
Contents

1 Introduction 2

2 Functions for Specific Types of Analysis 2

2.1 Introduction . 2

2.1.1 Data structure . 3

2.2 Binary Regression (bin2stg) . 8

2.3 Linear Regression (locsc2stg) . 20

2.4 Linear to Binary Regression (linbin2stg) 28

2.5 Bivariate Binary Regression (bivbin2stg) 34

2.5.1 Sampling on Y1 . 34

2.5.2 Sampling on whether or not (Y1 6= 1, Y2 6= 1) 49

2.6 Bivariate Binary Linear Regression (bivlocsc2stg) 53

2.7 Random Effects Models for Clustered Binary Data (rclusbin) 55

2.7.1 Model description . 55

2.7.2 Prospective sampling . 58

2.7.3 Sampling on probands only . 61

2.7.4 Sampling on all family members . 66

3 Semiparametric Maximum Likelihood 68

3.1 Introduction . 68

3.2 Profile Likelihood . 70

3.2.1 Preliminaries . 70

3.2.2 The direct approach . 70

3.2.3 An extension to the class of likelihoods 72

3.2.4 The discrete partition version . 73

4 How the Program Engine Works 75

4.1 Illustration using Ordinary Prospective Maximum Likelihood 75

4.2 Implementation for Retrospective and Missing Data 78

4.2.1 The direct approach . 78

4.2.2 The discrete partition version . 81

4.3 Function Generalisation for Specific Types of Analysis 84

4.3.1 bin2stg . 85

4.3.2 locsc2stg . 85

4.3.3 bivbin2stg . 87

4.3.4 bivlocsc2stg . 88

4.3.5 rclusbin . 89

1

Description of the “missreg” Library

Chris Wild and Yannan Jiang

University of Auckland, New Zealand

1 Introduction

This library gives functions for fitting arbitrary regression models to data subject to cer-

tain kinds of response-selective sampling and/or missingness that can be fitted by semi-

parametric maximum likelihood. The class of likelihood functions that can be handled

in this way is described in Section 3. Examples of members of the class can be found in

Scott and Wild (1997, 2001), and Lawless et al. (1999).

The method applies to regression models in general and to quite a wide variety of missing-

ness and selection schemes and we want to make this generality available. Unfortunately,

there is a fatal conflict between the demands of an easily understandable user interface

and the generality available here. We have taken a two tiered approach to overcome this.

As a first tier, we have written specific functions to perform a limited number of specific

types of regression with some specific missing data structures. Reading only Sections 2

(which concerns data structures) of this document should provide adequate preparation

for using these. Details of the call sequences are given in the help files for the relevant

function. All of these functions call a single general program engine. We have docu-

mented key parts of the wider system to enable a more sophisticated user to implement

new models and/or new missingness structures. This latter use requires an understanding

of the class of likelihood functions and missing data structures catered for and also of the

program structure. Detailed discussions can be found in Section 3 and 4 of this document.

2 Functions for Specific Types of Analysis

2.1 Introduction

This package is concerned with estimation in the presence of response selection and/or

certain kinds of missingness. To date, we have written functions for binary regression, for

linear regression for continuous responses allowing for regression modelling of the scale as

well as the location parameter, bivariate binary regression, and random intercepts models

for clustered binary data (with arbitrary cluster sizes). We use the standard R/Splus

formula language with some adaptations for models with more than one linear predictor

as these necessitate, for example, the inclusion of several model formulae to describe the

model.

2

Table 1: Leprosy data

Scar=0 Scar=1 Total Popn

Agea Case Control Case Control Case Control Control

2.5 1 24 1 31 2 55 19312

7.5 11 22 14 39 25 61 17327

12.5 28 23 22 27 50 50 13172

17.5 16 5 28 22 44 27 10325

22.5 20 9 19 12 39 21 8026

27.5 36 17 11 5 47 22 5981

32.5 47 21 6 3 53 24 6479

Total 260 260 80622
aAge is age-group midpoint

2.1.1 Data structure

This package is concerned with the fitting of a regression of one or more Y -variables on

one or more X-variables in the presence of certain missing value structures. Calls to
analysis functions are of the general form:

foo(formula, formula2, ..., xstrata = c("vname1","vname2", ...),

obstype.name, data , xs.includes, ...)

where formula is of the usual form y ~ x1 + x2 +

To understand the data structures catered for here, it is helpful to think in terms of

a data frame in which columns are variables and rows (records) refer to data on the same

“individual”. For a subset of individuals (rows) we have data on all variables being used

in the current analysis. For some individuals we may have data on all of the X-variables

to be used in our regression but not on the Y -variables. There is another kind of variable

sometimes present which we will call the V -variables. These are non-Y variables that we

have data on for (essentially) all individuals used for the current analysis.

Example 1: Leprosy data

The leprosy data set described in Scott and Wild (1997, 2001), is reproduced in Table

1. It is included in the library as the data frame leprosy1 shown in Figure 1. This

data frame contains three variables: leprosy, age, and scar together with a frequency

variable counts and a labelling variable called obstype.

For case-control sampled individuals we have data on all 3 variables. The case-control

data makes up the first 28 rows of the data frame. The variable obstype labels these

3

leprosy age scar counts obstype
yes 2.5 no 1 retro
yes 2.5 yes 1 retro
yes 7.5 no 11 retro
yes 7.5 yes 14 retro
yes 12.5 no 28 retro
yes 12.5 yes 22 retro
yes 17.5 no 16 retro
yes 17.5 yes 28 retro
yes 22.5 no 20 retro
yes 22.5 yes 19 retro
yes 27.5 no 36 retro
yes 27.5 yes 11 retro
yes 32.5 no 47 retro
yes 32.5 yes 6 retro
no 2.5 no 24 retro
no 2.5 yes 31 retro
no 7.5 no 22 retro
no 7.5 yes 39 retro
no 12.5 no 23 retro
no 12.5 yes 27 retro
no 17.5 no 5 retro
no 17.5 yes 22 retro
no 22.5 no 9 retro
no 22.5 yes 12 retro
no 27.5 no 17 retro
no 27.5 yes 5 retro
no 32.5 no 21 retro
no 32.5 yes 3 retro
yes 2.5 NA 2 strata
yes 7.5 NA 25 strata
yes 12.5 NA 50 strata
yes 17.5 NA 44 strata
yes 22.5 NA 39 strata
yes 27.5 NA 47 strata
yes 32.5 NA 53 strata
no 2.5 NA 19312 strata
no 7.5 NA 17327 strata
no 12.5 NA 13172 strata
no 17.5 NA 10325 strata
no 22.5 NA 8026 strata
no 27.5 NA 5981 strata
no 32.5 NA 6479 strata

Figure 1: The leprosy data

4

rows as "retro" (for retrospective). We explain the labelling scheme in detail later. The

population data on leprosy and age are represented by the last 14 rows of the data frame

in terms of combinations of possible values and counts. The variable obstype labels these

observations "strata". For these rows there is only data on leprosy and age so scar has

missing values (NA) for the last 14 rows. Because the case-control-study individuals are

included in the population counts we will set xs.includes=TRUE when we call an analysis

program rather than have to adjust the data frame to eliminate the double counting.

We will use the variable leprosy as our Y -variable. Note from Figure 1 that Y =leprosy

is available for all individuals. We are going to use age and scar as explanatory variables

in models for leprosy. We have a single V -variable (a non-Y variable available for all

individuals), namely, age.

�

Our semiparametric maximum likelihood methods can only cope with V -variables that are

discrete. If you have data on continuous V -variables you will have to group them into class

intervals. Discrete V -variables can be included in an analysis as so-called “xstrata” vari-

ables. Where data has been collected conditionally on Y -variables and some V -variables,

any V -variables the data has been sampled on must be included in the xstrata list in

order to obtain a valid analysis. Additional V -variables can be included in the list and

this will increase the efficiency of analysis if they are closely related to X-variables. The

same variable can appear both in the model as an X-variable and also as an xstrata-

variable. Indeed that is the required construction if you want to take advantage of all-data

information on a particular variable in the model. The one exception to this occurs when

we have data for all individuals for all X-variables, as in Example 3 to follow. In this

case we should not specify any xstrata. If a V -variable is included as a X-variable in

the model but not specified as an xstrata-variable, the only information on the variable

that will be used in the analysis is the values we have for those individuals for whom all

Y - and X-variables in the model are fully observed.

Inside the program, strata are formed from all possible combinations of any xstrata-

variables supplied to foo() and, in effect, the distribution of x is estimated nonparamet-

rically within each stratum. Small counts of fully observed data in the cells formed by

the cross-classification of xstrata-variables can be expected to cause problems. For this

reason, analysis programs always print frequency tables of counts within strata.

Because we are allowing for both prospectively and retrospectively sampled data, and

because the presence of random happenstance missing values may obscure the patterns

described above, each record (row) must be labelled using the scheme described in Table

5

Table 2: Labels for observations by sampling and variable type.

xstrata variablesa obstype code definition

None "uncond" (y, x) values sampled unconditionallyb

"retro" x sampled conditionally on some or all of the

Y -variables.

"xonly" unconditionalb information on x.

"y|x" y sampled conditionally on x.

"strata" only the Y -variables observed.

Some supplied "uncond" (y, x) values sampled unconditionallyb

or conditionally on some or all of the xstratac

variables.

"retro" x sampled conditionally on some or all of the

Y -variables, or on some or all Y -variables and

some or all of the xstrata variablesc.

"xonly" unconditionalb information on x, or conditional

on some or all of the xstrata variables.

"y|x" y sampled conditionally on x.

"strata" only the Y and xstrata variables are observed.
a The same variable can appear in the model as an X-variable and also as an xstrata variable.

