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Calculating efficient
semiparametric estimators
for a broad class of
missing-data problems

Alastair J. Scott & Chris Wild

Abstract. We develop efficient methods for computing semiparametric es-
timates in a wide variety of situations involving missing data and response-
selective sampling. The methods are based on the profile likelihood. Esti-
mates of the covariance matrix and associated test statistics are obtained at
the same time.
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1 Introduction

We consider a unified method for fitting essentially arbitrary regression
models to a large class of missing data and/or response-selective sampling
problems using semiparametric maximum likelihood. This paper gives the
computational details underlying the profile likelihood methods used, for
example, in Scott and Wild (1997), Lawless et al. (1999) and Neuhaus et al.
(2002, 2006). However, it covers a much wider range of applications than the
situations discussed in those papers.

Suppose that we have a finite population of N individuals under study. Let
v represent a set of variables containing easily obtainable information that
is available for all N individuals. For our development, v must have finite
support, whereas all other variables may be either discrete or continuous. In
addition to the information on v, we assume that information on a (possibly
multivariate) response variable y, can be obtained for at least a subset of
individuals in the study study, and that a more “expensive” set of explanatory
variables z can also obtained for a (possibly different)subset. We may wish
to use some of the variables in v, say v1, as explanatory variables in our
model; other variables in v can play the role of informative surrogates for
expensive covariates in z. The object is to estimate the parameters, θ, of the
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regression model f(y |z,v1;θ). Thus we have a parametric regression model
for the conditional density of the response given explanatory variables. Our
methods can handle situations in which data sources include observations on
z and any or all of (z,v) (z |v), (y,v), (y |v), (y,z,v), (y,z |v), (y |z,v),
and (z |y,v), where “ | ” refers to information obtained from conditional
sampling.

Let g(z,v) denote the density of the covariates and g(z |v) the conditional
density of z given v. With standard prospective sampling and no missing
data, the likelihood factorises into a term involving θ and a term involving
g() so that information on the distribution of the explanatory variables is
orthogonal to information on θ. Consequently, we do not need to model
the covariate distribution. This is very convenient in practice because we
often have far too many covariates of different types for it to be feasible to
model their joint distribution in any realistic fashion. Unfortunately, with
response-selective sampling, as with most missing data mechanisms, infor-
mation on θ and g() is no longer orthogonal and we are forced to use some
sort of joint modelling. However, the practical need for methods which do
not require parametric modelling of g() is just as great. Thus, we consider
semi-parametric methods in which the marginal distribution of (z,v) is left
unspecified and estimated nonparametrically.

The class of likelihoods that we consider initially consists of all those of
the form

N∏
i=1
f(yi |zi,v1i;θ)∆1ig(z |vi)∆2if(yi |vi;θ)∆3i , (1)

where f(y |v;θ) =
∫
f(y |z,v1;θ)dG(z |v), ∆1i and ∆2i are binary indi-

cators taking values 0 or 1, and ∆3i can take values 0, 1 or −1. Examples
where such forms arise in practice are given in the next section. Our esti-
mator of θ, say θ̂, is found by maximizing the profile likelihood, obtained
by maximizing (1) over the (potentially infinite-dimensional) nuisance para-
meter g(z |v). Conditions under which this profile likelihood estimator has
full semiparametric efficiency are given by Bickel et al. (1993) and Murphy
and van der Vaart (2000) for the i.i.d. case. Simpler conditions that apply
directly to our multi-sample likelihood (1) are given in Lee and Hirose (2006).
In addition, a consistent estimator of the covariance matrix of θ̂ can be
obtained from the inverse profile information matrix. This means that we
can produce a single program to cater for all likelihoods in this class and,
with minimal modification, a more extended class introduced later. This en-
ables general software to be written whereby a new regression model can be
catered for simply by coding a new function to calculate f(y |z,v1;θ) and
its derivatives.

Other semiparametric efficient approaches such as those of Robins et
al. (1994, 1995) and Holcroft et al. (1997) require complicated modelling
over and above finding a suitable model, f(y |z,v1;θ), for the regression
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of interest. Profile likelihood enables us to obtain standard errors from the
inverse Hessian matrix of the likelihood profile without having to consider
the intricacies of complex observational schemes that are necessary for
the sandwich estimators of variance required by other estimating equation
approaches. Analyses based upon the approach here require no modelling
effort from the statistician on aspects relating to missingness patterns and
thus result in analyses that are much more time-efficient for the statistician.

