate systems within a unit, a value of NULL
can be supplied for the coordinate systems that do not require data. The
following code demonstrates this.

> unit(rep(1, 3), "strwidth", list("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

> unit(rep(1, 3),

c("npc", "strwidth", "grobwidth"),

list(NULL, "two", textGrob("three")))

[1] 1npc 1strwidth 1grobwidth

Again, there is a simpler interface for straightforward situations.

> stringWidth(c("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

For "grobwidth" and "grobheight" units, it is also possible to specify the
name of a graphical object rather than the graphical object itself. This can
be useful for establishing a reference to a graphical object, so that when the
named graphical object is modified, the unit is updated for the change. The
following code demonstrates this idea. First of all, a text grob is created with
the name "tgrob".

> grid.text("some text", name="tgrob")

166 R Graphics

Next, a unit is created that is based on the width of the grob called "tgrob".

> theUnit <- grobWidth("tgrob")

The convertWidth() function can be used to show the current value of the
unit.

> convertWidth(theUnit, "inches")

[1] 0.7175inches

The following code modifies the grob named "tgrob" and convertWidth()

is used to show that the value of the unit reflects the new width of the text

grob.

> grid.edit("tgrob", gp=gpar(fontsize=18))

> convertWidth(theUnit, "inches")

[1] 1.07625inches

5.4 Controlling the appearance of output

All graphical primitives functions (and the viewport() function — see Section
5.5) — have a gp argument that can be used to provide a set of graphical
parameters to control the appearance of the graphical output. There is a
fixed set of graphical parameters (see Table 5.3), all of which can be specified
for all types of graphical output.

The value supplied for the gp argument must be an object of class "gpar",
and a gpar object can be produced using the gpar() function. For example,
the following code produces a gpar object containing graphical parameter
settings controlling color and line type.

> gpar(col="red", lty="dashed")

$col

[1] "red"

$lty

[1] "dashed"

The Grid Graphics Model 167

Table 5.3
The full set of graphical parameters available in grid. The lex parameter
has only been available since R version 2.1.0.

Parameter Description

col Color of lines, text, rectangle borders, ...

fill Color for filling rectangles, circles, polygons, ...

gamma Gamma correction for colors

alpha Alpha blending coefficient for transparency

lwd Line width

lex Line width expansion multiplier applied to lwd to
obtain final line width

lty Line type

lineend Line end style (round, butt, square)

linejoin Line join style (round, mitre, bevel)

linemitre Line mitre limit

cex Character expansion multiplier applied to
fontsize to obtain final font size

fontsize Size of text (in points)

fontface Font face (bold, italic, ...)

fontfamily Font family

lineheight Multiplier applied to final font size to obtain the
height of a line

168 R Graphics

The function get.gpar() can be used to obtain current graphical parameter
settings. The following code shows how to query the current line type and fill
color. When called with no arguments, the function returns a complete list of
current settings.

> get.gpar(c("lty", "fill"))

$lty

[1] "solid"

$fill

[1] "transparent"

A gpar object represents an explicit graphical context — settings for a small
number of specific graphical parameters. The example above produces a
graphical context that ensures that the color setting is "red" and the line-type
setting is "dashed". There is always an implicit graphical context consisting
of default settings for all graphical parameters. The implicit graphical con-
text is initialized automatically by grid for every graphics device and can be
modified by viewports (see Section 5.5.5) or by gTrees (see Section 6.2.1).∗

A graphical primitive will be drawn with graphical parameter settings taken
from the implicit graphical context, except where there are explicit graphical
parameter settings from the graphical primitive’s gp argument. For graphical
primitives, the explicit graphical context is only in effect for the duration of the
drawing of the graphical primitive. The following code example demonstrates
these rules.

The default initial implicit graphical context includes settings such as
lty="solid" and fill="transparent". The first (left-most) rectangle has an
explicit setting fill="black" so it only uses the implicit setting lty="solid".
The second (right-most) rectangle uses all of the implicit graphical parameter
settings. In particular, it is not at all affected by the explicit settings of the
first rectangle (see Figure 5.6).

> grid.rect(x=0.33, height=0.7, width=0.2,

gp=gpar(fill="black"))

> grid.rect(x=0.66, height=0.7, width=0.2)

∗The ideas of implicit and explicit graphical contexts are similar to the specification of
settings in Cascading Style Sheets[34] and the graphics state in PostScript[3].

The Grid Graphics Model 169

gr
id

.re
ct

()

gr
id

.re
ct

(g
p=

gp
ar

(fi
ll=

"b
la

ck
"))

Figure 5.6
Graphical parameters for graphical primitives. The grey rectangle represents the
current viewport. The right-hand rectangle has been drawn with no specific graphi-
cal parameters so it inherits the defaults for the current viewport (which in this case
are a black border and no fill color). The left-hand rectangle has been drawn with
a specific fill color of black (it is still drawn with the inherited black border). The
graphical parameter settings for one rectangle have no effect on the other rectangle.

5.4.1 Specifying graphical parameter settings

The values that can be specified for colors, line types, line widths, line ends,
line joins, and fonts are mostly the same as for the traditional graphics system.
Sections 3.2.1, 3.2.2, and 3.2.3 contain descriptions of these specifications
(for example, see the sub-section “Specifying colors”). In many cases, the
graphical parameter in grid also has the same name as the traditional graphics
state setting (e.g., col), though several of the grid parameters are slightly
more verbose (e.g. lineend and fontfamily). Some other differences in the
specification of graphical parameter values in the grid graphics system are
described below.

