
CONTRIBUTED RESEARCH ARTICLE 1

The gridSVG Package
by Paul Murrell and Simon Potter

Abstract The gridSVG package can be used to generate a grid-based R plot in an SVG format, with
the ability to add special effects to the plot. The special effects include animation, interactivity, and
advanced graphical features, such as masks and filters. This article provides a basic introduction
to important functions in the gridSVG package and discusses the advantages and disadvantages of
gridSVG compared to similar R packages.

Introduction

The SVG graphics format (Dengler et al., 2011) is a good format for including plots in web pages
because it is a vector format (so it scales well) and because it offers features for animation and
interactivity. It is possible to produce a static R plot in an SVG format with the built-in svg() function
(from the grDevices package), but the gridSVG package (Murrell and Potter) provides an alternative
way to generate an SVG plot that allows for creating animated and interactive graphics.

This article demonstrates basic usage of the gridSVG package and outlines some of the ways that
gridSVG can be used to produce graphical results that are not possible in standard R graphics. There
is also a discussion of other packages that provide ways to generate dynamic and interactive graphics
for the web and the strengths and weaknesses of gridSVG compared to those packages.

Basic usage

As the package name suggests, the gridSVG package starts with a plot that was drawn using the grid
graphics package, or a package built on top of grid, like lattice (Sarkar, 2008) or ggplot2 (Wickham,
2009). Figure 1 shows an example plot, on a standard R graphics device, that was produced using the
osmar and sp packages (Eugster and Schlesinger, 2010; Pebesma and Bivand, 2005). The sp function
spplot() uses lattice (which uses grid) for drawing.

The grid.export() function in gridSVG converts the current (grid) scene on the active graphics
device to an SVG format in an external file. The SVG file can be viewed directly in a browser (see
Figure 2) or embedded within HTML as part of a larger web page.

This usage of gridSVG, to produce a static SVG version of an R plot for use on the web, offers
no obvious benefit compared to the built-in svg() graphics device. However, the gridSVG package
provides several other functions that can be used to enhance the SVG version of an R plot.

A simple example

In order to demonstrate, with code, some of the distinctive features of gridSVG, we introduce a simple
grid scene that is inspired by the Monty Hall problem.1

> library(grid)

The scene consists of three words, “goat”, “goat”, and “car”, drawn in random order across the
page, with an opaque rectangle drawn on top of each word.

In relation to the Monty Hall problem, the three rectangles represent three “doors”, behind which
are hidden two goats and a car. A “contestant” must choose a door and then he or she gets the “prize”
behind that door. However, after the contestant has chosen a door, a “game show host” opens one of
the other doors to reveal a “goat” and the contestant gets the opportunity to change to the remaining
unopened door or stick with the original choice. Should the contestant stick or switch?2

The following code produces the scene and the result is shown in Figure 3. The main drawing
code is wrapped up in a function so that we can reuse it later on.

> text <- sample(c("goat", "goat", "car"))
> cols <- hcl(c(0, 120, 240), 80, 80)

1http://en.wikipedia.org/wiki/Monty_Hall_problem
2An exercise for the reader is to determine which door conceals the car based on the R code and figures presented

in this article.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=gridSVG
http://CRAN.R-project.org/package=lattice
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=osmar
http://CRAN.R-project.org/package=sp
http://en.wikipedia.org/wiki/Monty_Hall_problem


CONTRIBUTED RESEARCH ARTICLE 2

Figure 1: A map showing buildings, streets, and paths in the region around The University of
Auckland campus. The map was produced using the osmar and sp packages (and lattice and grid for
the drawing) on the standard pdf() graphics device in R.

Figure 2: The map from Figure 1 exported to an SVG file by gridSVG and viewed in Firefox. This
demonstrates that a static R plot can be converted to an SVG format with gridSVG for use on the web.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 3

car goat goat

Figure 3: A diagram of the Monty Hall problem, drawn using grid. Hidden behind each rectangle is
either the word “goat” or the word “car”).

> MontyHall <- function() {
grid.newpage()
grid.text(text, 1:3/4, gp=gpar(cex=2), name="prizes")
for (i in 1:3) {

grid.rect(i/4 - .1, width=.2, height=.8, just="left",
gp=gpar(fill=cols[i]), name=paste0("door", i))

}
}

> MontyHall()

The three rectangles in this scene have been given names—"door1", "door2", and "door3"—as
shown in the output from grid’s grid.ls() function below.