This paper is organized as follows. Section 2 gives examples showing how
likelihoods of the form (1) arise and illustrates the generality of the form.
Section 3 describes maximum likelihood estimation for the class described
above and the results are extended to a wider class in Section 4. Section 5
describes a much more computationally-efficient specialization of the algo-
rithm that can be used when y is discrete, or for continuous y where we
have (or retain) only class-interval information on (y,v) when z is missing
as in Lawless et al. (1999).

2 Examples

We begin with some examples to illustrate how likelihoods of the form (1)
can arise in practice.

Example 1. Case-control designs and generalisations

For case-control studies, y is a binary response variable recording case status
as y = 1 or control status as y = 0. As a typical example, the cases may be
those individuals that have contracted a disease of interest and the controls
are those that have not.

In a simple case-control study, a random sample of m1 cases is taken and
their covariate values z are subsequently ascertained. The same is done for a
sample of m0 controls. The resulting likelihood is∏

cases
f(z |y = 1)

∏
controls

f(z |y = 0) =
∏

sample

f(y |z;θ)g(z)f (y ;θ)−1, (2)

from Bayes’ theorem. This is a very simple example of (1) in which a notional
v takes on a single value, ∆1 = ∆2 = 1 if z is observed and 0 otherwise, and
∆3 = −1 if z is observed and 0 otherwise.

In a population-based study or a two-stage study in which case-control
status is ascertained for all population units at the first stage and z is
measured for a sample of cases and a sample of controls at the second stage,
the likelihood is (Scott and Wild (1991)){ ∏

cases
f(z |y = 1)

∏
controls

f(z |y = 0)
}
f(y = 1)M1f(y = 0)M0

=
N∏
i=1
{f(y |z;θ)}∆1g(z)∆2f(y ;θ)∆3 , (3)
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where M1 is the number of cases and M0 the number of controls in the
population or first stage, ∆1 = ∆2 = 1 if z is observed and 0 otherwise, and
∆3 = 0 if z is observed and +1 otherwise. We note that we get the same
likelihood whether we take fixed sized samples of cases and controls at the
second stage or use a random mechanism as in the missing-data example.
However, sandwich estimators of the variance of θ̂ will be different in general
although, for the special case of logistic regression, only the variance of the
intercept is affected.

With stratified case-control data, as described by Scott and Wild (1997),
we have data on (y,v) at the first stage and then obtain z for subsamples of
cases and controls drawn from strata, S1, . . . , SL say, defined by values of v.
The likelihood is of the form

L∏
`=1

∏
vi∈S`

{f(yi |zi,v1i;θ)}∆1g(z |vi)∆2f(yi |vi;θ)∆3 , (4)

where the ∆js are as for (3). The same likelihood pertains whether the data
is obtained purposefully in this way using subsamples of fixed or random
size, or whether we have population y and v data available for the finite
population from which the cases and controls were drawn in a simple case-
control study. Lawless et al. (1999) discuss a wide variety of other examples
and sampling schemes that produce likelihoods of the form (4).

Example 2. Two and three stage missing-at-random

Consider a three stage mechanism in which, at Stage 1, v is observed for a
random sample of individuals. At the second stage y is observed for subset
of individuals with the ith individual having probability π1(vi) of being
included. At Stage 3, z is observed for a subset of the Stage 2 sample with
the ith individual having probability π2(vi,yi) of being included in the third
stage. Thus, we only have complete (y,z,v) information for individuals
sampled at Stage 3.

This is a special case of the missing data mechanism considered by Hol-
croft et al. (1997), which encompasses the mechanisms in Robins et al. (1994,
1995), for a designed study in which π1 and π2 would be known. More gen-
erally, Holcroft et al. (1997) also allow for missingness by happenstance in
which the available data is of the form v, (y,v) and (y,z,v). An assumption
that data is missing at random means, in general terms, that the probability
that something is missing depends only upon data that is observed, e.g., the
probability that z is missing from (y,z,v) depends only (y,v). Thus, for
a missing-at-random analysis, we will still have the same set up as above
but with π1( ) and π2( ) being unknown. When data is missing at random
these probabilities can, however, be estimated from the data, using a binary
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regression model applied to an observed/missing response. This results in
the use of missingness models π1( ;α1) and π2( ;α2) with their own sets
of parameters.

