R² and Excel & Graphics Calculators

Excel and two graphics calculators were used on the following data. Their printouts are given below.

Data Set

x value	y value	log x value	log y value
1	15	0	2.70805
2	41	0.693147	3.713572
3	93	1.098612	4.532599
4	188	1.386294	5.236442
5	196	1.609438	5.278115
6	247	1.791759	5.509388
7	366	1.94591	5.902633
8	386	2.079442	5.955837
9	488	2.197225	6.190315
10	460	2.302585	6.131226
11	722	2.397895	6.582025
12	685	2.484907	6.529419

Excel

Note:

- The R² values printed with the exponential and power plot curves for *Excel* are wrong. Do not use them.
- 2. *Excel* has based its R^2 values for the exponential and power plots on the linearly transformed data. For example, for the exponential curve, $y = ae^{bx}$, *Excel* computes R^2 using lny = lna + bx. It is wrong to do this. (*Excel*'s R^2 values for the linear (semi-log and log-log) plots are correct.)

Graphics Calculators

Casio fx-9750G PLUS

Exponential Regression y = a.e^bx

a = 29.8404023 b = 0.30152902 r = 0.92283291 $r^{2} = 0.85162058$

Power Regression

y = a.x^b a = 16.070768 b = 1.54826975 r = 0.9933374238 r² = 0.98671923

Texas Instruments TI-83

Exponential Regression y = a.b^x

a = 29.84040238 b = 1.351924358 r² = 0.8516205865 r = 0.9228329136

Power Regression

y = a.x^b

a = 16.07076801 b = 1.548269753 $r^2 = 0.9867192375$ r = 0.9933374238

Note:

- 1. The *r* and r^2 values printed with the **exponential** and **power** regressions for these two graphics calculators are **wrong**. Do **not** use them. The sample correlation coefficient, *r*, should only be used with **linear** relationships.
- 2. The given r^2 values printed with the exponential and power relationships are **not** equal to their R^2 values. (These r^2 values have been based on and computed from the linearly transformed data, i.e., linear relationships.)
- 3. The *r* and r^2 values printed with the **linear** models are correct. In these **linear** cases, the given r^2 values are equal to R^2 values.

Use r, r^2 , and R^2 values from *Excel* and graphics calculators with caution!

References:

Scott, A.J. and Wild, C.J. (1991) "Transformations and $R^{2"}$, *The American Statistician*, 45, 127–129. Kvalseth, T.O. (1985) "Cautionary Note About $R^{2"}$, *The American Statistician*, 39, 279–285.

Linear Regression Iny = bx + Ina

b = 0.30152902Ina = 3.39586326 r = 0.92283291 r² = 0.85162058

Linear Regression

Iny = bInx + Inab = 1.54826975 Ina = 2.77700197 r = 0.99333742 r² = 0.98671923

Linear Regression

lny = lna + (lnb)x lna = 3.39586326 lnb = 0.3015290279 $r^{2} = 0.8516205865$ r = 0.9228329136

Linear Regression Iny = Ina + bInx

 $\begin{array}{l} \mbox{Ina} = 2.77700197 \\ \mbox{b} = 1.548269753 \\ \mbox{r}^2 = 0.9867192375 \\ \mbox{r} = 0.9933374238 \end{array}$