> grid.ls()

text[prizes]
rect[door1]
rect[door2]
rect[door3]

These names will be used later to identify the rectangles so that we can modify them to generate
special effects.

Hyperlinks

The grid.hyperlink() function from the gridSVG package can be used to add hyperlinks to parts of
a grid scene. For example, the following code adds a link to each door so that clicking on a door (while
viewing the SVG version of the scene in a browser) leads to a Google Image Search on either “car” or
“goat” depending on what is behind the door. The first argument to grid.hyperlink() is the name of
the grid object with which to associate the hyperlink. The href argument provides the actual link.

> library(gridSVG)

> links <- c("http://www.google.com/search?q=car&tbm=isch",
"http://www.google.com/search?q=goat&tbm=isch")

> for (i in 1:3) {
grid.hyperlink(paste0("door", i),

href=links[match(text[i], c("car", "goat"))])
}

After running this code, the scene is completely unchanged on a normal graphics device, but if we
use grid.export() to convert the scene to SVG, we end up with an image that contains hyperlinks.
Figure 4 shows the result, with the mouse hovering over the middle door; at the bottom-left of the
browser window, we can see from the hyperlink that there is a goat behind this door.

> grid.export("montyhall-hyper.svg")

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 4

Figure 4: The Monty Hall image, with a hyperlink on each door. The mouse is hovering over the
middle door and the browser is showing the hyperlink target in the bottom-left of its window. If we
click the mouse, we will navigate to a Google Image Search for the word “goat”.

Figure 5: The Monty Hall image, with the middle “door” animated so that it slides open (to reveal the
word “goat”).

Animation

The function grid.animate() allows us to animate the features of shapes in a grid scene. For example,
the following code draws the Monty Hall scene again and then animates the width of the middle
door so that it slides open (to reveal the word “goat”). The first argument to grid.animate() is the
name of the object to animate. Subsequent arguments specify which feature of the object to animate,
in this case width, plus the values for the animation. The duration argument controls how long the
animation will last.

> MontyHall()
> goatDoor <- grep("goat", text)[1]
> grid.animate(paste0("door", goatDoor), width=c(.2, 0), duration=2)

> grid.export("montyhall-anim.svg")

Again, no change is visible on a normal R graphics device, but if we export to SVG and view the
result in a browser, we see the animation (see Figure 5).

Advanced graphics features

The gridSVG package offers several graphics features that are not available in standard R graphics
devices. These include non-rectangular clipping paths, masks, fill patterns and fill gradients, and
filters (Murrell and Potter, 2013). This section demonstrates the use of a mask on the Monty Hall scene.

A mask is a greyscale image that is used to affect the transparency (or alpha-channel) of another
image: anywhere the mask is white, the masked image is fully visible; anywhere the mask is black, the
masked image is invisible; and anywhere the mask is grey, the masked image is semitransparent.

The following code defines a simple scene consisting of a white cross on top of a grey circle on a
white background, which we will use as a mask (see Figure 6). Any grid scene can be used to create a
mask.

> circleMask <- gTree(children=gList(rectGrob(gp=gpar(col=NA, fill="white")),
circleGrob(x=goatDoor/4, r=.15,

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 5

Figure 6: Using a mask on an image. The picture on the left shows a white cross on top of a grey circle
on a white background. This is used as a mask on the rectangles in the Monty Hall image on the right.
The effect is to create a semitransparent window in the middle door (through which we can glimpse
the word “goat”).

gp=gpar(col=NA, fill="grey")),
polylineGrob(c(0, 1, .5, .5),

c(.5, .5, 0, 1),
id=rep(1:2, each=2),
gp=gpar(lwd=10, col="white"))))

The next code shows how this crossed circle on a white background can be used as a mask to affect
the transparency of one of the rectangles in the Monty Hall scene. The first argument to grid.mask()
is the name of the object to mask and the second argument is the mask object (as created by the mask()
function).

> MontyHall()
> grid.mask(paste0("door", goatDoor), mask(circleMask))

> grid.export("montyhall-masked.svg")

The effect (in the exported SVG image) is to create a little window in the middle door (to reveal
what looks suspiciously like the word “goat”; see Figure 6).

Interactivity

The grid.garnish() function in the gridSVG package opens up a broad range of possibilities for
enhancing a grid scene, particularly for adding interactivity to the scene.