Let us write ∆̃j = 1 when an observation is included in the (j + 1)th stage
of observation and 0 otherwise. The likelihood for the above scenario is:

∏
[g(v){1−π1(v)}]1−∆̃1[g(v)π1(v)f (y |v){1−π2(y,v)}]∆̃1(1−∆̃2)

·[g(v)π1(v)f (y |v)π2(y,v)f (z |y,v)]∆̃1∆̃2

=
{∏

g(v)1−∆̃1f(y,v)∆̃1(1−∆̃2)f(y,z,v)∆̃1∆̃2
}
× Term(π1, π2)

=
[∏

{f(y |z,v;θ)g(z |v)}∆̃1∆̃2f(y |v1;θ)∆̃1(1−∆̃2)
]

×
{∏

g(v)
}
× Term(π1, π2), (5)

where f(y |v;θ) =
∫
f(y |z,v1;θ)dG1(z |v). There are several things to

note from the form of the likelihood (5). Most importantly, we see that g(v)
and any missingness model parameters are orthogonal to θ and the condi-
tional densities g(z |v) so likelihood-based inferences about θ use only the
first term of (5). This means that: (i) we do not have to construct missingness
models and estimate their parameters; (ii) it is only the conditional densities
g(z |v) that we need to estimate nonparametrically; (iii) all of the informa-
tion on θ is in the second and third stage data – there is no information on
θ in the data from those individuals for whom we observe v alone; (iv) the
likelihood that we end up using is identical to that from a two-stage study in
which we obtain data on (y,v) for all individuals sampled at the first stage
and then observe z for a second-stage subsample which individuals enter
with probabilities π2(y,v); and (v) the likelihood we use is the same whether
v is random, having been sampled at the first stage, or whether sampling is
conditional upon v.

We reiterate that only the first term of (1) is relevant for estimation of
θ. When v is discrete, which we assume throughout, the first term of (5) is
clearly equivalent to (1) with ∆1 = ∆2 = ∆̃1∆̃2 and ∆3 = ∆̃1(1− ∆̃2).

In addition to the examples above, the likelihood (1) allows us to include
information that can be treated as independent sampled from any of the
following distributions: f(y,z,v), f(y,z |v), f(y |z,v), f(z |y,v), f(y,v),
f(y |v), f(z,v), and f(z |v). Examples of such schemes can be found in
Scott and Wild (2001), Neuhaus et al. (2002, 2006) and Lee et al. (2006).
This gives a great deal of scope for including supplementary information to
cope with the lack of indentifiablity and the ill-conditioning problems that
can occur with fitting prospective regressions to retrospectively sampled
data.
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3 Profile likelihood

3.1 Preliminaries

Recall that v has finite support. Denote the distinct values of v in the ob-
served population by ṽ1, . . . , ṽS and let Ss be the stratum containing all units
with vi = ṽs . Then (1) can be written in the form

L[θ, {g(· |vs)}] =
S∏
s=1

∏
i∈Ss

f(yi |zi, ṽ1s ;θ)∆1ig(zi | ṽs)∆2if(yi | ṽs ;θ)∆3i .

(6)
We wish to maximize this as a function of θ and the S conditional densities
g(z | ṽs). As is standard in semiparametric maximum likelihood, we treat
these densities as discrete with all of the mass being placed at the observed
z values.

For simplicity, we write x = (z,v1) to include all covariates that are to be
used in the model. Note that, when we consider only the sizes of probability
atoms, g(x |v) = g(z,v1 |v) = g(z |v). The only remaining role of v in
(6) is to divide the data set up into the S strata with separate conditional
distributions of x to be estimated for each stratum.

Our problem is now to maximize

`(θ, g1, . . . , gS) =
S∏
s=1

∏
i∈Ss

f(yi |xi;θ)∆1ig(xi | Ss)∆2if(yi | Ss ;θ)∆3i ,

with f(y | Ss ;θ) =
∫
f(y |z, ṽs1;θ)dG(z | ṽs). The corresponding log-likeli-

hood is of the form `(θ,g1, . . . ,gS) =
∑
s `s(θ,gs), where gs = g(x | Ss)

Thus, the profile log-likelihood, in which we maximise out the gs ’s for fixed
θ, is of the form

`P (θ) = `{θ, ĝ1(· ;θ), . . . , ĝS(· ;θ)} =
∑
s
`s{θ, ĝs(· ;θ)} =

∑
s
`Ps(θ).