In grid, the fontface value can be a string instead of an integer. Table 5.4
shows the possible string values.

In grid, the cex value is cumulative. This means that it is multiplied by the
previous cex value to obtain a current cex value. The following code shows
a simple example. A viewport is pushed with cex=0.5. This means that text
will be half size. Next, some text is drawn, also with cex=0.5. This text is
drawn quarter size because cex was already 0.5 from the viewport (0.5*0.5
= 0.25).

170 R Graphics

Table 5.4
Possible font face specifications in grid.

Integer String Description

1 "plain" Roman or upright face
2 "bold" Bold face
3 "italic" or "oblique" Slanted face
4 "bold.italic" Bold and slanted face

For the HersheySerif font family
5 "cyrillic" Cyrillic font
6 "cyrillic.oblique" Slanted Cyrillic font
7 "EUC" Japanese characters

> pushViewport(viewport(gp=gpar(cex=0.5)))

> grid.text("How small do you think?", gp=gpar(cex=0.5))

The alpha graphical parameter setting is unique to grid. It is a value between
1 (fully opaque) and 0 (fully transparent). The alpha value is combined
with the alpha channel of colors by multiplying the two and this setting is
cumulative like the cex setting. The following code shows a simple example.
A viewport is pushed with alpha=0.5, then a rectangle is drawn using a
semitransparent red fill color (alpha channel set to 0.5). The final alpha
channel for the fill color is 0.25 (0.5*0.5 = 0.25).

> pushViewport(viewport(gp=gpar(alpha=0.5)))

> grid.rect(width=0.5, height=0.5,

gp=gpar(fill=rgb(1, 0, 0, 0.5)))

Grid does not support fill patterns (see page 58).

5.4.2 Vectorized graphical parameter settings

All graphical parameter settings may be vector values. Many graphical primi-
tive functions produce multiple primitives as output and graphical parameter
settings will be recycled over those primitives. The following code produces
100 circles, cycling through 50 different shades of grey for the circles (see
Figure 5.7).

The Grid Graphics Model 171

Figure 5.7
Recycling graphical parameters. The 100 circles are drawn by a single function call
with 50 different greys specified for the border color (from a very light grey to a
very dark grey and back to a very light grey). The 50 colors are recycled over the
100 circles so circle i gets the same color as circle i + 50.

> levels <- round(seq(90, 10, length=25))

> greys <- paste("grey", c(levels, rev(levels)), sep="")

> grid.circle(x=seq(0.1, 0.9, length=100),

y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),

r=abs(0.1*cos(seq(0, 2*pi, length=100))),

gp=gpar(col=greys))

The grid.polygon() function is a slightly complex case. There are two ways
in which this function will produce multiple polygons: when the id argument
is specified and when there are NA values in the x or y locations (see Sec-
tion 5.6). For grid.polygon(), a different graphical parameter will only be
applied to each polygon identified by a different id. When a single polygon
(as identified by a single id value) is split into multiple sub-polygons by NA

values, all sub-polygons receive the same graphical parameter settings. The
following code demonstrates these rules (see Figure 5.8). The first call to
grid.polygon() draws two polygons as specified by the id argument. The
fill graphical parameter setting contains two colors so the first polygon gets
the first color (grey) and the second polygon gets the second color (white). In
the second call, all that has changed is that an NA value has been introduced.
This means that the first polygon as specified by the id argument is split into
two separate polygons, but both of these polygons use the same fill setting
because they both correspond to an id of 1. Both of these polygons get the
first color (grey).

172 R Graphics

NA

Figure 5.8
Recycling graphical parameters for polygons. On the left, a single function call
produces two polygons with different fill colors by specifying an id argument and
two fill colors. On the right, there are three polygons because an NA value has been
introduced in the (x, y) locations for the polygon, but there are still only two colors
specified. The colors are allocated to polygons using the id argument and ignoring
any NA values.

> angle <- seq(0, 2*pi, length=11)[-11]

> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),

gp=gpar(fill=c("grey", "white")))

> angle[4] <- NA

> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),

gp=gpar(fill=c("grey", "white")))

All graphical primitives have a gp component, so it is possible to specify any
graphical parameter setting for any graphical primitive. This may seem inef-
ficient, and indeed in some cases the values are completely ignored (e.g., text
drawing ignores the lty setting), but in many cases the values are potentially
useful. For example, even when there is no text being drawn, the settings for
fontsize, cex, and lineheight are always used to calculate the meaning of
"lines" and "char" coordinates.

The Grid Graphics Model 173

5.5 Viewports

A viewport is a rectangular region that provides a context for drawing.

A viewport provides a drawing context consisting of both a geometric context
and a graphical context. A geometric context consists of a set of coordinate sys-
tems for locating and sizing output and all of the coordinate systems described
in Section 5.3 are available within every viewport.∗ A graphical context con-
sists of explicit graphical parameter settings for controlling the appearance of
output. This is specified as a gpar object via the gp argument.

By default, grid creates a viewport that corresponds to the entire graphics
device and, until another viewport is created, drawing occurs within the full
extent of the device and using the default graphical parameter settings.