A simple example is shown in the code below. Here we are adding tooltips to each of the doors
in the Monty Hall scene so that hovering the mouse over a door produces a label that shows what
is behind the door (see Figure 7). The first argument to grid.garnish() is the name of the object to
modify. Subsequent arguments specify SVG attributes to add to the object; in this case, we add a title
attribute, which results in a tooltip (in most browsers).

> MontyHall()
> for (i in 1:3) {

grid.garnish(paste0("door", i), title=text[i])
}

> grid.export("montyhall-tooltip.svg")

The grid.garnish() function can also be used to associate JavaScript code with an object in the
scene. The following code shows a simple example where clicking on one of the rectangles pops up an
alert box showing what is behind that door (see Figure 8). The attribute in this example is onclick,
which is used to define an action that occurs when the object is clicked with the mouse (in a browser).

> MontyHall()
> for (i in 1:3) {

grid.garnish(paste0("door", i),
onclick=paste("alert(’", text[i], "’)"))

}

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 6

Figure 7: The Monty Hall image with tooltips added to each door. The mouse is hovering over the
middle door, which results in a tooltip being displayed to show that there is a “goat” behind this door.

Figure 8: The Monty Hall image with interactivity. The mouse has just been clicked on the middle
door, which has resulted in an alert box popping up to show that this door has a “goat” behind it.

> grid.export("montyhall-alert.svg")

For more complex interactions, it is possible to include JavaScript code within the scene, using
the grid.script() function, so that an event on an object within the scene can be associated with
a JavaScript function call to perform a more sophisticated action. The code below shows a simple
example where clicking on one of the rectangles in the Monty Hall scene will call the JavaScript
function open() to “open” the door (by making the rectangle invisible; see Figure 9). The open()
function is defined in a separate file called "MontyHall.js" (shown in Figure 10).

> MontyHall()
> for (i in 1:3) {

grid.garnish(paste0("door", i), onclick="open(evt)")
}

> grid.script(file="MontyHall.js")

> grid.export("montyhall-js.svg")

Figure 9: The Monty Hall image with more interactivity. The mouse has just been clicked on the
middle door, which has resulted in the middle door becoming invisible, thereby revealing a “goat”
behind the door.

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 7

open = function(e) {
e.target.setAttribute("visibility", "hidden");

}

Figure 10: The JavaScript code used in Figure 9 that defines the open() function to “open” a door by
making the rectangle invisible.

Figure 11: The map from Figure 1 with animated lines added to show several bus routes around The
University of Auckland campus.

A more complex demonstration

The previous section kept things very simple in order to be able to show all of the R code involved in
the examples. In this section, we present some more complex examples. The R code is not shown, but
is available online, along with “live” versions of the images (links are given at the end of this article).

Figure 11 shows the campus map from Figure 1 with some animations added in the form of blue,
green and red lines that describe three inner-city bus routes that pass through The University of
Auckland campus. This demonstrates the use of grid.animate() with a much more complex grid
scene.

Figure 12 shows a mask being applied to the campus map from Figure 1. On the left, the mask
consists of a complex shape that defines the extent of The University of Auckland campus as white
regions on a dark grey background. On the right is the result of using that mask on the campus map;
all regions outside the extent of the campus are faint because the dark grey areas on the mask result in
semitransparency for those regions.

Limitations

The gridSVG package provides an opportunity to produce more sophisticated, more dynamic, and
more interactive R plots compared to the standard R graphics devices. However, there are some strict
limitations on what can be achieved with this package.

First of all, the package only works for plots that are based on the grid graphics system. This
includes some major graphics packages, such as lattice and ggplot2, but excludes a large amount of
graphics functionality that is only available in the default graphics package or packages that build on
graphics.

Another major limitation is that gridSVG does not generate any JavaScript code itself. This means
that anything beyond the most basic interactivity will require the user to write JavaScript code, which
imposes a burden on the user in terms of both time and knowledge.

Another point that has only briefly been acknowledged in the example R code so far is that the

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 8

Figure 12: The map from Figure 1 (right) with a mask (left) used to de-emphasize areas of the map
that are not part of The University of Auckland campus.

gridSVG functions that add special features to a grid scene (such as hyperlinks and animation) rely
heavily on the ability to identify specific components of a grid scene. The Monty Hall examples all rely
on the fact that the rectangles that are drawn to represent doors each have a name—"door1", "door2",
and "door3"—and the code that adds hyperlinks or animation identifies the rectangles by using these
names. This means that gridSVG is dependent upon an appropriate naming scheme being used for
any grid drawing (Murrell, 2012). This requirement is met by the lattice package and, to a lesser extent
by the ggplot2 package, but cannot be relied on in general.

