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1 Introduction

This note presents in detail the formulae for the test statistics used by the
kanova() function from the kanova package. These statistics are based on,
and generalise, the ideas discussed in Diggle et al. (2000) and in Hahn (2012).
They consist of sums of integrals (over the argument r of the K-function)
of the usual sort of analysis of variance “regression” sums of squares, down-
weighted over r by the estimated variance of the quantities being squared.
The limits of integration 7y and 7, could be specified in the software (e.g.
in the related spatstat function studpermu.test() they can be specified
in the argument rinterval). However there is currently no provision for
this in kanova(), and ry and r; are taken to be the min and max of the r
component of the "fv" object returned by Kest (). Usually 7 is 0 and r; is
1/4 of the length of the shorter side of the bounding box of the observation
window in question.

There are test statistics for:

e one-way analysis of variance (one grouping factor),
e main effects in a two-way (two grouping factors) additive model, and
e a model with interaction versus an additive model in a two-way context.

In respect of the second item, both the statistic for “testing for A allowing
for B” and “testing for B allowing for A” are presented (for the sake of
completeness) although the two statistics in fact amount to the same thing.



Under the null hypothesis of “no group effect(s)” the underlying variance
function o?(r) of the K-function estimates is the same in each cell of the
model. However the variance of the individual K-function estimates changes
from pattern to pattern, being inversely proportional to the number of points
in the pattern. Explicitly, let Kij(r) (t=1,...,9, 7 = 1,...,n;) be the
estimated K-function based on pattern X;; in the one grouping factor setting,
and Rijk(r) (t=1,...,a, j = 1,...,b, k = 1,...,n;) be the estimated
K-function based on pattern X,j; in the two grouping factor setting. The
variances of these quantities are
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where w;; and w;j;, denote the number of points in pattern X;; or pattern
Xiji, respectively.

2 One-way ANOVA; single grouping factor

In this setting the estimated K function corresponding to the ith group is
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The test statistic is the integral over r of the Studentized regression sum of
squares

T ; n; /T:I(Ki(r) — R /Vir) dr

where Vi(r) is the (sample) variance of K;(r) — K(r). This variance is given
by



where s%(r) is the overall sample variance (an unbiased estimate of o). This
quantity is given by
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3 Two-way ANOVA; testing for main effects
in an additive model

In this section we are concerned with testing for a main effect in an additive
model, allowing for the possibility of there being a second main effect. The
test statistics used are in effect the same as the test statistic in section 2.
The test statistics are based on the “regression sum of squares”, which is the
same in a test for a main effect in a two-way ANOVA as it is in a one-way
ANOVA. In “ordinary” analysis of variance, the possibility of there being
a second main effect is allowed for by adjusting the error sum of squares
(making sure that the “error” effect is not augmented by that second main
effect).

In the current context, the error sum of squares is not used. The test that is
used is based on random permutations (of the data or of the model residuals).
Allowing for the possibility of a second main effect is accomplished in different
ways depending on whether the permutations are of the data or of residuals
from the model. In the former case, the second main effect is allowed for
by permuting the data “within” the levels of this second main effect. See
Appendix II for further discussion of this idea. In the latter case the residuals
are taken to those from the appropriate additive two factor model.

In neither case has the mathematical form of test statistic any real rele-
vance. However the test statistics differ in their superficial appearance from
the statistic used in section 2, due to the double indexing of the groups.
Consequently the mathematical form of the test statistics are presented in
what follows, for the sake of completeness

We denote the two grouping factors (main effects) by A and B. The estimated
K functions K;j(r) are assumed (under the null hypothesis) to have variance
02(r) /w;jr where wyjy, is the number of points in pattern Xj .



3.1 Testing for the first main effect, allowing for the
second

We denote the estimated K function corresponding to level i of factor A by
K,.. This function is given by
b Ny W
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Here the test statistic is

n_zm/ R(r)/Vailr) dr

where Vy;(r) is the (sample) variance of K;.(r) — K(r). The function Vi, (r)

is given by
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where s%(r) is the overall sample variance (an unbiased estimate of o). This
quantity is given by
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(effectively the same as (1)).