A new viewport is created using the viewport() function. A viewport has
a location (given by x and y), a size (given by width and height), and it is
justified relative to its location (according to the value of the just argument).
The location and size of a viewport are specified in units, so a viewport can
be positioned and sized within another viewport in a very flexible manner.
The following code creates a viewport that is left-justified at an x location
0.4 of the way across the drawing region, and bottom-justified 1 centimeter
from the bottom of the drawing region. It is as wide as the text "very very

snug indeed", and it is six lines of text high. Figure 5.9 shows a diagram
representing this viewport.

> viewport(x=unit(0.4, "npc"), y=unit(1, "cm"),

width=stringWidth("very very snug indeed"),

height=unit(6, "lines"),

just=c("left", "bottom"))

viewport[GRID.VP.33]

An important thing to notice in the above example is that the result of the
viewport() function is an object of class viewport. No region has actually
been created on a graphics device. In order to create regions on a graphics
device, a viewport object must be pushed onto the device, as described in the
next section.

∗The idea of being able to define a geometric context is similar to the concept of the
current transformation matrix (CTM) in PostScript[3] and the modeling transformation in
OpenGL[55].

174 R Graphics

0 1
0

1 1strwidth

6lines

0.4npc

1c
m

very very snug indeed

Figure 5.9
A diagram of a simple viewport. A viewport is a rectangular region specified by
an (x, y) location, a (width, height) size, and a justification (and possibly a
rotation). This diagram shows a viewport that is left-bottom justified 1 centimeter
off the bottom of the page and 0.4 of the way across the page. It is 6 lines of text
high and as wide as the text “very very snug indeed”.

5.5.1 Pushing, popping, and navigating between viewports

The pushViewport() function takes a viewport object and uses it to create
a region on the graphics device. This region becomes the drawing context for
all subsequent graphical output, until the region is removed or another region
is defined.

The following code demonstrates this idea (see Figure 5.10). To start with,
the entire device, and the default graphical parameter settings, provide the
drawing context. Within this context, the grid.text() call draws some text
at the top-left corner of the device. A viewport is then pushed, which creates
a region 80% as wide as the device, half the height of the device, and rotated
at an angle of 10 degrees∗. The viewport is given a name, "vp1", which will
help us to navigate back to this viewport from another viewport later.

Within the new drawing context defined by the viewport that has been pushed,
exactly the same grid.text() call produces some text at the top-left corner
of the viewport. A rectangle is also drawn to make the extent of the new
viewport clear.

∗It is not often very useful to rotate a viewport, but it helps in this case to dramatise
the difference between the drawing regions.

The Grid Graphics Model 175

top−left corner

top−left corner

Figure 5.10
Pushing a viewport. Drawing occurs relative to the entire device until a viewport is
pushed. For example, some text has been drawn in the top-left corner of the device.
Once a viewport has been pushed, output is drawn relative to that viewport. The
black rectangle represents a viewport that has been pushed and text has been drawn
in the top-left corner of that viewport.

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

> pushViewport(viewport(width=0.8, height=0.5, angle=10,

name="vp1"))

> grid.rect()

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

The pushing of viewports is entirely general. A viewport is pushed relative
to the current drawing context. The following code slightly extends the pre-
vious example by pushing a further viewport, exactly like the first, and again
drawing text at the top-left corner (see Figure 5.11). The location, size, and
rotation of this second viewport are all relative to the context provided by the
first viewport. Viewports can be nested like this to any depth.

176 R Graphics

top−left corner

top−left corner

top−left corner

Figure 5.11
Pushing several viewports. Viewports are pushed relative to the current viewport.
Here, a second viewport has been pushed relative to the viewport that was pushed
in Figure 5.10. Again, text has been drawn in the top-left corner.

> pushViewport(viewport(width=0.8, height=0.5, angle=10,

name="vp2"))

> grid.rect()

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

In grid, drawing is always within the context of the current viewport. One
way to change the current viewport is to push a viewport (as in the previous
examples), but there are other ways too. For a start, it is possible to pop a
viewport using the popViewport() function. This removes the current view-
port and the drawing context reverts to whatever it was before the current
viewport was pushed∗. The following code demonstrates popping viewports
(see Figure 5.12). The call to popViewport() removes the last viewport cre-
ated on the device. Text is drawn at the bottom-right of the resulting drawing
region (which has reverted back to being the first viewport that was pushed).

> popViewport()

> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),

y=unit(1, "mm"), just=c("right", "bottom"))

∗It is illegal to pop the top-most viewport that represents the entire device region and
the default graphical parameter settings. Trying to do so will result in an error.

The Grid Graphics Model 177

top−left corner

top−left corner

top−left corner

bottom−right corner

Figure 5.12
Popping a viewport. When a viewport is popped, the drawing context reverts to
the parent viewport. In this figure, the second viewport (pushed in Figure 5.11) has
been popped to go back to the first viewport (pushed in Figure 5.10). This time
text has been drawn in the bottom-right corner.

The popViewport() function has an integer argument n that specifies how
many viewports to pop. The default is 1, but several viewports can be popped
at once by specifying a larger value. The special value of 0 means that all
viewports should be popped. In other words, the drawing context should
revert to the entire device and the default graphical parameter settings.

Another way to change the current viewport is by using the upViewport()

and downViewport() functions. The upViewport() function is similar to
popViewport() in that the drawing context reverts to whatever it was prior to
the current viewport being pushed. The difference is that upViewport() does
not remove the current viewport from the device. This difference is significant
because it means that that a viewport can be revisited without having to push
it again. Revisiting a viewport is faster than pushing a viewport and it allows
the creation of viewport regions to be separated from the production of output
(see “viewport paths” in Section 5.5.3 and Chapter 7).