Indeed that is required in order to take advantage of all-data information on a particular X-variable.
The one exception to this occurs when we have data for all individuals for all X-variables. In this.
case we should not specify any xstrata.

b Although we talk about “unconditional sampling” of (y, x), sampling can be conditional on some
of the X-variables, but the conditioning set of variables must always be the same.

c When we talk about “sampling conditional on some or all of the xstrata variables”,
the conditioning set of variables must always be the same.

2 using a variable to be supplied in the call to foo() whose name is supplied through the

argument obstype.name which has default "obstype".

Some important details and qualifications:

1. Population counts and "xs.includes"

For population based case-control studies, data on y, x (and v) for study individu-

als is supplemented by information on y and v for the whole population. Since the

V -variables are discrete, this supplementary information will often be obtained via a

cross-classification (e.g., published tables). This situation is handled correctly if the

rows for study individuals are labelled "retro" and the rows relating to population

counts are labelled "strata" (as in Example 1 above and in several examples which

follow). Study individuals come from the population and thus are included in the

population counts and thus are in the data set twice. Rather than requiring the

user to separate these individuals out and reduce the population counts, the pro-

6

gram allows the user to specify that this is the case via setting xs.includes to TRUE.

Equivalently when we have two-phase sampling we use xs.includes set to TRUE

or FALSE to indicate whether the rows of the data frame relating to first-phase

sampling include or exclude those individuals selected at the second phase. Rows

relating to first-phase sampled individuals should be labelled "strata". If the sec-

ond phase is unconditional we will label second-phase observations "uncond" rather

than "retro".

2. Sampling strata versus analysis strata

As previously stated, strata are formed from all combinations of the V -variables

named in xstrata. This stratification must be at least as detailed as any stratifi-

cation used in sampling. More efficient analyses can be obtained if we have enough

information so that the analysis stratification is finer than the stratification used in

sampling.

3. Estimation of the distribution of x and the "y|x" code

In standard regression fitting without missing data or response selection, the mar-

ginal distribution of x forms an orthogonal term in the likelihood that can be ignored

when fitting regression models. This is not the case when we have missing data. In

our semiparametric maximum likelihood approach, the marginal distribution of x is

estimated nonparametrically. When there are no xstrata variables present, a single

distribution is estimated for x. When xstrata variables are present, a distribution

for x is estimated separately within each stratum defined by all combinations of val-

ues of the xstrata variables. Data points labelled "uncond", "retro" and "xonly"

are used in the estimation of the distribution of x. Data points labelled "y|x"

are not used for this purpose (they contribute only to estimation of the regression

parameters).

4. Additional happenstance missingness

The analysis programs use case deletion to cope with the presence of small numbers

of happenstance missing values occurring within the larger missingness structure.

Thus: rows labelled "uncond", "retro" and "y|x" will be deleted if y or the value

of any X-variable in the model is missing; rows labelled "xonly" will be deleted if

the value of any X-variable in the model is missing; and rows labelled "xstrata"

will be deleted if y or the value of any "xstrata"-variable is missing. This latter

tends to be inappropriate for "xstrata"-variables which are not also in the model.

Here, missingness should usually be treated as just one more category (e.g. coded

as "miss" rather than NA) when the variable is defined, prior to calling the function.

7

case control scar age obstype
1 24 no 2.5 retro
1 31 yes 2.5 retro
11 22 no 7.5 retro
14 39 yes 7.5 retro
28 23 no 12.5 retro
22 27 yes 12.5 retro
16 5 no 17.5 retro
28 22 yes 17.5 retro
20 9 no 22.5 retro
19 12 yes 22.5 retro
36 17 no 27.5 retro
11 5 yes 27.5 retro
47 21 no 32.5 retro
6 3 yes 32.5 retro
2 19312 NA 2.5 strata
25 17327 NA 7.5 strata
50 13172 NA 12.5 strata
44 10325 NA 17.5 strata
39 8026 NA 22.5 strata
47 5981 NA 27.5 strata
53 6479 NA 32.5 strata

(a) leprosy1

(b) leprosy2

(c) leprosy3

leprosy age scar counts obstype
yes 2.5 no 1 retro
yes 2.5 yes 1 retro
yes 7.5 no 11 retro
yes 7.5 yes 14 retro
yes 12.5 no 28 retro
yes 12.5 yes 22 retro
yes 17.5 no 16 retro
yes 17.5 yes 28 retro
yes 22.5 no 20 retro
yes 22.5 yes 19 retro
yes 27.5 no 36 retro
yes 27.5 yes 11 retro
yes 32.5 no 47 retro
yes 32.5 yes 6 retro
no 2.5 no 24 retro
no 2.5 yes 31 retro
no 7.5 no 22 retro
no 7.5 yes 39 retro
no 12.5 no 23 retro
no 12.5 yes 27 retro
no 17.5 no 5 retro
no 17.5 yes 22 retro
no 22.5 no 9 retro
no 22.5 yes 12 retro
no 27.5 no 17 retro
no 27.5 yes 5 retro
no 32.5 no 21 retro
no 32.5 yes 3 retro
yes 2.5 NA 2 strata
yes 7.5 NA 25 strata
yes 12.5 NA 50 strata
yes 17.5 NA 44 strata
yes 22.5 NA 39 strata
yes 27.5 NA 47 strata
yes 32.5 NA 53 strata
no 2.5 NA 19312 strata
no 7.5 NA 17327 strata
no 12.5 NA 13172 strata
no 17.5 NA 10325 strata
no 22.5 NA 8026 strata
no 27.5 NA 5981 strata
no 32.5 NA 6479 strata

leprosy age scar counts obstype
yes 2.5 no 1 retro
yes 2.5 yes 1 retro
yes 7.5 no 11 retro
yes 7.5 yes 14 retro
yes 12.5 no 28 retro
yes 12.5 yes 22 retro
yes 17.5 no 16 retro
yes 17.5 yes 28 retro
yes 22.5 no 20 retro
yes 22.5 yes 19 retro
yes 27.5 no 36 retro
yes 27.5 yes 11 retro
yes 32.5 no 47 retro
yes 32.5 yes 6 retro
no 2.5 no 24 retro
no 2.5 yes 31 retro
no 7.5 no 22 retro
no 7.5 yes 39 retro
no 12.5 no 23 retro
no 12.5 yes 27 retro
no 17.5 no 5 retro
no 17.5 yes 22 retro
no 22.5 no 9 retro
no 22.5 yes 12 retro
no 27.5 no 17 retro
no 27.5 yes 5 retro
no 32.5 no 21 retro
no 32.5 yes 3 retro
yes NA NA 260 strata
no 7.5 NA 80622 strata

Figure 2: The leprosy data in two permissable formats

2.2 Binary Regression (bin2stg)

The function bin2stg fits binary regression models using several links, the default being
the logistic link. We will illustrate use of this function with some simple examples and

default behaviour before describing more detailed features.

Example 1 Leprosy data (continue)

In Scott and Wild (1997, 2001) a logistic regression was performed of leprosy on scar

and a transformation of age, namely (age + 7.5)−2. The binary regression function is
called bin2stg. The fitting syntax is as follows:

> data(leprosy1)

> leprosy1$age.trans <- 100 * (leprosy1$age + 7.5)^-2

> z1 <- bin2stg(leprosy ~ age.trans + scar, data=leprosy1, weights=counts,

xstrata="age",xs.includes=TRUE)

8

Here, we have to tell the program to use age as an x-stratum variable and that the
counts for the rows labelled strata include the counts for the rows labelled retro. It is
equivalent to use age.trans as the x-stratum variable as both variables define the same
set of groups. The output from summary(z1) is given below. The counts in the "Stratum
Counts Report" reflect the data as it is used in the function (after removal of any random

missing values). Thus, when xs.includes=TRUE the counts printed below for strata do
not include those printed for retro observations.

> summary(z1)

Call:

bin2stg(formula = leprosy ~ age.trans + scar, weights = counts,

xstrata = "age", data = leprosy1, xs.includes = TRUE)

Stratum Counts Report:

xStrat 1 2 3 4 5 6 7

obstype y

retro 1 2 25 50 44 39 47 53

2 55 61 50 27 21 22 24

strata 1 0 0 0 0 0 0 0

2 19257 17266 13122 10298 8005 5959 6455

Model for prob of leprosy=yes (y=1) given covariates

Key to x-Strat:

1 2 3 4 5 6 7

age2.5 age7.5 age12.5 age17.5 age22.5 age27.5 age32.5

loglikelihood = -3900.441 using 3 parameters

Wald Tests:

Df Chi Pr(>Chi)

age.trans 1 82.83 0.00000

scar 1 5.57 0.01827

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.4809 0.1144 -39.176 0.00000

age.trans -4.0906 0.4495 -9.101 0.00000

scaryes -0.4212 0.1785 -2.360 0.01827

Suppose we only had information on age for the case-control sampled individuals but had

population counts of cases and controls. The data frame leprosy3 depicted in Figure
2(c) mimics this. The first 28 rows of leprosy3 are as for leprosy1. The last 2 rows of

9

leprosy3 give population counts for cases and controls. This data set has no V -variables
(i.e. no non-Y variables that have been observed for all individuals). Thus we do not
specify any variables as xstrata.

> data(leprosy3)

> leprosy3$age.trans <- 100 * (leprosy3$age + 7.5)^-2

> z3 <- bin2stg(leprosy ~ age.trans + scar,data=leprosy3, weights=counts,

xs.includes=TRUE)

> summary(z3)

Call:

bin2stg(formula = leprosy ~ age.trans + scar, weights = counts,

data = leprosy3, xs.includes = TRUE)

Stratum Counts Report:

xStrat 1

obstype y

retro 1 260

2 260

strata 1 0

2 80362

Model for prob of leprosy=yes (y=1) given covariates

loglikelihood = -4949.26 using 3 parameters

Wald Tests:

Df Chi Pr(>Chi)

age.trans 1 55.431 9.681e-14

scar 1 2.343 1.258e-01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5102 0.1600 -28.181 0.000e+00

age.trans -4.3102 0.5789 -7.445 9.681e-14

scaryes -0.3021 0.1974 -1.531 1.258e-01

The most obvious difference in output is in the "Stratum Counts Report". When no
strata are defined, all observations are in the same stratum. The regression coefficients are
very similar to what we saw in the previous analysis but the standard errors are somewhat
larger reflecting the fact that the population information on age is no longer included in

the analysis.