This means that we need only to be able to solve the problem of obtaining
the profile for θ (and its derivatives) for a single stratum, i.e. to maximize

L(θ,g) =
∏
i
f(yi |xi;θ)∆1ig(xi)∆2if(yi;θ)∆3i . (7)

In terms of implementation in software, we need to write a function to
find `P (θ) = supg{logL(θ,g)} where L(θ,g) is given by (7). When we have
multiple strata, we can send the data from each stratum in turn to that
function and accumulate the results.

3.2 Basic profile likelihood algorithm

In essence, we will let δi = g(xi) and work with `(θ,δ) with δ = (δ1, δ2, . . . )
as if it were an ordinary parametric log-likelihood. One of the problems with
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this, however, is that it often results in working with very large arrays. It
is particularly important to keep the dimension of δ as small as possible.
Trapping replicate data points is one way of reducing the size of these arrays.
Thus, we will write in terms of replicated data. Whether or not we do this
makes no difference at all to the profile that we obtain for θ, but it can
substantially reduce storage.

Let A = { i : ∆1i = 1 }, B = { i : ∆2i = 1 }, and C = { i : ∆3i ≠ 0 }. Let
x̃1, . . . , x̃J be the distinct values of x in B, mj be the multiplicity of x̃j in
B and δj = g(x̃j). Let ỹ1, . . . , ỹK be the distinct values of y in C and let
rk =

∑
{i:yi=ỹk}∆3i. Note that rk can be positive, negative or zero. On noting

that f(y) =
∑
f(y | x̃j)δj , the log-likelihood from (7) can be written in the

form

`(θ,δ) =
∑
A

logf(yi |xi;θ)+
∑
j
mj logδj

+
∑
k
rk log

{ J∑
j=1
f(ỹk | x̃j ;θ)δj

}
. (8)

Since the δj parameters have to satisfy the constraints 0 < δj < 1 and∑
δj = 1, we reparameterize in terms of ρj = log(δj/δJ) and work with

`(θ,ρ). With this parametrization δj = exp(ρj)
/∑

exp(ρ`) (with ρJ ≡ 0)
and the constraints are satisfied automatically. The profile log-likelihood is
then `P (θ) = `(θ, ρ̂(θ)), where ρ̂(θ) satisfies ∂`(θ,ρ)/∂ρ = 0, and `P has
profile score vector

UP (θ) =
∂`P (θ)
∂θ

= ∂`(θ,ρ)
∂θ

∣∣∣∣
ρ=ρ̂(θ)

(see Seber and Wild (1989), equation (2.69)) and observed profile information
matrix

IP =
(
−∂

2`P (θ)
∂θ ∂θT

)
=
{
Jθθ − JθρJ−1ρρJT

θρ
}∣∣∣∣
ρ=ρ̂(θ)

(9)

written in terms of the blocks of J, the observed information matrix obtained
from `(θ,ρ) (see Seber and Wild (1989), just prior to equation (2.72)).

We apply a Newton–Raphson based algorithm, with updating steps θ(a+1) =
θ(a) + I−1P UP

∣∣
θ=θ(a) for a = 1,2, . . . to maximize the profile log-likelihood

`P (θ). At each iteration we solve for the accompanying ρ̂(θ(a+1)) also by
using Newton–Raphson to maximise `(θ(a+1),ρ) with respect to ρ. The deriv-
atives required for all of this are given in Appendix A. Our “Newton–Raphson
based algorithm” employs simple versions of the hill-climbing techniques
discussed in Section 13.3.1 of Seber and Wild (1989) to improve robustness.
We have been surprised by how stable and reliable the method has turned out
to be in practice, despite the often very large dimensions of the parameter
vectors involved.
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A clear disadvantage with the algorithm discussed in this section is that
the dimension of the parameter vectors can be very large indeed (equal to the
sample size n in the worst case), requiring substantial storage. For example,
using Newton–Raphson for the maximization requires that we store Jρρ . This
is also necessary if we wish to calculate the profile information matrix to
obtain variance estimates for θ̂. We will find in the next section that we can
obtain a substantial reduction in dimensionality, and consequent increase
in speed, when y is discrete. In particular, for binary regression models we
can work with a nuisance parameter of dimension 1 rather than ρ, which
has dimension J − 1 where J is the number of distinct values observed for
x. The same sort of reduction can be made for continuous y in situations
where only class interval information on y is available for those data points
for which x is not fully observed.