Alternative approaches

The gridSVG package provides one way to produce dynamic and interactive versions of R plots
for use on the web, but there are several other packages that provide alternative routes to the same
destination. This section discusses the differences between gridSVG and several other packages that
have similar goals.

The animation package (Xie, 2013) provides a convenient front-end for producing animations in
various formats (some of which are appropriate for use on the web), but the approach is frame-based
(draw lots of separate images and then stitch them together to make an animation). The advantage
of an SVG-based approach to animation is that the animation is declarative, which means that the
animation can be described more succinctly and efficiently and the resulting animation will often
appear smoother.

The SVGAnnotation package (Nolan and Lang, 2012) performs a very similar role to gridSVG,
by providing functions to export R plots to an SVG format with the possiblity of adding dynamic and
interactive features. One major advantage of SVGAnnotation is that it will export R plots that are
based the standard graphics package (as well as plots that are based on grid). SVGAnnotation also
provides some higher-level functions that automatically generate JavaScript code to implement specific
sorts of more complex interactivity. For example, the linkPlots() function can be used to generate
linked plots, where moving the mouse over a data symbol in one plot automatically highlights a
corresponding point in another plot. The main disadvantage of SVGAnnotation is that it works with
the SVG that is produced by the built-in svg() device, which is much less structured than the SVG
that is generated by gridSVG. That is not a problem if the functions that SVGAnnotation provides
do everything that we need, but it makes for much more work if we need to, for example, write our
own JavaScript code to work with the SVG that SVGAnnotation has generated.

A number of packages, including rCharts and googleVis (Vaidyanathan, 2013; Gesmann and
de Castillo, 2011), provide a quite different approach to producing dynamic and interactive plots for
the web. These packages outsource the plot drawing to JavaScript libraries such as NVD3, highcharts,
and the Google Visualisation API (Novus, 2012; Highsoft AS, 2013; Google, 2013). The difference
here is that the plots produced are not R plots. The advantage is that very little R code is required

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=animation
http://CRAN.R-project.org/package=googleVis


CONTRIBUTED RESEARCH ARTICLE 9

to produce a nice result, provided the JavaScript library can produce the style of plot and the sort of
interactivity that we want.

Another approach to interactivity that is implemented in several packages, notably shiny (RStudio
Inc., 2013), is running R as a web server and producing new R graphics in response to user events in
the browser. The difference here is that the user typically interacts with GUI widgets (buttons and
menus) outside the graphic and each user event generates a completely new R graphic. With gridSVG,
the user can interact directly with elements of the graphic itself and all of the changes to the graphic
occur in the browser with no further need of R.

In summary, using the gridSVG package is appropriate if we want to add advanced graphics
features to a grid-based R plot, or if we want to add dynamic or interactive elements to a grid-based R
plot, particularly if we want to produce a result that is not already provided by a high-level function
in the SVGAnnotation package. An approach that holds some promise is to generate SVG content
using gridSVG and then manipulate that content by adding JavaScript code based on a sophisticated
JavaScript library such as d3 (Bostock et al., 2011).

Availability

The gridSVG package is available from CRAN. The code examples are known to work for gridSVG
versions 1.3 and 1.4.

Online versions of the figures in this article, along with complete code for the campus map
examples, are available from http://www.stat.auckland.ac.nz/~paul/Reports/gridSVGrj/.

Further documentation and examples for gridSVG are available from https://www.stat.auckland.
ac.nz/~paul/R/gridSVG/.

Bibliography

M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-Driven Documents. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2011. URL http://vis.stanford.edu/papers/d3. [p9]

P. Dengler, D. Jackson, C. Lilley, J. Fujisawa, C. McCormack, E. Dahlström, A. Grasso, J. Ferraiolo,
D. Schepers, and J. Watt. Scalable vector graphics (SVG) 1.1 (second edition). W3C recommendation,
W3C, Aug. 2011. http://www.w3.org/TR/2011/REC-SVG11-20110816/. [p1]

M. J. A. Eugster and T. Schlesinger. osmar: Openstreetmap and r. R Journal, 2010. URL http://osmar.r-
forge.r-project.org/RJpreprint.pdf. Accepted for publication on 2012-08-14. [p1]