10

Note that if we use leprosy1 without telling the program that age is an xstrata-variable,
as below,

> summary(bin2stg(leprosy ~ age.trans + scar, data=leprosy1,

weights=counts, xs.includes=TRUE))

then the only information about age used is the information we have for fully observed
individuals so that we get exactly the same results as when we obtained from leprosy3.

Specifying population proportions

In leprosy3, the case-control data is supplemented by a row giving the population counts
for cases and a row giving the population count for controls. There are situations where

we do not know population counts of cases and controls but have a pretty good idea of the
percentage of cases in the population. We handle this situation in a very similar way. If
we “knew” that the percentage of cases was approximately 0.003 and with a level of con-
fidence roughly consistent with this having been obtained from a sample of N = 100, 000
observations, use N × 0.003 as the population count of cases and N × (1 − 0.003) as the

population count of controls, and set xs.includes=FALSE. Use of a very large value of N
corresponds to specifying the population percentage of cases precisely. Smaller values of
N correspond to incorporating information about the population percertage of cases in
an essentially Bayesian way.

The other standard data format

The data frame leprosy1 is in the usual format expected by the analysis functions. How-
ever, in keeping with glm() for binary data, we also allow the format of leprosy2 in
Figure 2(b). The function call is now

> data(leprosy2)

> leprosy2$age.trans <- 100 * (leprosy2$age + 7.5)^-2

> z2 <- bin2stg(cbind(case,control) ~ age.trans + scar, xstrata="age",

data=leprosy2, xs.includes=TRUE)

Running summary(z2) produces the same output as summary(z1) except for two lines
which we print below.

Call:

bin2stg(formula = cbind(case, control) ~ age.trans + scar, xstrata = "age",

data = leprosy2, xs.includes = TRUE)

. . . .

Model for prob of y=case (y=1) given covariates

As we do not have a name for the resonse variable y, this second will suffice until we can
think of a better solution.

11

stage inst hist control case obstype
I 1 FH 115 91 retro
I 1 UH 2 9 retro
II 1 FH 86 117 retro
II 1 UH 3 14 retro
III 1 FH 79 100 retro
III 1 UH 3 15 retro
IV 1 FH 27 60 retro
IV 1 UH 1 9 retro
I 2 FH 15 1 retro
I 2 UH 64 16 retro
II 2 FH 11 2 retro
II 2 UH 51 33 retro
III 2 FH 18 3 retro
III 2 UH 60 57 retro
IV 2 FH 23 3 retro
IV 2 UH 13 41 retro
I 1 NA 1400 100 strata
II 1 NA 841 131 strata
III 1 NA 707 115 strata
IV 1 NA 314 69 strata
I 2 NA 79 17 strata
II 2 NA 62 35 strata
III 2 NA 78 60 strata
IV 2 NA 36 44 strata

Figure 3: Wilm’s tumor data

Example 2: Wilm’s tumor data

This data set was described in Breslow and Chatterjee (1999) as a balanced eight-strata
data set. It has been included in the library as the data frame wilms.sub which is shown
in Figure 3. We have data on stage (cancer staging), inst (institution) and case-control

status for all study subjects and hist (histology classified as favourable or unfavourable)
only for all cases and an equal number of randomly selected controls. We see that stage
and inst are both V -variables (non-Y variables available for all individuals). Breslow and
Chatterjee (1999) constructed data of the two-phase case-control form with a prospective
first phase by only incorporating inst values only for a case-control sampled subset.

> data(wilms.sub)

> z4 <- bin2stg(cbind(case,control) ~ stage*hist, xstrata=c("stage",

"inst"), data=wilms.sub, xs.includes=TRUE)

> summary(z4)

Call:

bin2stg(formula = cbind(case, control) ~ stage * hist, xstrata = c("stage",

"inst"), data = wilms.sub, xs.includes = TRUE)

Stratum Counts Report:

12

xStrat 1 2 3 4 5 6 7 8

obstype y

retro 1 100 131 115 69 17 35 60 44

2 117 89 82 28 79 62 78 36

strata 1 0 0 0 0 0 0 0 0

2 1283 752 625 286 0 0 0 0

Model for prob of y=case (y=1) given covariates

Key to x-Strat:

1 2 3 4

stageI:inst1 stageII:inst1 stageIII:inst1 stageIV:inst1

5 6 7 8

stageI:inst2 stageII:inst2 stageIII:inst2 stageIV:inst2

loglikelihood = -5330.041 using 8 parameters

Wald Tests:

Df Chi Pr(>Chi)

stage 3 47.33 2.959e-10

hist 1 23.85 1.042e-06

stage:hist 3 11.78 8.169e-03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.7109 0.1080 -25.1019 0.000e+00

stageII 0.7707 0.1462 5.2733 1.340e-07

stageIII 0.7853 0.1512 5.1940 2.058e-07

stageIV 1.0459 0.1749 5.9809 2.219e-09

histUH 1.3756 0.2817 4.8836 1.042e-06

stageII:histUH 0.1007 0.3693 0.2727 7.851e-01

stageIII:histUH 0.4643 0.3522 1.3184 1.874e-01

stageIV:histUH 1.3682 0.4416 3.0984 1.946e-03

From above, we have fitted the model that Breslow and Chatterjee fitted. The printed
strata counts again do not include the retro counts. Case-control status is modelled in
terms of stage and hist. We want the all-individuals information on both stage and

inst, although the latter is not in the model, to be used so both have been included as
xstrata variables.

Example 3: Trouser-trawl data

The data included in the library as the data frame trawl and shown in Figure 4 is de-

13

caught37 length count obstype
NA 24 1 xonly
NA 25 1 xonly
NA 26 3 xonly
NA 27 14 xonly
NA 28 30 xonly
NA 29 49 xonly
NA 30 60 xonly
NA 31 49 xonly
NA 32 70 xonly
NA 33 108 xonly
NA 34 88 xonly
NA 35 84 xonly
NA 36 68 xonly
NA 37 37 xonly
NA 38 33 xonly
NA 39 12 xonly
NA 40 5 xonly
NA 41 6 xonly
NA 42 10 xonly
NA 43 1 xonly
NA 44 6 xonly
NA 45 2 xonly
NA 46 1 xonly
NA 47 0 xonly
1 24 0 retro
1 25 0 retro
1 26 0 retro
1 27 1 retro
1 28 5 retro
1 29 19 retro
1 30 29 retro
1 31 51 retro
1 32 91 retro
1 33 120 retro
1 34 118 retro
1 35 107 retro
1 36 78 retro
1 37 52 retro
1 38 40 retro
1 39 17 retro
1 40 17 retro
1 41 14 retro
1 42 10 retro
1 43 4 retro
1 44 6 retro
1 45 2 retro
1 46 5 retro
1 47 1 retro

Figure 4: Trouser-trawl data

14

scribed in Millar (1992). The idea is to estimate the catching qualities of a test net. Two
nets were dragged behind a fishing trawler. One had a very fine-meshed end which let
no fish escape. The other was a net with a mesh size that is being tested for its catching
qualities. Our Y -variable is caught37. From the fine net we have a sample from the
length distribution of the fish swimming into the nets, pr(x) say. Their value of caught37

is missing (NA). These observations are labelled xonly because we have only observed the
X-variable. From the test net we have a sample from the the distribution of the lengths
of fish caught by the net, pr(length | caught) say. These observations are labelled retro

and for them caught37 has the value 1.

We want to estimate pr(Y = 1 | x) = pr(caught | length). We can fit a logistic regression
model as follows:

> data(trawl)

Estimate pr(caught) assuming all fish over len=35 are caught:

265 out of 787 fish in fine net have length over 35 (caught37=NA)

353 out of 738 fish in test net have length over 35 (caught37=1)

So 738 were caught from (estimate) 353*787/265 that entered

> phat <- 738 / (787*353/265)

> z5 <- bin2stg(caught37 ~ I(length-35), weights=count, data=trawl,

start=c(log(phat/(1-phat)),0), Qstart=matrix(c(phat,1-phat)))

> summary(z5)

Call:

bin2stg(formula = caught37 ~ I(length - 35), weights = count, data = trawl,

start = c(log(phat/(1 - phat)), 0), Qstart = matrix(c(phat, 1 - phat)))

Stratum Counts Report:

xStrat 1

obstype y

retro 1 787

xonly 1 0

Observations of obstype==xonly

xStrat

obstype 1

retro 0

xonly 738

Model for prob of caught37=1 (y=1) given covariates

15

loglikelihood = -11137.78 using 2 parameters

Wald Tests:

Df Chi Pr(>Chi)

I(length - 35) 1 21.43 3.668e-06

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.4740 1.1988 3.732 1.899e-04

I(length - 35) 0.9244 0.1997 4.629 3.668e-06

We have had to supply some starting values here as we do not have a good general starting
value strategy for this data structure. The parameters start and Qstart in the function
call are used to supply the starting values for θ, the regression coefficients, and for Q in
which Q1 = pr(Y = 1) and Q2 = pr(Y = 0)1 respectively. When the logistic regression
model is considered as in this example, the estimate of intercept is simply the logit of

pr(Y =1) when the coefficient of X is set to zero.