3.2 Testing for the second main effect allowing for the
first

As pointed out in the introduction, this scenario is really the same as that
dealt with in Section 3.1. Here we denote the estimated K function corre-
sponding to level j of factor B by K.;. This function is given by
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and the test statistic is



where Vp;(r) is the (sample) variance of K,;(r) — K(r). The function Vg, (r)

is given by
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4 Two-way ANOVA; testing for interaction

Here the test statistic is

Tap = Z Znij /T:l(f(ij(r) — Ki(r) = Kpu(r) + K(r))*/Vapy(r) dr

i=1 j=1
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where Vyp,;(r) is the (sample) variance of K;;(r) — Ku(r) — K;.(r) + K(r).
The function Vap;;(r) is given by
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where, as before, s?(r) is the overall sample variance (an unbiased estimate
of 02) given by (2).
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Appendix 1

Var(K;;(r)) = 02 /w;
Var(K,.(r)) = 0% /w;
Var(K,.(r) = 0° w,

Cov(Ky;(r), Ki.) = 0w
Cov(Ky;(r), K ) = 0%/w,

Cov(K.(r),K) = 0% /w
Cov(K,;(r), K) = 0w

Sample calculation: to see that Cov(K;;(r), K;.) = 02 /w;.., note that the two
expressions are weighted sums (with weights w;j,/wij. and w;jx/w;.. respec-
tively) of estimated K functions Ky (7). Since these estimates are indepen-
dent, the covariances are 0 except where the indices of the terms coincide, in
which case the covariance is the product of the weights and the variance of

the term. We get
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The variance term of interest is Var(K;;(r) — K..(r) — K;.(r) + K(r)) which
is equal to
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Using the previously stateed expressions for the variances and covariances of
the component terms, we see that (3) is equal to
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which is finally equal to

2 ( 1 1 211}1‘]‘, 1 1 )
o - + - —
Wije Wi, Wi W45 W5 W,




Appendix 11

As indicated in Section 3, the test that is used by kanova() is based on
random permutations either of the data or of the model residuals). If the
permutations are of the data, then allowing for the possibility of a second
main effect must be accomplished by permuting the data in such a way that
the second main effect does not mask the first main effect. That is, the
data must be permuted within the levels of the second main effect. Here we
explain what is meant by this idea.

To illustrate this idea in as clear and simple manner as possible, we consider
an artificial example of an additive two-factor scalar model with factors A and
B, have levels A;, Ay, A3 and Ay, and By, By and Bj respectively. Suppose
the underlying means corresponding to factor A are 0.2, 0.4, 0.6 and 0.8,
and those corresponding to factor B are 0, 5 and 10. Note that the B effect
is much “larger” than the A effect and would overwhelm the A effect unless
appropriate steps were taken.

In an additive model the “cell means” are:

Table 1:

B1 B2 B3

A; 10.2]5.2)10.2
Ay | 04 ] 541|104
A3 0.6 | 5.6 | 10.6
Ay 1 0.8 (58108

When we test for an A effect in this example, we look at a model with 12
cells, three of which correspond to level A;, of A, three to level Ay, three
to level As and three to level A;. A pseudo test statistic, i.e. a simplified
version of the test statistic used in genuine analyses, has the form (for the
observed data)

T=(52-55)+ (54 —55)+ (5.6 —5.5)% + (5.8 — 5.5)* = 0.2

where the 5.2, 5.4, 5.6 and 5.8 terms in the foregoing are the means corre-
sponding to the levels of A, 5.5 is the “grand mean”, and where we ignore
the “noise” that would appear in any real data.
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In conducting a test for an A effect we compare the test statistic from the
observed data with test statistics 7} formed from permutations of the ob-
served data. Since there is an A effect, we would hope that the test would
reject the null hypothesis, i.e. that 7" would be large compared with the bulk
of the T7.

This will happen if we permute the data “within the levels of B”, i.e. if we
permute, separately, each of the columns of Table 1. If we permute the data
in this manner, then the 7} that are produced are all small relative to 7'.
In fact, in this particular (artificial) example all possible T}, that arise from
permuting the data within the levels of B, are less than 7' = 0.2.

However if we simply permute the data as if A were the only factor, and
ignore B (i.e. proceed as if we were doing a one-way analysis) then from time
to time large values will be grouped together, within a level of factor A, with
other large values. This phenomenon results in the creation of means, for one
or more levels A; of factor A, which are very different from the overall mean,
resulting in large contributions to the calculated statistic. For instance an
arbitrary permutation of the 12 data values might result in

Table 2:

A; 1104 | 10.6 | 5.8
A | 0.8 | 10.8 | 0.2
A3 | 5.6 |52 |0.6
Ay 104 |54 |10.2

The value of the pseudo test statistic obtained from the data in Table 2, is
(8.9333 — 5.5)% + (3.9333 — 5.5)* + (3.8000 — 5.5) + (5.3333 — 5.5)* = 17.16

which is much larger than the pseudo test statistic from the observed data
shown in Table 1. Generally, the values of the T} resulting from arbitrary
permutations will be large in comparison with T" and the null hypothesis will
not be rejected as it should be.