A viewport can be revisited using the downViewport() function. This function
has an argument name that can be used to specify the name of an existing
viewport. The result of downViewport() is to make the named viewport
the current drawing context. The following code demonstrates the use of
upViewport() and downViewport() (see Figure 5.13).

A call to upViewport() is made, which reverts the drawing context to the
entire device (recall that prior to this navigation the current viewport was
the first viewport that was pushed) and text is drawn in the bottom-right

178 R Graphics

top−left corner

top−left corner

top−left corner

bottom−right corner

bottom−right corner

Figure 5.13
Navigating between viewports. Rather than popping a viewport, it is possible to
navigate up from a viewport (and leave the viewport on the device). Here navigation
has occurred from the first viewport to revert the drawing context to the entire
device and text has been drawn in the bottom-right corner. Next, there has been
a navigation down to the first viewport again and a second border has been drawn
around the outside of the viewport.

corner. The downViewport() function is then used to navigate back down to
the viewport that was first pushed and a second border is drawn around this
viewport. The viewport to navigate down to is specified by its name, "vp1".

> upViewport()

> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),

y=unit(1, "mm"), just=c("right", "bottom"))

> downViewport("vp1")

> grid.rect(width=unit(1, "npc") + unit(2, "mm"),

height=unit(1, "npc") + unit(2, "mm"))

There is also a seekViewport() function that can be used to travel across
the viewport tree. This can be convenient for interactive use, but the result is
less predictable, so it is less suitable for use in writing grid functions for oth-
ers to use. The call seekViewport("avp") is equivalent to upViewport(0);

downViewport("avp").

The Grid Graphics Model 179

Drawing between viewports

Sometimes it is useful to be able to locate graphical output relative to more
than one viewport. The only way to do this in grid is via the grid.move.to()
and grid.line.to() functions. It is possible to call grid.move.to() within
one viewport, change viewports, and call grid.line.to(). An example is
provided in Section 5.8.2.

5.5.2 Clipping to viewports

Drawing can be restricted to only the interior of the current viewport (clipped
to the viewport) by specifying the clip argument to the viewport() function.
This argument has three values: "on" indicates that output should be clipped
to the current viewport; "off" indicates that output should not be clipped
at all; "inherit" means that the clipping region of the previous viewport
should be used (this may not have been set by the previous viewport if that
viewport’s clip argument was also "inherit"). The following code provides
a simple example (see Figure 5.14). A viewport is pushed with clipping on
and a circle with a very thick black border is drawn relative to the viewport.
A rectangle is also drawn to show the extent of the viewport. The circle
partially extends beyond the limits of the viewport, so only those parts of the
circle that lie within the viewport are drawn.

> pushViewport(viewport(w=.5, h=.5, clip="on"))

> grid.rect()

> grid.circle(r=.7, gp=gpar(lwd=20))

Next, another viewport is pushed and this viewport just inherits the clipping
region from the first viewport. Another circle is drawn, this time with a grey
and slightly thinner border and again the circle is clipped to the viewport.

> pushViewport(viewport(clip="inherit"))

> grid.circle(r=.7, gp=gpar(lwd=10, col="grey"))

Finally, a third viewport is pushed with clipping turned off. Now, when a
third circle is drawn (with a thin, black border) all of the circle is drawn, even
though parts of the circle extend beyond the viewport.

> pushViewport(viewport(clip="off"))

> grid.circle(r=.7)

> popViewport(3)

180 R Graphics

Figure 5.14
Clipping output in viewports. When a viewport is pushed, output can be clipped to
that viewport, or the clipping region can be left in its current state, or clipping can
be turned off entirely. In this figure, a viewport is pushed (the black rectangle) with
clipping on. A circle is drawn with a very thick black border and it gets clipped.
Next, another viewport is pushed (in the same location) with clipping left as it was.
A second circle is drawn with a slightly thinner grey border and it is also clipped.
Finally, a third viewport is pushed, which turns clipping off. A circle is drawn with
a thin black border and this circle is not clipped.

The Grid Graphics Model 181

5.5.3 Viewport lists, stacks, and trees

It can be convenient to work with several viewports at once and there are
several facilities for doing this in grid. The pushViewport() function will
accept multiple arguments and will push the specified viewports one after
another. For example, the fourth expression below is a shorter equivalent
version of the first three expressions.

> pushViewport(vp1)

> pushViewport(vp2)

> pushViewport(vp3)

> pushViewport(vp1, vp2, vp3)

The pushViewport() function will also accept objects that contain several
viewports: viewport lists, viewport stacks, and viewport trees. The func-
tion vpList() creates a list of viewports and these are pushed “in parallel.”
The first viewport in the list is pushed, then grid navigates back up before
the next viewport in the list is pushed. The vpStack() function creates a
stack of viewports and these are pushed “in series.” Pushing a stack of view-
ports is exactly the same as specifying the viewports as multiple arguments
to pushViewport(). The vpTree() function creates a tree of viewports that
consists of a parent viewport and any number of child viewports. The parent
viewport is pushed first, then the child viewports are pushed in parallel within
the parent.

The current set of viewports that have been pushed on the current device
constitute a viewport tree and the current.vpTree() function prints out a
representation of the current viewport tree. The following code demonstrates
the output from current.vpTree() and the difference between lists, stacks,
and trees of viewports. First of all, some (trivial) viewports are created to
work with.