Example 4: Birthweight binary data

This example gives a more real-world idea about usage of these functions in data analysis.
The data frame lowbirth.bin is a subset of the data collected in the Auckland Collab-
orative Birthweight (ABC) study (see Thompson et al., 2001). The ABC study was a

case-control study in which, essentially, all births below the 10th percentile of weight
(for gestational age and sex) were taken together with an equal-sized random sample
of births above the 10th percentile. This data has been augmented here by routinely-
collected data on all births over the study period. We will call the individuals selected
into the case-control study study individuals and the rest nonstudy individuals. Data frame

lowbirth.bin contains data on a subset of the variables for a 50% sample of individuals
(after a number of deletions). The nonstudy controls have been further subsampled from
the knowledge that approximately 1 in 9 controls were selected2. The data frame contains
1148 rows and 18 columns. The 18 variables are described in Table 3.

We will run a logistic regression on the response sgagp using explantory variables mumht,
bmi, and the factors ethnicdb, occ, hyper and smoke. We will use a quadratic in bmi.
Sampling into the case-control study was conditional on sgagp but not on any of the
other variables. Other all-individuals variables can be used as xstrata variables in an

1See Section 3.2.3 to 3.2.4 for more detail.
2The original 50% sample contained 7215 nonstudy controls which were about twice as many controls

in the data base as there should have been given the 1 in 9 sampling rate. As the information used by

the exclusion rules for study babies was unavailable for the non-study babies, we randomly selected the

correct number of controls to form a synthetic data set to use.

16

Table 3: Variables in lowbirth.bin

“All” individuals

instudy with 2 levels: retro=in-study (771 births),

strata = out-of-study (2708 births, all controls)

sgagp with 2 levels: sga (small) or aga (appropriate) for gestational age

counts Frequency variable

sex 1=female or 2=male

ethnicdb A (Asian), E (Euro.), M (Maori) or P (Pacifican)

smokedb Smoking variable from database. Levels are: Y, N, and miss

(About 35% are missing (miss) for both study and nonstudy births.)

mstrat Marital status : 1=married, 2=defacto. 3=never married,

4=single separated, divorced or widowed

mstratdb mstrat, but with levels 3 and 4 combined into "3,4"

htstrat Class intervals of mother’s height in cm: (0,1.55], (1.55,1.6], (1.6,1.65],

(1.65,1.7], (1.7,2] and miss

(About 49% are missing for both study and nonstudy births.)

edstratdb mother’s education, levels 1 to 4 and miss

(About 40% are missing for both study and nonstudy births.)

Study individuals only (so the data on these are missing for the 2708 non-study births)

occ occupational group, 1 to 3 (3 is highest)

mumht height of the mother in cm. (9 study individuals have NA)

mumwt weight of the mother in kg. (17 study individuals have NA)

bmi body mass index of the mother. (21 study individuals have NA)

smoke smoking prior to pregnancy Y or N (6 study individuals have NA)

age1st mother’s age at first pregnancy

hyper any hypertension (1=yes, 0=no)

eductrm age mother left school: <=15,16, 17, 18, >=19. (4 study individuals have NA)

17

attempt to gain more efficiency. The simulations in Lawless et al. (1999) suggest that
appreciable efficiency gains will only be made using V -variables that are identical to or
are surogates of continuous variables in the model, and that most of those gains will prob-
ably be confined to those X-variables. We do not have any particularly good surrogates
here. Nevertheless, we have included ethnicdb and smokedb as xstrata-variables for

illustrative purposes.

> data(lowbirth.bin)

> z6 <- bin2stg(sgagp~mumht+bmi+I(bmi^2)+ethnicdb+factor(occ)+hyper+smoke,

weights=counts, xstrata=c("ethnicdb","smokedb"),

obstype.name=c("instudy"), data=lowbirth.bin, xs.includes=FALSE)

> summary(z6)

Call:

bin2stg(formula = sgagp ~ mumht + bmi + I(bmi^2) + ethnicdb + factor(occ) +

hyper + smoke, weights = counts, xstrata = c("ethnicdb", "smokedb"),

obstype.name = c("instudy"), data = lowbirth.bin, xs.includes = FALSE)

Observations deleted due to missing data:

retro: 26 rows relating to 26 observations

Stratum Counts Report:

xStrat 1 2 3 4 5 6 7 8 9 10 11 12

obstype y

retro 1 33 39 13 21 72 67 3 20 1 27 21 11

2 13 76 4 39 31 106 5 33 2 21 12 15

strata 1 0 0 0 0 0 0 0 0 0 0 0 0

2 102 414 52 190 259 933 40 288 16 185 104 125

Model for prob of sgagp=sga (y=1) given covariates

Key to x-Strat:

1 2 3

ethnicdbA:smokedbmiss ethnicdbE:smokedbmiss ethnicdbM:smokedbmiss

4 5 6

ethnicdbP:smokedbmiss ethnicdbA:smokedbN ethnicdbE:smokedbN

7 8 9

ethnicdbM:smokedbN ethnicdbP:smokedbN ethnicdbA:smokedbY

10 11 12

ethnicdbE:smokedbY ethnicdbM:smokedbY ethnicdbP:smokedbY

loglikelihood = -4000.046 using 11 parameters

18

Wald Tests:

Df Chi Pr(>Chi)

mumht 1 17.064 3.615e-05

bmi 1 8.507 3.537e-03

I(bmi^2) 1 5.381 2.035e-02

ethnicdb 3 15.432 1.483e-03

factor(occ) 2 7.784 2.040e-02

hyper 1 18.324 1.863e-05

smoke 1 4.261 3.900e-02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 12.324846 2.75129 4.479663 7.476e-06

mumht -0.056579 0.01370 -4.130812 3.615e-05

bmi -35.087025 12.02962 -2.916719 3.537e-03

I(bmi^2) 49.662119 21.40839 2.319750 2.035e-02

ethnicdbE -0.533751 0.19864 -2.686996 7.210e-03

ethnicdbM 0.001221 0.31550 0.003872 9.969e-01

ethnicdbP -0.682218 0.26617 -2.563109 1.037e-02

factor(occ)2 0.347636 0.20076 1.731635 8.334e-02

factor(occ)3 0.742938 0.27329 2.718473 6.558e-03

hyper 1.297394 0.30308 4.280652 1.863e-05

smokeY 0.438023 0.21220 2.064206 3.900e-02

In introducing and motivating data structures we have seen a number of examples of the

use of the binary regression function, bin2stg and described quite a few of its features.

A detailed description of call sequence, output etc. is given in the help file for the func-

tion. Here we merely highlight two or three issues that have not been discussed previously.

The function bin2stg fits binary regression models using several links. Links are spec-

ified using the parameter linkname and the default is "logit". Also implemented are

"probit" and "cloglog".

One of the most difficult issues to address with the range of data types allowed is that of

starting values. To start the iterative process, starting values are required for both the

regression coefficients (see start) and for the marginal response probablities within each

combination of xstrata levels (see Qstart). For some data structures, we can automati-

cally calculate sensible starting values. Outside these classes, the user will have to supply

starting values.

19

If Qstart is NULL and xs.includes is TRUE, Qstart values are estimated using obser-

vations of observation type strata only. If xs.includes is FALSE, Qstart values are

estimated using observations of observation type uncond, retro and strata. In all

cases, the estimates are the proportions of those in x-stratum j with response i, i = 1, 2.

If start is NULL, the program constructs starting values for the regression coefficients

by sending observations of types uncond, retro, or y|x to glm() with retro observations

accompanied by appropriate offsets. It refuses to construct starting values if only one

value of the Y -variable is observed (as in Example 3, trouser trawl data), or if the sample

sizes are deemed too small. Under these circumstances, the user is required to supply

starting values, cf. Example 3. In this example, we were able to apply particular knowl-

edge/intuition about the problem to come up with starting values that proved adequate.

Other useful strategies include starting by fitting very simple models and supplying the

results through start when fitting a more complex model. If the program finds a vector

in start which it is not of the length expected from the model, it will match names(start

vector) and the variable names in the model, extract corresponding elements of the start

vector to use as starting values, and use zeroes as starting values for all other coefficients.

When using this strategy, it is usually advisable to centre any continuous X-variable be-

ing added to the model. Otherwise adding the variable is likely to cause a big change in

the intercept with the previously estimated intercept then often being too far from the

solution, thus causing the algorithm to fail.

2.3 Linear Regression (locsc2stg)

Linear regressions can be fitted to the data structures described earlier using the function

locsc2stg. This function caters for the location and scale class of models which are of

the form

y = η1 + exp(η2) U.

Here, η1 and η2 are linear predictors and U is an error variable. Currently implemented

error distributions are the standard normal, the logistic, and Student’s t-distribution with

user-specified degrees of freedom. A model for the location parameter η1 (e.g., the mean)

is specified in the usual way for lm(), e.g., y ∼ x1 + x2, supplied as the first formula

in the call sequence. If ∼ 1 is specified for the second formula in the call then η2 is a

constant, the log of the scale parameter. By using something like ∼ x2 + x3 for the

second formula, η2 is modelled using a linear model in the covariates. It is sometimes at-

tractive to use the fitted values of y from a previously fitted model (available in $fitted)

in modelling the scale. Note that the second formula has no left-hand side.

20

The function allows for two types of information on the Y -variable for observations of

type strata. One can use the actual y-values (when method is set equal to "direct") or

one can just use class-interval information on the y-values (when method is set equal to

"ycutmeth"). In terms of what the Y -variable should look like on input to locsc2stg,

the program behaves as if actual y-values are present. The user supplies a vector of

cutpoints (in yCuts) dividing up (−∞,∞). For the "ycutmeth", the program sets up

y-strata corresponding to the intervals so defined and determines stratum membership

from determining which interval a given y-observation falls into. Thus, if you really do

only have interval-level information on y for observations of type strata, you should use

something like the centre of the interval as the y-value.