Before going on, however, we do note that when we have several strata,
the method discussed in the current subsection never needs to store a Jρρ
matrix for more than one stratum. These matrices are used to find the con-
tribution of the current stratum to the overall information matrix IP and
then discarded when we move on to process the data from the next stratum;
see the discussion surrounding (7). This makes it feasible to handle reason-
ably large data sets. For example, Jiang (2004) was able to run simulations
fitting linear models to two-phase samples with strata of size N = 5000 and
sub-sample sizes of n = 1000 using these methods.

4 An extension to the class of likelihoods

There are important extensions of the likelihood class (1) which do not
affect the essential nature of the maximization problem. (We have postponed
consideration of these in the interests of intelligibility.) For example, Lawless
et al. (1999) discuss failure time data in which whether of not a data point is
fully observed depends on membership of strata defined in terms of both y
and x. They also used strata involving both y and x to avoid the problem of
empty or near-empty strata. Neuhaus et al. (2002) deals with retrospectively
sampled family data. Here, y records the set of binary responses for each
member of a cluster (or family) and sampling is conditional upon observation
of some specified pattern in the responses from a cluster. This data can also
be supplemented in various ways, for example by knowledge of stratum sizes
in the finite population from which the individuals were sampled.

We can expand (1) to cater for such examples as follows. Let hv(y,x)
be a known function of the data, where we may use different functions for
different v. Imagine that the probability of being observed depends upon
the value of h. We may, for example, sample conditionally upon h values
and then observe (y,x). We may also use a random mechanism by which h
values are obtained according to some probability, π4(h) say, and then (y,x)
are sampled obtained from the conditional distribution of (y,x) given h.
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We may supplement such data with finite population data, or data from a
random sample of h values. Alternatively, we may may have data produced
by a random process, observe the h values as they arise and then further
observe (y,x) with probability π5(h). In all of these situations, the likelihood
is of the form,

S∏
s=1

∏
i:vi=vs

f(yi |zi,v1s ;θ)∆1ig(zi |vs)∆2if{h[i]s |vs ;θ}∆3i , (10)

where h[i]s = hvs (yi,xi), for suitably chosen ∆jis. This is a simple general-
ization of (6) and almost all the work in Section 3.2 applies directly. Again
we need only consider the profiling problem for a single stratum, and (7)
becomes

L(θ, g) =
∏
f(yi |xi;θ)∆1ig(xi)∆2if{h(y,z) = h[i];θ}∆3i , (11)

where f{h;θ} =
∫
h(y,x)=h dF(y |x;θ)dG(x). Suppose that h̃k occurs with

multiplicity rk. Then (8), the form we use for computation, becomes

`(θ,δ) =
∑
A

logf(yi |xi;θ)+
∑
j
mj logδj

+
∑
k
rk log

{∑
j
f(h̃k | x̃j ;θ)δj

}
, (12)

and f{h̃k |x;θ} =
∫
Sk(x) dF(y |x;θ) with Sk(x) = {y : h(y,x) = h̃k }.

The profile likelihood algorithm for the larger class of likelihoods in this
subsection differs from that in Section 3.2 only in that f{h̃k |x;θ} replaces
f(ỹk |x;θ) in the last term of the log-likelihood. In computational terms,
this means that to accommodate a new model f(y |x;θ) when h(y,x) is
more complicated than simply h(y,x) = y, an additional function must be
written to evaluate f{h |x;θ} and its derivatives with respect to θ.

5 Exploiting discreteness

As we noted in Section 3.2, a big disadvantage of the brute-force approach
outlined there is the dimension of the maximization problem. A substantial
reduction of this dimension can be achieved in some important special
cases, specifically whenever the h(y,x) can take only a finite set of values,
(h̃1, h̃2, . . . , h̃K) say.

If we maximise (12) with respect to δ for fixed θ, using a Lagrange mul-
tiplier to cater for the constraint

∑
j δj = 1, cf. Scott and Wild (1997, circa

equation (A1.2)) we find that δ̂(θ) satisfies the set of equations

δj =mj

/{
(m+ + r+)−

∑
k

rkf(h̃k | x̃j ;θ)∑
j′ f(h̃k | x̃j′ ;θ)δj′

}
, j = 1, . . . , J, (13)
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where m+ =
∑
jmj is the total number of observations in B and r+ =

∑
rk.