M. Gesmann and D. de Castillo. googleVis: Interface between R and the Google Visualisation API.
The R Journal, 3(2):40–44, December 2011. URL http://journal.r-project.org/archive/2011-
2/RJournal_2011-2_Gesmann+de~Castillo.pdf. [p8]

Google. Google Visualization API, 2013. URL https://developers.google.com/chart/interactive/
docs/reference. [p8]

Highsoft AS. Highcharts JS, 2013. URL http://www.highcharts.com/. [p8]

P. Murrell. What’s in a Name? . The R Journal, 4(2):5–12, dec 2012. URL http://journal.r-
project.org/archive/2012-2/RJournal_2012-2_Murrell.pdf. [p8]

P. Murrell and S. Potter. gridSVG: Export grid graphics as SVG. R package version 1.4-0. [p1]

P. Murrell and S. Potter. Advanced SVG Graphics from R. Technical Report 2013-7, Department of
Statistics, The University of Auckland, 2013. URL http://stattech.wordpress.fos.auckland.ac.
nz/2013-7-advanced-svg-graphics-from-r/. [p4]

D. Nolan and D. T. Lang. Interactive and animated scalable vector graphics and r data displays. Journal
of Statistical Software, 46(1):1–88, 1 2012. ISSN 1548-7660. URL http://www.jstatsoft.org/v46/i01.
[p8]

Novus. NVD3.js : Re-usable charts for d3.js, 2012. URL http://nvd3.org/. [p8]

E. Pebesma and R. Bivand. Classes and methods for spatial data in r. R News, 2, 2005. URL
http://cran.r-project.org/doc/Rnews/. [p1]

RStudio Inc. shiny: Web Application Framework for R, 2013. URL http://CRAN.R-project.org/package=
shiny. R package version 0.3.0. [p9]

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://CRAN.R-project.org/package=shiny
http://www.stat.auckland.ac.nz/~paul/Reports/gridSVGrj/
https://www.stat.auckland.ac.nz/~paul/R/gridSVG/
https://www.stat.auckland.ac.nz/~paul/R/gridSVG/
http://vis.stanford.edu/papers/d3
http://osmar.r-forge.r-project.org/RJpreprint.pdf
http://osmar.r-forge.r-project.org/RJpreprint.pdf
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Gesmann+de~Castillo.pdf
http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Gesmann+de~Castillo.pdf
https://developers.google.com/chart/interactive/docs/reference
https://developers.google.com/chart/interactive/docs/reference
http://www.highcharts.com/
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Murrell.pdf
http://journal.r-project.org/archive/2012-2/RJournal_2012-2_Murrell.pdf
http://stattech.wordpress.fos.auckland.ac.nz/2013-7-advanced-svg-graphics-from-r/
http://stattech.wordpress.fos.auckland.ac.nz/2013-7-advanced-svg-graphics-from-r/
http://www.jstatsoft.org/v46/i01
http://nvd3.org/
http://cran.r-project.org/doc/Rnews/
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny


CONTRIBUTED RESEARCH ARTICLE 10

D. Sarkar. Lattice: Multivariate Data Visualization with R. Springer-Verlag, New York, 2008. URL
http://lmdvr.r-forge.r-project.org. ISBN 978-0-387-75968-5. [p1]

R. Vaidyanathan. rCharts: Interactive Charts using Polycharts.js, 2013. R package version 0.3.51. [p8]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York, 2009. ISBN
978-0-387-98140-6. URL http://had.co.nz/ggplot2/book. [p1]

Y. Xie. animation: An R package for creating animations and demonstrating statistical methods. Journal
of Statistical Software, 53:1–27, 2013. URL http://www.jstatsoft.org/v53/i01/. [p8]

Paul Murrell
The University of Auckland
Auckland
New Zealand paul@stat.auckland.ac.nz

Simon Potter
The University of Auckland
Auckland
New Zealand simon@sjp.co.nz

The R Journal Vol. XX/YY, AAAA ISSN 2073-4859

http://lmdvr.r-forge.r-project.org
http://had.co.nz/ggplot2/book
http://www.jstatsoft.org/v53/i01/
mailto:paul@stat.auckland.ac.nz
mailto:simon@sjp.co.nz

	The gridSVG Package
	Introduction
	Basic usage
	A simple example
	Hyperlinks
	Animation
	Advanced graphics features
	Interactivity
	A more complex demonstration
	Limitations
	Alternative approaches
	Availability