Why might one want to use only class-interval information on y (the "ycutmeth" method)

when it is possible to use the actual y-values themselves (the "direct" method)? There

are two reasons, storage and speed. The "direct" method utilizes very big arrays and

these may become too large to be accommodated in memory for larger data sets. Process-

ing these large arrays makes fitting even slower. The losses of efficiency in using the

"ycutmeth" method may often not be great with judicious choice of y-cutpoints. (We

are currently investigating this). Increased speed combined with relatively small losses in

efficiency would make the "ycutmeth" method preferable in the more exploratory stages

of model fitting.

If the program is to calculate starting values automatically, this is done using a weighted

least squares fit using lm(). Here, yCuts information is used to reweight observations of

type "retro" when calling lm().

Compressing the data

Three arguments in the call are aimed at reducing storage when using the direct method.

When compactY=TRUE, the program will round each y-value used for observations of type

strata to the closest of straty.maxnvals equally spaced values spanning the range of y

and compress these to distinct values and frequencies before fitting. This always makes

a big difference to speed and storage. It appears that we can round these Y values fairly

heavily without appreciable impact on the results. We are currently investigating this

further. The current default rounds observations to one of 20 equally spaced values. Most

of our simulations are rounded to 40 values with excellent results.

When compactX=TRUE, the program will round X-values for records with full explana-

tory variable information down to distinct combinations and frequencies before fitting.

Substantial compression will occur only if there are not many X-variables and they all

are coarsely discrete.

21

Further details about yCuts

In the simplest case, we assume that −∞ < c1 < c2 < . . . < ck < ∞ and supply the

program with (the vector) yCuts = c(c1, c2, ... , ck). Note that the ±∞ endpoints

are assumed and intervals of the form (ck < ck+1] are employed. If a vector of cutpoints

is supplied to the program, that set of cutpoints will be applied to y for every x-stratum.

Sometimes, as in Example 5 below, different sets of cutpoints need to be applied in dif-

ferent xstrata. In this case, yCuts should be a matrix with the jth column containing

the y-cutpoints corresponding to the jth x-stratum. We elaborate within the Example.

The program allows for different numbers of y-cutpoints in different x-strata. One simply

pads the bottom of any column of the yCuts matrix that is not full with NA’s.

Note that with the "ycutmeth" method, the stratification defined by the yCuts and

xstrata on the Y × X-space must be at least as fine as any stratification used in sam-

pling. With a finer stratification a successful analysis incorporates more information about

y and any xstrata variables for observations of type strata.

When data on y is rounded (as it always is) correct handling of what happens on the

interval boundaries can be extremely important when there are substantial differences in

sampling rates between strata. Otherwise some observations sampled at a low rate may

be treated as if they were sampled at a high rate and vice-versa. The "direct" method

is much more robust in this regard.

Example 5: Continuous birthweight data

This is a random 20% subset of data from the Auckland Collaborative Birthweight Study

(after some simplifying deletions). As in data frame lowbirth.bin, the nonstudy controls

in this data have also been subsampled with approximately 1 in 9 controls being selected.

There are two additional variables that are not in the variable list from lowbirth.bin of

Example 4, Table 3.

gest Gestational age in weeks (38, 39, 40, 41)

birthwt Birthweight in grams

Sampling was conditional on whether the birthweight was below or above a birthwt cutoff

(our y variable). However, cutoff values for defining “small for gestational age” differed

by xstrata defined by gestational age and sex as shown in below.

Age

Sex 38 39 40 41

Female 2550 2740 2900 3030

Male 2650 2840 3010 3140

22

In this example, the minimum useable stratification contains 16 Y ×X-strata defined by
whether the birth falls below or above the relevant y (birthweight) cutpoint and the 8
combinations of levels of sex and gestational age. The x-strata are defined by the 8 com-
binations of levels of sex and gestational age. Because we are using different y-cutpoints
in different x-strata, yCuts should be a matrix with 8 columns. The ordering of x-strata

used by the program is critical so that, to ensure that the ordering of the columns of
yCuts is the same as the ordering of the x-strata, it is safest to explictly form a single
x-stratum variable (whose name is then communicated via xstrata) with levels coming
in a known order before calling locsc2stg().3 Because our y-intervals are of the form
(−∞, c] and (c,∞), the matrix yCuts should have a single row.

We will now set up a single x-stratum variable (which we will call sex.age) and a yCuts

matrix, and fit a model with a constant scale parameter to the response variable birthwt.

> data(lowbirth.ls)

> lowbirth.ls$sex.age <- interaction(lowbirth.ls$sex,lowbirth.ls$gest)

> yCuts <- matrix(c(2550,2650,2740,2840,2900,3010,3030,3140),nrow=1)

>

> z7 <- locsc2stg(birthwt~gest+mumht+bmi+ethnicdb+hyper+smoke, ~1,

yCuts=yCuts, xstrata=c("sex.age"), data=lowbirth.ls,

obstype.name=c("instudy"), xs.includes=FALSE,

method="ycutmeth")

> summary(z7)

Call:

locsc2stg(formula1 = birthwt ~ gest + mumht + bmi + ethnicdb + hyper +

smoke, formula2 = ~1, yCuts = yCuts, xstrata = c("sex.age"),

data = lowbirth.ls, obstype.name = c("instudy"),

method = "ycutmeth", xs.includes = FALSE)

Observations deleted due to missing data:

retro: 8 rows relating to 8 observations

Stratum Counts Report:

xStrat 1 2 3 4 5 6 7 8

obstype yStrat

retro 1 7 8 13 7 27 18 12 13

2 10 8 16 13 22 21 16 20

strata 1 0 0 0 0 0 0 0 0

3If the same set of y-cuts is being applied in each x-stratum (signalled by yCuts being a vector), order

is not a problem and we can continue to define x-strata by setting xstrata to be a vector with variable

names as we did previously with bin2stg.

23

2 88 64 128 104 176 176 128 168

Key to x-Strat:

1 2 3 4 5 6

sex.age1.38 sex.age2.38 sex.age1.39 sex.age2.39 sex.age1.40 sex.age2.40

7 8

sex.age1.41 sex.age2.41

Key to the y-Strat:

[,1] [,2] [,3]

[1,] (-3.07e+04,2.55e+03] (-3.07e+04,2.65e+03] (-3.07e+04,2.74e+03]

[2,] (2.55e+03,3.46e+04] (2.65e+03,3.46e+04] (2.74e+03,3.46e+04]

[,4] [,5] [,6]

[1,] (-3.07e+04,2.84e+03] (-3.07e+04,2.9e+03] (-3.07e+04,3.01e+03]

[2,] (2.84e+03,3.46e+04] (2.9e+03,3.46e+04] (3.01e+03,3.46e+04]

[,7] [,8]

[1,] (-3.07e+04,3.03e+03] (-3.07e+04,3.14e+03]

[2,] (3.03e+03,3.46e+04] (3.14e+03,3.46e+04]

loglikelihood = -2683.785 using 10 parameters

Location Model:

Wald Tests:

Df Chi Pr(>Chi)

gest 1 26.705 2.371e-07

mumht 1 16.255 5.536e-05

bmi 1 8.166 4.268e-03

ethnicdb 3 30.639 1.012e-06

hyper 1 36.780 1.323e-09

smoke 1 4.269 3.881e-02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3716.93 963.584 -3.857 1.146e-04

gest 108.27 20.952 5.168 2.371e-07

mumht 14.50 3.598 4.032 5.536e-05

bmi 13.61 4.763 2.858 4.268e-03

ethnicdbE 220.22 63.493 3.468 5.237e-04

ethnicdbM 188.84 106.379 1.775 7.588e-02

ethnicdbP 435.47 79.935 5.448 5.100e-08

hyper -620.56 102.324 -6.065 1.323e-09

smokeY -116.12 56.203 -2.066 3.881e-02

24

Scale Model:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

5.29675 0.04601 115.12151 0.00000

In forming the intervals the program takes “−∞”= min(y) − 10 × range(y) and “∞”=
max(y) + 10 × range(y).

Using the "direct" method with the results of the previous fit as strating values, we
get:

> z8 <- locsc2stg(birthwt~gest+mumht+bmi+ethnicdb+hyper+smoke,~ 1,

xstrata=c("sex.age"), data=lowbirth.ls, obstype.name=c("instudy"),

xs.includes=FALSE, method="direct", start=z7$coefficients,

compactX=TRUE, compactY=TRUE, straty.maxnvals=20)

> summary(z8)

Call:

locsc2stg(formula1 = birthwt ~ gest + mumht + bmi + ethnicdb + hyper + smoke,

formula2 = ~1, xstrata = c("sex.age"), data = lowbirth.ls,

obstype.name = c("instudy"), method = "direct",

xs.includes = FALSE, compactX = TRUE, compactY = TRUE,

straty.maxnvals = 20, start = z7$coefficients)

Observations deleted due to missing data:

retro: 8 rows relating to 8 observations

Stratum Counts Report:

xStrat

obstype 1 2 3 4 5 6 7 8

retro 17 16 29 20 49 39 28 33

strata 88 64 128 104 176 176 128 168

Key to x-Strat:

1 2 3 4 5 6

sex.age1.38 sex.age2.38 sex.age1.39 sex.age2.39 sex.age1.40 sex.age2.40

7 8

sex.age1.41 sex.age2.41

loglikelihood = -10275.40 using 10 parameters

Location Model:

25

Wald Tests:

Df Chi Pr(>Chi)

gest 1 23.772 1.084e-06

mumht 1 21.789 3.044e-06

bmi 1 14.689 1.268e-04

ethnicdb 3 31.390 7.035e-07

hyper 1 40.521 1.945e-10

smoke 1 4.145 4.175e-02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3541.35 925.557 -3.826 1.301e-04

gest 94.61 19.405 4.876 1.084e-06

mumht 16.33 3.499 4.668 3.044e-06

bmi 18.16 4.739 3.833 1.268e-04

ethnicdbE 180.33 59.322 3.040 2.367e-03

ethnicdbM 141.26 106.054 1.332 1.829e-01

ethnicdbP 437.16 80.835 5.408 6.372e-08

hyper -654.90 102.880 -6.366 1.945e-10

smokeY -114.99 56.480 -2.036 4.175e-02

Scale Model:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

5.3466 0.0372 143.7251 0.0000

Refitting looking for a scale proportional to size effect by including the fitted values from
the previous model in the scale model (divided by 1000 to keep the magnitude of the

variable comparable with others we are using) we get

> z9 <- locsc2stg(birthwt~gest+mumht+bmi+ethnicdb+hyper+smoke,

~I(z8$fitted/1000), xstrata=c("sex.age"), data=lowbirth.ls,

obstype.name=c("instudy"), xs.includes=FALSE, method="direct",

start=z8$coefficients, Qstart=z8$Qmat, compactX=TRUE, compactY=TRUE)

> summary(z9)

Call:

locsc2stg(formula1 = birthwt ~ gest + mumht + bmi + ethnicdb + hyper + smoke,

formula2 = ~I(z8$fitted/1000), yCuts = yCuts, xstrata = c("sex.age"),

data = lowbirth.ls, obstype.name = c("instudy"), method = "direct",

xs.includes = FALSE, compactX = TRUE, compactY = TRUE,

start = z8$coefficients, Qstart = z8$Qmat)

26

Observations deleted due to missing data:

retro: 8 rows relating to 8 observations

Stratum Counts Report:

xStrat

obstype 1 2 3 4 5 6 7 8

retro 17 16 29 20 49 39 28 33

strata 88 64 128 104 176 176 128 168

Key to x-Strat:

1 2 3 4 5 6

sex.age1.38 sex.age2.38 sex.age1.39 sex.age2.39 sex.age1.40 sex.age2.40

7 8

sex.age1.41 sex.age2.41

loglikelihood = -10272.24 using 11 parameters

Location Model:

Wald Tests:

Df Chi Pr(>Chi)

gest 1 28.438 9.676e-08

mumht 1 24.801 6.356e-07

bmi 1 15.860 6.820e-05

ethnicdb 3 35.656 8.853e-08

hyper 1 63.311 1.776e-15

smoke 1 3.546 5.969e-02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4071.29 933.207 -4.363 1.285e-05

gest 103.69 19.444 5.333 9.676e-08

mumht 17.20 3.455 4.980 6.356e-07

bmi 18.37 4.613 3.982 6.820e-05

ethnicdbE 213.38 58.640 3.639 2.740e-04

ethnicdbM 156.33 106.997 1.461 1.440e-01

ethnicdbP 449.71 78.156 5.754 8.717e-09

hyper -684.61 86.040 -7.957 1.776e-15

smokeY -105.89 56.233 -1.883 5.969e-02

Scale Model:

Wald Tests:

Df Chi Pr(>Chi)

27

I(z8$fitted/1000).2 1 6.177 0.01294

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept).2 4.3589 0.3977 10.959 0.00000

I(z8$fitted/1000).2 0.2779 0.1118 2.485 0.01294

2.4 Linear to Binary Regression (linbin2stg)

It is not uncommon for a continuous outcome variable Y to be dichotomized and analysed

using logistic regression. Moser and Coombs (Statistics in Medicine 2005, 23) provide

a method for converting the output from a standard linear regression analysis using the

original continuous outcome Y to give much more efficient inferences about the same

odds-ratio parameters being estimated by the logistic regression. However, these results

apply only to prospective studies. When data has been obtained from response-selective

sampling mechanisams such as case-control sampling, standard linear regression no longer

produces valid estimates. A special-purpose software is therefore required.

We have developed a simple function based on locsc2stg which can provide both linear-

and binary-based inferences as well as the estimated odds ratios and their 95% confidence

intervals. The linear regression model we consider is of the form

y = η1 + σ U,

where a single scale parameter σ is considered with logistic error distribution.

For a continuous outcome measure, say Y , a cut-off point needs to be provided to di-
chotomize Y into a binary response of interest. When stratfication is used with different

cut-off points for different stratum, however, the intercept of binary-regression parameters
cannot be easily estimated. Since this is not an issue for estimating the odds ratios, we
will only output complete inferences when one cut-off point is employed.

Using the same Example 5, we can fit the following regression models using the sim-

ple function linbin2stg.

> data(lowbirth.ls)

> lowbirth.ls$sex.age <- interaction(lowbirth.ls$sex,lowbirth.ls$gest)

> yCuts <- matrix(c(2550,2650,2740,2840,2900,3010,3030,3140),nrow=1)

> z10 <- linbin2stg(birthwt~gest+mumht+bmi+ethnicdb+hyper+smoke,

yCuts=yCuts, xstrata=c("sex.age"), data=lowbirth.ls,

obstype.name=c("instudy"), xs.includes=FALSE)

28

> summary(z10)

Call:

linbin2stg(formula1 = birthwt ~ gest + mumht + bmi + ethnicdb +

hyper + smoke, yCuts = yCuts, xstrata = c("sex.age"),

data = lowbirth.ls, obstype.name = c("instudy"),

xs.includes = FALSE)

Observations deleted due to missing data:

retro: 8 rows relating to 8 observations

Stratum Counts Report:

xStrat 1 2 3 4 5 6 7 8

obstype yStrat

retro 1 7 8 13 7 27 18 12 13

2 10 8 16 13 22 21 16 20

strata 1 0 0 0 0 0 0 0 0

2 88 64 128 104 176 176 128 168

Key to x-Strat:

1 2 3 4 5 6

sex.age1.38 sex.age2.38 sex.age1.39 sex.age2.39 sex.age1.40 sex.age2.40

7 8

sex.age1.41 sex.age2.41

Key to the y-Strat:

[,1] [,2] [,3]

[1,] (-3.07e+04,2.55e+03] (-3.07e+04,2.65e+03] (-3.07e+04,2.74e+03]

[2,] (2.55e+03,3.46e+04] (2.65e+03,3.46e+04] (2.74e+03,3.46e+04]

[,4] [,5] [,6]

[1,] (-3.07e+04,2.84e+03] (-3.07e+04,2.9e+03] (-3.07e+04,3.01e+03]

[2,] (2.84e+03,3.46e+04] (2.9e+03,3.46e+04] (3.01e+03,3.46e+04]

[,7] [,8]

[1,] (-3.07e+04,3.03e+03] (-3.07e+04,3.14e+03]

[2,] ((3.03e+03,3.46e+04] (3.14e+03,3.46e+04]

loglikelihood = -2683.785 using 10 parameters

Linear Location Model:

29

Wald Tests:

Df Chi Pr(>Chi)

gest 1 26.705 2.371e-07

mumht 1 16.255 5.536e-05

bmi 1 8.166 4.268e-03

ethnicdb 3 30.639 1.012e-06

hyper 1 36.780 1.323e-09

smoke 1 4.269 3.881e-02

Linear Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3716.932 963.58436 -3.857 1.146e-04

gest 108.271 20.95174 5.168 2.371e-07

mumht 14.504 3.59750 4.032 5.536e-05

bmi 13.609 4.76251 2.858 4.268e-03

ethnicdbE 220.217 63.49332 3.468 5.237e-04

ethnicdbM 188.837 106.37922 1.775 7.588e-02

ethnicdbP 435.467 79.93490 5.448 5.100e-08

hyper -620.557 102.32422 -6.065 1.323e-09

smokeY -116.125 56.20288 -2.066 3.881e-02

log(scale) 5.297 0.04601 115.122 0.000e+00

Binary Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) NA NA NA NA

gest -0.54220 0.10718 -5.059 4.223e-07

mumht -0.07263 0.01838 -3.952 7.758e-05

bmi -0.06815 0.02416 -2.821 4.791e-03

ethnicdbE -1.10281 0.32144 -3.431 6.018e-04

ethnicdbM -0.94566 0.53367 -1.772 7.640e-02

ethnicdbP -2.18074 0.41491 -5.256 1.473e-07

hyper 3.10764 0.53181 5.843 5.112e-09

smokeY 0.58153 0.28321 2.053 4.004e-02

Odds Ratios for Binary Parameters:

O.R. Lower C.I. Upper C.I.

gest 0.5815 0.47129 0.7174

mumht 0.9299 0.89704 0.9641

bmi 0.9341 0.89091 0.9794

ethnicdbE 0.3319 0.17678 0.6233

ethnicdbM 0.3884 0.13647 1.1055

ethnicdbP 0.1130 0.05009 0.2547

30

hyper 22.3682 7.88756 63.4336

smokeY 1.7888 1.02679 3.1163

Note that the intercept of binary coefficients was not estimated in the function due to
different yCuts we used for different sex and gestational age of the child. If we used the
mean of yCuts as a single cut-off point for all strata, the following output is provided
with a complete inference.