> vp1 <- viewport(name="A")

> vp2 <- viewport(name="B")

> vp3 <- viewport(name="C")

The next piece of code shows these three viewports pushed as a list. The
output of current.vpTree() shows the root viewport (which represents the
entire device) and then all three viewports as children of the root viewport.

> pushViewport(vpList(vp1, vp2, vp3))

> current.vpTree()

182 R Graphics

viewport[ROOT]->(viewport[A], viewport[B], viewport[C])

This next code pushes the three viewports as a stack. The viewport vp1 is
now the only child of the root viewport with vp2 a child of vp1, and vp3 a
child of vp2.

> grid.newpage()

> pushViewport(vpStack(vp1, vp2, vp3))

> current.vpTree()

viewport[ROOT]->(viewport[A]->(viewport[B]->(viewport[C])))

Finally, the three viewports are pushed as a tree, with vp1 as the parent and
vp2 and vp3 as its children.

> grid.newpage()

> pushViewport(vpTree(vp1, vpList(vp2, vp3)))

> current.vpTree()

viewport[ROOT]->(viewport[A]->(viewport[B], viewport[C]))

As with single viewports, viewport lists, stacks, and trees can be provided as
the vp argument for graphical functions (see Section 5.5.4).

Viewport paths

The downViewport() function, by default, searches down the current viewport
tree as far as is necessary to find a given viewport name. This is convenient
for interactive use, but can be ambiguous if there is more than one viewport
with the same name in the viewport tree.

Grid provides the concept of a viewport path to resolve such ambiguity. A
viewport path is an ordered list of viewport names, which specify a series
of parent-child relations. A viewport path is created using the vpPath()

function. For example, the following code produces a viewport path that
specifies a viewport called "C" with a parent called "B", which in turn has a
parent called "A".

> vpPath("A", "B", "C")

A::B::C

The Grid Graphics Model 183

For convenience in interactive use, a viewport path may be specified directly
as a string. For example, the previous viewport path could be specified simply
as "A::B::C". The vpPath() function should be used when writing graphics
functions for others to use.

The name argument to the downViewport() function will accept a viewport
path, in which case it searches for a viewport that matches the entire path.
The strict argument to downViewport() ensures that a viewport will only
be found if the full viewport path is found, starting from the current location
in the viewport tree.

5.5.4 Viewports as arguments to graphical primitives

As mentioned in Section 5.2.1, a viewport may be specified as an argument to
functions that produce graphical output (via an argument called vp). When a
viewport is specified in this way, the viewport gets pushed before the graphical
output is produced and popped afterwards. To make this completely clear,
the following two code segments are identical. First of all, a simple viewport
is defined.

> vp1 <- viewport(width=0.5, height=0.5, name="vp1")

The next code explicitly pushes the viewport, draws some text, then pops the
viewport.

> pushViewport(vp1)

> grid.text("Text drawn in a viewport")

> popViewport()

This next piece of code does the same thing in a single call.

> grid.text("Text drawn in a viewport", vp=vp1)

It is also possible to specify the name of a viewport (or a viewport path) for a
vp argument. In this case, the name (or path) is used to navigate down to the
viewport (via a call to downViewport()) and then back up again afterwards
(via a call to upViewport()). This promotes the practice of pushing viewports
once, then specifying where to draw different output by simply naming the
appropriate viewport. The following code does the same thing as the previous
example, but leaves the viewport intact (so that it can be used for further
drawing).

184 R Graphics

> pushViewport(vp1)

> upViewport()

> grid.text("Text drawn in a viewport", vp="vp1")

This feature is also very useful when annotating a plot produced by a high-
level graphics function. As long as the graphics function names the viewports
that it creates and does not pop them, it is possible to revisit the viewports
to add further output. Examples of this are given in Section 5.8 and this
approach to writing high-level grid functions is discussed further in Chapter
7.

5.5.5 Graphical parameter settings in viewports

A viewport can have graphical parameter settings associated with it via the gp
argument to viewport(). When a viewport has graphical parameter settings,
those settings affect all graphical objects drawn within the viewport, and all
other viewports pushed within the viewport, unless the graphical objects or
the other viewports specify their own graphical parameter setting. In other
words, the graphical parameter settings for a viewport modify the implicit
graphical context (see page 168).

The following code demonstrates this rule. A viewport is pushed that has
a fill="grey" setting. A rectangle with no graphical parameter settings is
drawn within that viewport and this rectangle “inherits” the fill="grey"

setting. Another rectangle is drawn with its own fill setting so it does not
inherit the viewport setting (see Figure 5.15).

> pushViewport(viewport(gp=gpar(fill="grey")))

> grid.rect(x=0.33, height=0.7, width=0.2)

> grid.rect(x=0.66, height=0.7, width=0.2,

gp=gpar(fill="black"))

> popViewport()

The graphical parameter settings in a viewport only affect other viewports and
graphical output within that viewport. The settings do not affect the view-
port itself. For example, parameters controlling the size of text (fontsize,
cex, etc.) do not affect the meaning of "lines" units when determining the
location and size of the viewport (but they will affect the location and size
of other viewports or graphical output within the viewport). A layout (see
Section 5.5.6) counts as being within the viewport (i.e., it is affected by the
graphical parameter settings of the viewport).

If there are multiple values for a graphical parameter setting, only the first is
used when determining the location and size of a viewport.