Suppose that all possible values have been observed at least once so that∑K
k=1 f(h̃k |x;θ) = 1. If rk ≠ 0, set

Qk =
∑
j
f(h̃k | x̃j ;θ)δj

and write
p̃k = p̃k(Qk) = (m+ + r+)−

rk
Qk
. (14)

Then the system (13) can be written in the form

δj =
mj

(m+ + r+)−
∑
k rk

f(h̃k | x̃j ;θ)
Qk

=
mj∑

k p̃kf(h̃k | x̃j ;θ)
, (15)

where the set of Qk’s corresponding to nonzero rk satisfy the system

Qk =
∑
j

mjf(h̃k | x̃j ;θ)
(m+ + r+)−

∑
k
mk
Qk
f(h̃k | x̃j ;θ)

=
∑
j

mjf(h̃k | x̃j ;θ)∑
k p̃kf(h̃k | x̃j ;θ)

. (16)

The system of equations (16) is equivalent to the set of ‘score’ equations,
∂`∗/∂Q = 0 for fixed θ, where

`∗(θ,Q) =
∑
A

logf(yi |xi;θ)

−
∑
j
mj log

{∑
k
p̃k(Qk)f (h̃k | x̃j ;θ)

}
+
∑
rk logQk. (17)

Thus we can either obtain the profile log-likelihood using `P (θ) = `(θ, δ̂(θ)),
where δ has dimension (J − 1), or using `P (θ) = `∗(θ, Q̂(θ)), where Q has
dimension (K − 1).

Further, and perhaps more importantly, it follows from Theorem 2.2 in
Seber and Wild (1989) that

∂2`P (θ)
∂θ ∂θT = ∂

2`∗(θ,Q)
∂θ ∂θT − ∂

2`∗(θ,Q)
∂θ ∂QT

(
∂2`∗(θ,Q)
∂Q ∂QT

)−1 ∂2`∗(θ,Q)
∂Q ∂θT .

Recalling the standard form for the inverse of a partitioned matrix, it fol-
lows that the inverse profile information, −

(
∂2`P (θ)

/
∂θ ∂θT

)−1
is equal to

the leading p × p submatrix of J∗−1, where J∗ = ∂2`∗(φ)/∂φ ∂φT, with
φ =

( θ
Q
)
. This means that, for making inferences about θ, we can proceed as

if `∗(φ) was the log-likelihood. We can obtain the semiparametric maximum
likelihood estimator of θ by setting ∂`∗(θ,Q)/∂φ = 0, we can estimate its
covariance matrix with the appropriate block of J∗−1 and we can test hy-
potheses about θ using appropriate differences in −2`∗. (This last statement
needs some justification but the general case follows in exactly the same way
as the special case treated in Scott and Wild (1989).)



Calculating efficient semiparametric estimators 311

Since K is almost always very much less than J, using `∗(θ,Q) in place
of `(θ,δ) can result in large reductions in storage requirements and in
computing time. For example, in the important special case of fitting a binary
regression model to case-control data, K = 2 and we have essentially reduced
the problem from one involving a vector of n nuisance parameters to one
involving a single scalar nuisance parameter.

We note that, although we can treat `∗(φ) as if it were a log-likelihood
for many purposes, it is not in fact a true log-likelihood. In particular, `∗

typically has a minimum rather than a maximum in Q when the nonzero rks
are all positive as is the case with missing data problems.

We have experimented with several reparameterizations of Q to take care
of positivity constraints including Qk = exp(ρk)/{1+

∑
exp(ρ`)} and

Qk = exp(ξk)/{1+ exp(ξk)} or ξk = logit(Qk).

The former, which also takes care of the summation constraint, leads to
singular information matrices when two or more rk = 0, whereas both pa-
rameterizations lead to the identical sets of derivatives when at most one
rk = 0. Thus, we routinely use `∗(θ,ξ), where ξ contains only those ξk for
which rk ≠ 0, for computation. Now,

`P (θ) = `∗
(
θ, ξ̂(θ)

)
,

where ξ̂(θ) satisfies ∂`(θ,ξ)∗/∂ξ = 0. We then calculate the profile score
vector and profile information matrix of `P (θ) using

UP (θ) =
∂`∗(θ,ξ)
∂θ

∣∣∣∣
ξ=ξ̂(θ)

and IP =
{
J∗θθ − J∗θξJ

∗−1
ξξ J∗T

θξ
}∣∣∣∣
ξ=ξ̂(θ)

.

Expressions for the required derivatives are given in Appendix B.