> yCut1 <- mean(yCuts)

> yCut1

[1] 2857.5

> z11 <- linbin2stg(birthwt~gest+mumht+bmi+ethnicdb+hyper+smoke,

yCuts=yCut1, xstrata=c("sex.age"), data=lowbirth.ls,

obstype.name=c("instudy"), xs.includes=FALSE)

> summary(z11)

Call:

linbin2stg(formula1 = birthwt ~ gest + mumht + bmi + ethnicdb +

hyper + smoke, yCuts = yCut1, xstrata = c("sex.age"),

data = lowbirth.ls, obstype.name = c("instudy"),

xs.includes = FALSE)

Observations deleted due to missing data:

retro: 8 rows relating to 8 observations

Stratum Counts Report:

xStrat 1 2 3 4 5 6 7 8

obstype yStrat

retro 1 8 10 16 7 21 9 3 4

2 9 6 13 13 28 30 25 29

strata 1 14 6 8 1 0 0 0 0

2 74 58 120 103 176 176 128 168

Key to x-Strat:

1 2 3 4 5 6

sex.age1.38 sex.age2.38 sex.age1.39 sex.age2.39 sex.age1.40 sex.age2.40

7 8

sex.age1.41 sex.age2.41

Key to the y-Strat:

[,1] [,2] [,3]

[1,] (-3.07e+04,2.86e+03] (-3.07e+04,2.86e+03] (-3.07e+04,2.86e+03]

31

[2,] (2.86e+03,3.46e+04] (2.86e+03,3.46e+04] (2.86e+03,3.46e+04]

[,4] [,5] [,6]

[1,] (-3.07e+04,2.86e+03] (-3.07e+04,2.86e+03] (-3.07e+04,2.86e+03]

[2,] (2.86e+03,3.46e+04] (2.86e+03,3.46e+04] (2.86e+03,3.46e+04]

[,7] [,8]

[1,] (-3.07e+04,2.86e+03] (-3.07e+04,2.86e+03]

[2,] (2.86e+03,3.46e+04] (2.86e+03,3.46e+04]

loglikelihood = -2727.675 using 10 parameters

Linear Location Model:

Wald Tests:

Df Chi Pr(>Chi)

gest 1 14.010 1.818e-04

mumht 1 18.469 1.727e-05

bmi 1 8.599 3.363e-03

ethnicdb 3 31.180 7.791e-07

hyper 1 42.842 5.933e-11

smoke 1 4.877 2.722e-02

Linear Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2781.676 1.004e+03 -2.771 5.592e-03

gest 78.329 2.093e+01 3.743 1.818e-04

mumht 15.759 3.667e+00 4.298 1.727e-05

bmi 14.511 4.949e+00 2.932 3.363e-03

ethnicdbE 212.957 6.428e+01 3.313 9.229e-04

ethnicdbM 166.595 1.095e+02 1.521 1.282e-01

ethnicdbP 447.018 8.173e+01 5.469 4.514e-08

hyper -659.314 1.007e+02 -6.545 5.933e-11

smokeY -128.444 5.816e+01 -2.208 2.722e-02

log(scale) 5.323 4.643e-02 114.644 0.000e+00

Binary Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 27.52130 4.94050 5.571 2.539e-08

gest -0.38228 0.10306 -3.709 2.079e-04

mumht -0.07691 0.01833 -4.196 2.712e-05

bmi -0.07082 0.02450 -2.891 3.845e-03

ethnicdbE -1.03931 0.31665 -3.282 1.030e-03

ethnicdbM -0.81305 0.53500 -1.520 1.286e-01

32

ethnicdbP -2.18161 0.41441 -5.264 1.407e-07

hyper 3.21770 0.51368 6.264 3.752e-10

smokeY 0.62685 0.28598 2.192 2.838e-02

Odds Ratios for Binary Parameters:

O.R. Lower C.I. Upper C.I.

gest 0.6823 0.55751 0.8350

mumht 0.9260 0.89330 0.9598

bmi 0.9316 0.88795 0.9775

ethnicdbE 0.3537 0.19015 0.6579

ethnicdbM 0.4435 0.15542 1.2656

ethnicdbP 0.1129 0.05009 0.2543

hyper 24.9706 9.12379 68.3413

smokeY 1.8717 1.06858 3.2785

We see from the output that a unique cut-off point has been used for all strata and the

intercept of binary coefficients was estimated.

Another important point to consider when dichotomizing the continuous outcome Y is

how the cases are defined. The default option in the function is as follows.

pr(cases) = pr(Y ∗ = 1) = pr(Y ≤ c),

When an upper tail is used to define the cases such as BMI over 30 for obesity, an argument
lower.tail=FALSE needs to be specified in the function to get the correct inference for
binary parameters.

> z12 <- linbin2stg(birthwt~gest+mumht+bmi+ethnicdb+hyper+smoke,

yCuts=yCut1, lower.tail=FALSE, xstrata=c("sex.age"),

data=lowbirth.ls, obstype.name=c("instudy"),

xs.includes=FALSE)

> summary(z12)

... ...

Binary Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -27.52130 4.94050 -5.571 2.539e-08

gest 0.38228 0.10306 3.709 2.079e-04

mumht 0.07691 0.01833 4.196 2.712e-05

bmi 0.07082 0.02450 2.891 3.845e-03

ethnicdbE 1.03931 0.31665 3.282 1.030e-03

ethnicdbM 0.81305 0.53500 1.520 1.286e-01

33

ethnicdbP 2.18161 0.41441 5.264 1.407e-07

hyper -3.21770 0.51368 -6.264 3.752e-10

smokeY -0.62685 0.28598 -2.192 2.838e-02

Odds Ratios for Binary Parameters:

O.R. Lower C.I. Upper C.I.

gest 1.46562 1.19755 1.7937

mumht 1.07994 1.04184 1.1194

bmi 1.07339 1.02306 1.1262

ethnicdbE 2.82726 1.51995 5.2590

ethnicdbM 2.25477 0.79013 6.4344

ethnicdbP 8.86059 3.93287 19.9625

hyper 0.04005 0.01463 0.1096

smokeY 0.53427 0.30502 0.9358

We see that all binary parameters had opposite signs, and the estimated odds ratios

switched from one side of one to another.

2.5 Bivariate Binary Regression (bivbin2stg)

In some studies, we are interested in modelling bivariate binary responses (Y1, Y2) and

quantifying the association between them given covariates X. Methods have been written

for such cases with data collected under different two-phase sampling schemes.

In this section, we will discuss how to carry out various semiparametric maximum likeli-

hood analyses with bivariate binary data using the function bivbin2stg.

2.5.1 Sampling on Y1

Suppose we have a binary response variable Y1 taking values on 1 and 0 for individuals in

the case and control populations respectively. In each Y1 population, a random sample is

taken with another response of interest Y2 and potential covariates X being subsequently

observed. The model of interest is Pr(Y1, Y2|X) which, in principle, can be modelled

arbitrarily.

A frequently used modelling approach for bivariate binary responses is to model the joint

distribution of Y1 and Y2 given X by separately modelling the marginal distributions of

Pr(Y1|X) and Pr(Y2|X), and the association between Y1 and Y2 given X (i.e. specifying

3 models). We will call methods which couple such models with semiparametric maxi-

mum likelihood estimation spml1. Currently implemented models for this method are the

Palmgren, Bahadur and Copula models which we descirbe in the next paragraph.

34

In the Palmgren, Bahadur and our Copula models, a linear logistic model is used to

model the two marginal probabilities of Y1 and Y2,

logit Pr(Y 1 = 1|X = x1; θ1) = xT
1 θ1

logit Pr(Y 2 = 1|X = x2; θ2) = xT
2 θ2

. (1)

The association between Y1 and Y2 given X is modelled in different ways.

• Palmgren: Association is modelled by log OR = xT
3 θ3, where OR is the conditional

odds ratio of Y1 and Y2 given X. Here, Y1 and Y2 are conditionally independently if

and only if log OR = 0.

• Bahadur: Association is modelled by log

(
1 + ρ

1 − ρ

)
= xT

3 θ3, where ρ is the con-

ditional correlation coefficient between Y1 and Y2 given X. Here, Y1 and Y2 are

conditionally independently if and only if the above log-ratio is zero.

• Copula: This model is implemented using Frank’s family of bivariate distributions

of the form

Pr(Y1 ≤ y1, Y2 ≤ y2) = logα

{
1 +

(αF1(y1) − 1)(αF2(y2) − 1)

α − 1

}
(α 6= 1)

where logα(t) denotes logarithm to the base α > 0. Here, F1(y1) and F2(y2) indicate

the marginal distribution functions of Y1 and Y2 given covariates. Recall that their

probabilities have been modelled in the form of (1) with binary Y1 and Y2 under our

setting. The parameter α has a natural interpretation as a rank based association

parameter and allows for a full range of positive or negative correlation between the

two variables.

Association is modelled by γ = − log(α) = xT
3 θ3, where γ is treated as the as-

sociation parameter in the model. The above distribution function becomes

Pr(Y1 ≤ y1, Y2 ≤ y2) = −
1

γ
log

{
1 +

(e−γF1(y1) − 1)(e−γF2(y2) − 1)

e−γ − 1

}
.

Here, Y1 and Y2 are conditionally independently if and only if γ = 0.

Genest (1987) gave the following approximation for the population equivalent of

Spearman’s correlation coefficient as a function of γ

ρs ≈ (e−γ/2 − 1)−2 (1 − γe−γ/2 − e−γ)

based on continuous bivariate random variables. We will use it to obtain an initial

estimate of γ when starting values for θ3 are required.

35

All three models are appropriate for analyses when the joint modelling of Y = (Y1, Y2)

given X is required to explore the question of interest. In some situation, however, we

carry out a secondary analysis based on the same type of data where we are only interested

in the marginal distribution of Y2 given X. When Y2 is correlated with Y1, conventional lo-

gistic regression will no longer provide consistent estimates for the parameters of interest.

We can still apply the spml1 method but the model of interest is now just Pr(Y2 = 1|X).

The joint modelling of Y1 and Y2 is just one strategy to cope with the data collection

mechanism, and it requires building two nuisance models, one for Y1 and another for the

association.