The Grid Graphics Model 185

viewport(gp=gpar(fill="grey"))

gr
id

.re
ct

()

gr
id

.re
ct

(g
p=

gp
ar

(fi
ll=

"b
la

ck
"))

Figure 5.15
The inheritance of viewport graphical parameters. A diagram demonstrating how
viewport graphical parameter settings are inherited by graphical output within the
viewport. The viewport sets the default fill color to grey. The left-hand rectangle
specifies no fill color itself so it is filled with grey. The right-hand rectangle specifies
a black fill color that overrides the viewport setting.

5.5.6 Layouts

A viewport can have a layout specified via the layout argument. A layout
in grid is similar to the same concept in traditional graphics (see Section
3.3.2). It divides the viewport region into several columns and rows, where
each column can have a different width and each row can have a different
height. For several reasons, however, layouts are much more flexible in grid:
there are many more coordinate systems for specifying the widths of columns
and the heights of rows (see Section 5.3); viewports can occupy overlapping
areas within the layout; and each viewport within the viewport tree can have
a layout (layouts can be nested). There is also a just argument to justify the
layout within a viewport when the layout does not occupy the entire viewport
region.

Layouts provide a convenient way to position viewports using the standard
set of coordinate systems, and provide an extra coordinate system, "null",
which is specific to layouts.

The basic idea is that a viewport can be created with a layout and then
subsequent viewports can be positioned relative to that layout. In simple
cases, this can be just a convenient way to position viewports in a regular grid,
but in more complex cases, layouts are the only way to apportion regions.
There are very many ways that layouts can be used in grid; the following

186 R Graphics

sections attempt to provide a glimpse of the possibilities by demonstrating a
series of example uses.

A grid layout is created using the function grid.layout() (not the traditional
function layout()).

A simple layout

The following code produces a simple layout with three columns and three
rows, where the central cell (row two, column two) is forced to always be
square (using the respect argument).

> vplay <- grid.layout(3, 3,

respect=rbind(c(0, 0, 0),

c(0, 1, 0),

c(0, 0, 0)))

The next piece of code uses this layout in a viewport. Any subsequent view-
ports may make use of the layout, or they can ignore it completely.

> pushViewport(viewport(layout=vplay))

In the next piece of code, two further viewports are pushed within the viewport
with the layout. The layout.pos.col and layout.pos.row arguments are
used to specify which cells within the layout each viewport should occupy. The
first viewport occupies all of column two and the second viewport occupies all
of row 2. This demonstrates that viewports can occupy overlapping regions
within a layout. A rectangle has been drawn within each viewport to show
the region that the viewport occupies (see Figure 5.16).

> pushViewport(viewport(layout.pos.col=2, name="col2"))

> upViewport()

> pushViewport(viewport(layout.pos.row=2, name="row2"))

A layout with units

This section describes a layout that makes use of grid units. In the context of
specifying the widths of columns and the heights of rows for a layout, there is
an additional unit available, the "null" unit. All other units ("cm", "npc",
etc.) are allocated first within a layout, then the "null" units are used to
divide the remaining space proportionally (see Section 3.3.2). The following

The Grid Graphics Model 187

col2

row2

Figure 5.16
Layouts and viewports. Two viewports occupying overlapping regions within a
layout. Each viewport is represented by a rectangle with the viewport name at the
top-left corner. The layout has three columns and three rows with one viewport
occupying all of row 2 and the other viewport occupying all of column 2.

code creates a layout with three columns and three rows. The left column is
one inch wide and the top row is three lines of text high. The remainder of
the current region is divided into two rows of equal height and two columns
with the right column twice as wide as the left column (see Figure 5.17).

> unitlay <-

grid.layout(3, 3,

widths=unit(c(1, 1, 2),

c("inches", "null", "null")),

heights=unit(c(3, 1, 1),

c("lines", "null", "null")))

With the use of "strwidth" and "grobwidth" units it is possible to produce
columns that are just wide enough to fit graphical output that will be drawn
in the column (and similarly for row heights — see Section 6.4).

A nested layout

This section demonstrates the nesting of layouts. The following code defines
a function that includes a trivial use of a layout consisting of two equal-width
columns to produce grid output.

188 R Graphics

(1, 1)3lines

1inches

(1, 2)

1null

(1, 3) 3lines

2null

(2, 1)1null (2, 2) (2, 3) 1null

(3, 1)1null

1inches

(3, 2)

1null

(3, 3)

2null

1null

Figure 5.17
Layouts and units. A grid layout using a variety of coordinate systems to specify
the widths of columns and the heights of rows.

The Grid Graphics Model 189

> gridfun <- function() {

pushViewport(viewport(layout=grid.layout(1, 2)))

pushViewport(viewport(layout.pos.col=1))

grid.rect()

grid.text("black")

grid.text("&", x=1)

popViewport()

pushViewport(viewport(layout.pos.col=2, clip="on"))

grid.rect(gp=gpar(fill="black"))

grid.text("white", gp=gpar(col="white"))

grid.text("&", x=0, gp=gpar(col="white"))

popViewport(2)

}

The next piece of code creates a viewport with a layout and places the output
from the above function within a particular cell of that layout (see Figure
5.18).