6 Conclusion

The computational procedures outlined in this paper enable us to make
efficient inferences about parameters of interest in a large number of situa-
tions involving missing data and response-biased sampling. In many of these
situations it has simply not been feasible to implement efficient procedures
before this and people have proposed a variety of ad hoc alternatives. Most
of these alternatives should become obsolete when software to implement
the methods described in this paper is available. Such software is currently
under development and a prototype package is available from Chris Wild
(c.wild@auckland.ac.nz) on request. A more polished version should soon be
available on his web site at http://www.stat.auckland.ac.nz.
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Appendix A. Derivatives of `(θ,ρ)

We give results for the general case described in Section 4. Equation (8) is
the special case of equation (12) in which h(y,x) = y, and f(h̃k | x̃j ;θ) =
f(ỹk | x̃j ;θ) so that its derivatives with respect to θ are simply the deriva-
tives of the regression model f(). The user needs to specify

D(θ)kj =
∂f(h̃k | x̃j ;θ)

∂θ
and Dθθkj =

∂D(θ)kj
∂θT .

We repeat (12) more compactly as

`(θ,δ) = `(θ,ρ)

=
∑
A

logfi +
∑
j
mj logδj +

∑
k
rk log

{∑
j
f(h̃k | x̃j ;θ)δj

}
, (18)

where, fi = f(yi |xi;θ) and δj = exp(ρj)
/∑

` exp(ρ`) with ρK ≡ 0. After
some manipulation, we find that

∂`
∂θ

=
∑
A

∂ logfi
∂θ

+
∑
k
rk
D(θ)k
Dk

,

∂`
∂ρ

= m̌+
∑
k
rkŘk − (m+ + r+)δ̌

J(θθ) =
∑
A

∂2 logfi
∂θ ∂θT −

∑
k
rk

{
D(θθ)k
Dk

−
(
D(θ)k
Dk

)(
D(θ)k
Dk

)T}

J(θρj) =
∑
k
rk

{
Q∗kjδj
Dk

D(θ)k
Dk

−
Q∗(θ)kj δj
Dk

}
, j = 1, . . . , J − 1

J(ρρ) = (m+ + r+)
{
diag(δ̌)− δ̌δ̌T}−∑

k
rk
{
diag(Řk)− ŘkŘT

k
}

Here, Dk =
∑
j f(h̃k | x̃j ;θ)δj , Řk is the vector with elements D(θ)kj δj

/
Dk,

j = 1, . . . , J − 1, m̌ = (m1, . . . ,mJ−1), δ̌ = (δ1, . . . , δJ−1), D(θ)k =
∑
j D

(θ)
kj δj ,

D(θθ)k =
∑
j D

(θθ)
kj δj , and

∑
j denotes sums from 1 to J.

Appendix B. Derivatives of `∗(θ, ξ)

`∗(θ,ξ) = `∗(θ,Q)

=
∑
A

logfi −
∑
j
mj log

{∑
k
p̃kf(h̃k | x̃j ;θ)

}
+
∑
rk logQk, (19)
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where p̃k = p̃k(Qk) = (m+ + r+)− rk/Qk, and ξk = logit(Qk). We find that

∂`
∂θ

=
∑
A

∂ logfi
∂θ

−
∑
j
mj

∂
∂θ

log
(∑
k
p̃kf(h̃k | x̃j ;θ)

)
,

∂`∗

∂ξk
= rke−ξk

(
Qk −

∑
j

mjf(h̃k | x̃j ;θ)∑
k′ p̃k′f(h̃k | x̃j ;θ)

)
, k = 1, . . . , K,

J(θθ) = −
∑
A
ni
∂2 logfi
∂θ ∂θT +

∑
j
mj

[
E∗(θθ)j

Ej
−
{
E∗(θ)j

Ej

}{
E∗(θ)j

Ej

}T]
,

J(θξk) = rke−ξk
∑
j
mj

[
D∗(θ)kj

Ej
−
(
f(h̃k | x̃j ;θ)

Ej

){
E(θ)j
Ej

}]
, k = 1, . . . , K,

J(ξξ) = diag(){diag(Q)−QQT} −
∑
j
mj{diag(Fj)+ FjFT

j },

where Ej =
∑
k′ p̃k′f(h̃k | x̃j ;θ), E(θ)j =

∑
k′ p̃k′D

∗(θ)
k′j and Fj is the vector with

kth element rke−ξkf(h̃k | x̃j ;θ)/Ej .
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