> pushViewport(

viewport(

layout=grid.layout(5, 5,

widths=unit(c(5, 1, 5, 2, 5),

c("mm", "null", "mm",

"null", "mm")),

heights=unit(c(5, 1, 5, 2, 5),

c("mm", "null", "mm",

"null", "mm")))))

> pushViewport(viewport(layout.pos.col=2, layout.pos.row=2))

> gridfun()

> popViewport()

> pushViewport(viewport(layout.pos.col=4, layout.pos.row=4))

> gridfun()

> popViewport(2)

Although the result of this particular example could be achieved using a single
layout, what this shows is that it is possible to take grid code that makes use
of a layout (and may have been written by someone else) and embed it within
a layout of your own. A more sophisticated example of this involving lattice
plots is given in Section 5.8.2.

190 R Graphics

black & white&

black & white&

Figure 5.18
Nested layouts. An example of a layout nested within a layout. The black and white
squares are drawn within a layout that has two equal-width columns. One instance
of the black and white squares has been embedded within cell (2, 2) of a layout
consisting of five columns and five rows of varying widths and heights (as indicated
by the dashed lines). Another instance has been embedded within cell (4, 4).

5.6 Missing values and non-finite values

Non-finite values are not permitted in the location, size, or scales of a viewport.
Viewport scales are checked when a viewport is created, but it is impossible
to be certain that locations and sizes are not non-finite when the viewport
is created, so this is only checked when the viewport is pushed. Non-finite
values result in error messages.

The locations and sizes of graphical objects can be specified as missing values
(NA, "NA") or non-finite values (NaN, Inf, -Inf). For most graphical primitives,
non-finite values for locations or sizes result in the corresponding primitive
not being drawn. For the grid.line.to() function, a line segment is only
drawn if the previous location and the new location are both not non-finite.
For grid.polygon(), a non-finite value breaks the polygon into two separate
polygons. This break happens within the current polygon as specified by the
id argument. All polygons with the same id receive the same gp settings. For
grid.arrows(), an arrow head is only drawn if the first or last line segment
is drawn.

Figure 5.19 shows the behavior of these primitives where x- and y-locations

The Grid Graphics Model 191

are seven equally-spaced locations around the perimeter of a circle. In the
top-left figure, all locations are not non-finite. In each of the other figures,
two locations have been made non-finite (indicated in each case by grey text).

5.7 Interactive graphics

The strength of the grid system is in the production of static graphics. There is
only very basic support for user interaction, consisting of the grid.locator()
function. This function returns the location of a single mouse click relative to
the current viewport. The result is a list containing an x and a y unit. The
unit argument can be used to specify the coordinate system to be used for
the result.

From R version 2.1.0, the getGraphicsEvent() function provides additional
capability (on Windows) to respond to mouse movements, mouse ups, and key
strokes. However, with this function, mouse activity is only reported relative
to the native coordinate system of the device.

5.8 Customizing lattice plots

This section provides some demonstrations of the basic grid functions within
the context of a complete lattice plot.

The lattice package described in Chapter 4 produces complete and very so-
phisticated plots using grid. It makes use of a sometimes large number of
viewports to arrange the graphical output. A page of lattice output contains
a top-level viewport with a quite complex layout that provides space for all of
the panels and strips and margins used in the plot. Viewports are created for
each panel and for each strip (among other things), and the plot is constructed
from a large number of rectangles, lines, text, and data points.

In many cases, it is possible to use lattice without having to know anything
about grid. However, a knowledge of grid provides a number of more ad-
vanced ways to work with lattice output (see Section 6.7). A simple ex-
ample is provided by the panel.width and panel.height arguments to the
print.trellis() method. These provide an alternative to the aspect argu-
ment for controlling the size of panels within a lattice plot using grid units.

192 R Graphics

NA1

NA5

NA2

NA6

NA3

NA7

Figure 5.19
Non-finite values for line-tos, polygons, and arrows. The effect of non-finite values
for grid.line.to(), grid.polygon(), and grid.arrows. In each panel, a single
grey polygon, a single arrow (at the end of a thick black line), and a series of thin
white line-tos are drawn through the same set of seven points. In some cases, certain
locations have been set to NA (indicated by grey text), which causes the polygon to
become cropped, creates gaps in the lines, and can cause the arrow head to disappear.
In the bottom-left panel, the seventh location is not NA, but it produces no output.

The Grid Graphics Model 193

long

la
t

165 170 175 180 185

−35

−30

−25

−20

−15

−10
depthgroup

165 170 175 180 185

depthgroup

165 170 175 180 185

depthgroup

Figure 5.20
Controlling the size of lattice panels using grid units. Each panel is exactly 1.21
inches wide and 1.5 inches high.

The following code produces a multipanel lattice plot of the quakes data set
(see page 126) where the size of each panel is fixed at 1.21 inches wide and
1.5 inches high (see Figure 5.20).∗

> temp <- xyplot(lat ~ long | depthgroup,

data=quakes, pch=".",

layout=c(3, 1))

> print(temp,

panel.width=list(1.21, "inches"),

panel.height=list(1.5, "inches"))

5.8.1 Adding grid output to lattice output

The functions that lattice provides for adding output to panels (ltext(),
lpoints(), etc) are designed to make it easier to port code between R and
S-PLUS. However, they are restricted because they only allow output to be
located and sized relative to the "native" coordinate system. Grid graphical
primitives cannot be ported to S-PLUS, but they provide much more control

∗These specific sizes were chosen for this particular data set so that one unit of longitude
corresponds to the same physical size on the page as one unit of latitude.

194 R Graphics

over the location and size of additional panel output. Furthermore, it is possi-
ble to create and push extra viewports within a panel if desired (although it is
very important that they are popped again or lattice will get very confused).

In a similar vein, the facilities provided by the upViewport() and
downViewport() functions in grid allow for more flexible navigation of a lat-
tice plot compared to the trellis.focus() function.

The following code provides an example of using low-level grid functions to add
output within a lattice panel function. This produces a variation on Figure
4.4 with a dot and a text label added to indicate the location of Auckland,
New Zealand relative to the earthquakes (see Figure 5.21).∗

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".",

panel=function(...) {

grid.points(174.75, -36.87, pch=16,

size=unit(2, "mm"),

default.units="native")

grid.text("Auckland",

unit(174.75, "native") - unit(2, "mm"),

unit(-36.87, "native"),

just="right")

panel.xyplot(...)

})

5.8.2 Adding lattice output to grid output

As well as the advantages of using grid functions to add further output to
lattice plots, an understanding that lattice output is really grid output makes
it possible to embed lattice output within grid output. The following code
provides a simple example (see Figure 5.22).

First of all, two viewports are defined. The viewport tvp occupies the right-
most 1 inch of the device and will be used to draw a label. The viewport lvp
occupies the rest of the device and will be used to draw a lattice plot.

> lvp <- viewport(x=0,

width=unit(1, "npc") - unit(1, "inches"),

just="left", name="lvp")

> tvp <- viewport(x=1, width=unit(1, "inches"),

just="right", name="tvp")

∗The data are from the quakes data set (see page 126).

The Grid Graphics Model 195

long

la
t

165 170 175 180 185

−35
−30
−25
−20
−15
−10

Auckland

depthgroup

Auckland

depthgroup

−35
−30
−25
−20
−15
−10

Auckland

depthgroup

Figure 5.21
Adding grid output to a lattice plot (the lattice plot in Figure 4.4). The grid
functions grid.text() and grid.points() are used within a lattice panel function
to highlight the location of Auckland, New Zealand within each panel.

196 R Graphics

long

la
t

165 170 175 180 185

−35
−30
−25
−20
−15
−10

depthgroup

−35
−30
−25
−20
−15
−10

depthgroup

−35
−30
−25
−20
−15
−10

depthgroup

lvp

plot1.panel.1.3.off.vp

Largest
Earthquake

tvp

Figure 5.22
Embedding a lattice plot within grid output. The lattice plot is drawn within
the viewport "lvp" and the text label is drawn within the viewport "tvp" (the
viewports are indicated by grey rectangles with their names at the top-left corner).
An arrow is drawn from viewport "tvp" where the text was drawn into viewport
"panel.1.3.off.vp" — the top panel of the lattice plot.

The Grid Graphics Model 197

The next piece of code produces (but does not draw) an object representing
a multipanel scatterplot using the quakes data (see page 126).

> lplot <- xyplot(lat ~ long | depthgroup,

data=quakes, pch=".",

layout=c(1, 3), aspect=1,

index.cond=list(3:1))

The following pieces of code do all the drawing. First of all, the lvp viewport is
pushed and the lattice plot is drawn inside that. The upViewport() function
is used to navigate back up so that all of the lattice viewports are left intact.

> pushViewport(lvp)

> print(lplot, newpage=FALSE, prefix="plot1")

> upViewport()

Next, the tvp viewport is pushed and a text label is drawn in that.

> pushViewport(tvp)

> grid.text("Largest\nEarthquake", x=unit(2, "mm"),

y=unit(1, "npc") - unit(0.5, "inches"),

just="left")

The last step is to draw an arrow from the label to a data point within the
lattice plot. While still in the tvp viewport, the grid.move.to() function is
used to set the current location to a point just to the left of the text label.
Next, seekViewport() is used to navigate to the top panel within the lattice
plot.∗ Finally, grid.arrows() and lineToGrob() are used to draw a line
from the text to an (x ,y) location within the top panel. A circle is also
drawn to help identify the location being labelled.

∗The name of the viewport representing the top panel in the lattice plot can be ob-
tained using the trellis.vpname() function or by just visual inspection of the output of
current.vpTree() and possibly some trial-and-error.

198 R Graphics

> grid.move.to(unit(1, "mm"),

unit(1, "npc") - unit(0.5, "inches"))

> seekViewport("plot1.panel.1.3.off.vp")

> grid.arrows(grob=lineToGrob(unit(167.62, "native") +

unit(1, "mm"),

unit(-15.56, "native")),

length=unit(3, "mm"), type="closed",

angle=10, gp=gpar(fill="black"))

> grid.circle(unit(167.62, "native"),

unit(-15.56, "native"),

r=unit(1, "mm"),

gp=gpar(lwd=0.1))

The final output is shown in Figure 5.22.

Chapter summary

Grid provides a number of functions for producing basic graphical out-
put such as lines, polygons, rectangles, and text, plus some functions
for producing slightly more complex output such as data symbols, ar-
rows, and axes. Graphical output can be located and sized relative
to a large number of coordinate systems and there are a number of
graphical parameter settings for controlling the appearance of output,
such as colors, fonts, and line types.

Viewports can be created to provide contexts for drawing. A viewport
defines a rectangular region on the device and all coordinate systems
are available within all viewports. Viewports can be arranged using
layouts and nested within one another to produce sophisticated ar-
rangements of graphical output.

Because lattice output is grid output, grid functions can be used to
add further output to a lattice plot. Grid functions can also be used
to control the size and placement of lattice plots.