When we are only interested in Pr(Y2 = 1|X), another semiparametric maximum likeli-

hood approach which we called the spml2 method can be used. The basic idea is that the

joint distribution of Y1 and Y2 given X is now estimated in terms of a conditional factori-

sation Pr(Y1|Y2, X)Pr(Y2|X) both treated parametrically. As both Y1 and Y2 are binary

in our implementation, logistic models are used to separately model the two probabilities.

logit Pr(Y 1 = 1|Y 2 = y2, X = x1; θ1) = x∗T
1 θ1

logit Pr(Y 2 = 1|X = x2; θ2) = xT
2 θ2

. (2)

where x∗
1 = (y2, x1). We call these the Y1|Y2-model and Y2-model respectively. This

approach requires only one nuisance model to be built, namely the Y1|Y2-model which
typically requires inclusion of interactions between Y2 and X-variables.

In the missreg library, the function we used to carry out semiparametric maximum
likelihood analyses with bivariate binary data is called bivbin2stg. We see that both
spml1 and spml2 methods employ more than one linear predictors, say η1 and η2 for Y1-
model and Y2-model respectively in both (1) and (2), and η3 for the association model if
applicalble. The regression models for η1 and η2 are specified in the usual way for glm(),

e.g., y1 ∼ x1 + x2 and y2 ∼ x1 + x2, supplied as the first and second formulas in the call
sequence. If ∼ 1 is specified in the call, the corresponding η is a constant. As η3 is only
considered in the spml1 method with options for modelling, it is specified in the same
way as the log-scale parameter for linear regression (e.g. ∼ x1+x2) with no left-hand side.

Example 6: Cot-death data

The original study was carried out in 1989 motivated by the comparatively high inci-
dence of cot death (y1) in New Zealand (Mitchell et al., 1991). Because of its overall low
incidence in the population, a case-control design was used to collect the data in order to
find potnetial risk factors for this phenomenon. The data were subsequently reused in a
secondary study aimed at identifying potential risk factors for the failure of immunization

(y2). Although the study examined many covariates, only one explanatory variable (x)

36

Figure 5: The Cot death data

is considered here which is the mother’s marital status. The data frame for this study is

shown in Figure 5.

We first fit the data using the Palmgren model, which is specified with the parameter
method in the function call bivbin2stg. The fitting syntax is

> data(cotdeath)

> z13 <- bivbin2stg(y1~x, y2~x, ~x, weights=wts, data=cotdeath,

xs.includes=TRUE, method="palmgren")

and the following summary of regression output can be obtained:

> summary(z13)

Call:

bivbin2stg(formula1 = y1 ~ x, formula2 = y2 ~ x, formula3 = ~x,

weights = wts, data = cotdeath, xs.includes = TRUE,

method = "palmgren")

Stratum Counts Report:

xStrat 1

obstype yStrat

retro 1 336

2 1399

strata 1 0

2 135601

Models for prob of joint distribution of y1 and y2 given covariates

loglikelihood = -15864.31 using 6 parameters

37

Y1-Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 103.5 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.253 0.0854 -61.51 0

x -1.278 0.1256 -10.17 0

Y2-Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 0.2144 0.6433

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.12711 0.1673 12.711 0.0000

x 0.09137 0.1973 0.463 0.6433

Association Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 4.697 0.03021

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0857 0.2371 -4.579 4.675e-06

x 0.7743 0.3573 2.167 3.021e-02

Recall that when xs.includes=TRUE, the counts printed for strata in the Stratum

Counts Report do not include those already printed for retro.

The coefficients tables for Y1, Y2 and the association models are listed sequentially right
after the Wald tests for each of the models. When the Bahadur and Copula models are
considered in the spml1 method, we use method=bahadur and method=copula respec-
tively in the locsc2stg function call. Because we have a saturated regression model

(only one X-variable is considered) in this example, both methods give exactly the same
output as that obtained from the Palmgren model for the two marginal probabilities. The
results have been presented below.

> summary(z14)

38

Call:

bivbin2stg(formula1 = y1 ~ x, formula2 = y2 ~ x, formula3 = ~x,

weights = wts, data = cotdeath, xs.includes = TRUE,

method = "bahadur")

... ...

Association Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 9.298 0.002294

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.07167 0.01944 -3.686 0.0002280

x 0.06367 0.02088 3.049 0.0022942

> summary(z15)

Call:

bivbin2stg(formula1 = y1 ~ x, formula2 = y2 ~ x, formula3 = ~x,

weights = wts, data = cotdeath, xs.includes = TRUE,

method = "copula")

... ...

Association Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 4.479 0.03432

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.589 0.7045 -3.676 0.0002372

x 1.938 0.9159 2.116 0.0343190

We now analyse this data using the spml2 method. Recall that only two probability
models are considered in this method.

> data(cotdeath)

> z16 <- bivbin2stg(y1~x*y2, y2~x, weights=wts, data=cotdeath,

xs.includes=TRUE, method="spml2")

> summary(z16)

Call:

39

bivbin2stg(formula1 = y1 ~ x * y2, formula2 = y2 ~ x, weights = wts,

data = cotdeath, xs.includes = TRUE, method = "spml2")

Stratum Counts Report:

xStrat 1

obstype yStrat

retro 1 336

2 1399

strata 1 0

2 135601

Models for prob of joint distribution of y1 and y2 given covariates

loglikelihood = -15864.31 using 6 parameters

Y1-Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 33.210 8.273e-09

y2 1 20.966 4.675e-06

x:y2 1 4.697 3.021e-02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.3560 0.2129 -20.457 0.000e+00

x -1.8989 0.3295 -5.763 8.273e-09

y2 -1.0857 0.2371 -4.579 4.675e-06

x:y2 0.7743 0.3573 2.167 3.021e-02

Y2-Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 0.2144 0.6433

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.12711 0.1673 12.711 0.0000

x 0.09137 0.1973 0.463 0.6433

Again, as we have a saturated regression model, we obtain the same output for the model

of interest as that obtained from the spml1 method. We also note that the last two

40

coefficients in the Y1|Y2-model (i.e. y2 and x:y2) in this method are estimated identically

as those in the association model obtained from the spml1 method when the Palmgren

model is used.

�

Under two-phase response-selective sampling, stratification is sometimes defined by not

only the response (Y1 here), but also some categorical V -variables other than the response

that are fully observed. The second-phase data are then collected within each stratum

cross-classified by both the response and V . We call it a “stratified” sample. Even if the

actual data collection procedure didn’t utilize this source of information, we find that in-

troducing post-stratification on V can still be a good strategy to gain efficiency in analysis.

The function bivbin2stg can cope with this extra source of information using the argu-

ment xstrata=c("vname1","vname2",...) in the function call. The V -strata are then

defined by the cross-classification of all variables listed in xstrata.

Example 7: Placental infarctions in ABC study

The data set for this example was derived from data collected in the ABC study de-

scribed in Example 4. The incidence and associations of placental infarctions at term

were investigated by Becroft et al. (2002) as one of the following secondary analyses

in this study. Except for the original response variable (sgagp) that defines the baby’s

birthweight status classified as either “small for gestational age” (SGA) or “appropriate

for gestational age” (AGA), we now have a new binary response of interest called anyinf

which we describe in the next paragraph. If we define sgagp as Y1 and anyinf as Y2,

Y1 is fully observed for the whole first-phase population but Y2 is not which has NAs for

strata observations. Recall that the cutoff values for defining SGA babies differed by

their gestational age and sex. Therefore, these two variables are also fully observed and

available for defining the V -strata.

In particular, 509 placentas from women delivering SGA babies and 529 babies from

women delivering AGA infants were examined using fixed protocols for infarctions. If

any infarction was detected in the placenta, the baby was recorded as anyinf=1 and 0

otherwise. The data frame infarct (see Figure 6) contains a subset of the data on these

1038 selected babies as well as artificial counts for strata observations generated using

the knowledge that approximately 1 in 9 controls were selected from each V -stratum.

Additional explanatory variables that are not in the variable list from Table 3 or have

been modified, are described below.

41

Figure 6: The Placental infarctions data

42

sex F (female) or M (male).

gest gestational age in weeks (37, 38, 39, 40, 41, 42).

ethnic IP (Pacifican), MA (Maori), OA (Other Asian), OC (Chinese),

OI (Indian) or RT (Others). (1 study individuals has NA)

smoked smoking during pregnancy 1 or 0. (22 study individuals have NA)

agepreg mother’s age at this pregnancy. (21 study individuals have NA)

We first fit the data using the spml1 method under the Palmgren model. The syntax is
as follows.

> data(infarct)

> z17 <- bivbin2stg(sgagp~ethnic+smoked+hyper+mumwt+mumwtc2+agepreg,

anyinf~smoked+hyper+age1st, ~age1st, weights=count,

xstrata=c("sex","gest"), obstype.name="instudy",

data=infarct, xs.includes=TRUE, method="palmgren")

The variable named mumwtc2 was obtained by squaring the differences between the vari-
able mumwt and its mean value. Recall that it is usually advisable to centre any continuous
X-variable being added to the regression model to prevent failure in algorithm. The two
variables “sex” and “gest” are specified in xstrata to define addtional V -strata for

analysis . If we look at the Strata Counts Report followed, we can see that there are
in total 12 V -strata (named xStrat in the output) with their names clearly referenced in
the following key to x-Strat report.

> summary(z17)

... ...

Observations deleted due to missing data:

retro: 35 rows relating to 35 observations

Stratum Counts Report:

xStrat 1 2 3 4 5 6 7 8 9 10 11 12

obstype yStrat

retro 1 8 8 13 15 29 22 24 31 24 26 8 5

2 6 6 9 12 36 31 44 32 23 29 13 11

strata 1 0 0 0 0 0 0 0 0 0 0 0 0

2 48 48 72 96 288 248 352 256 184 232 104 88

Models for prob of joint distribution of sgagp and anyinf given covariates

Key to x-Strat:

1 2 3 4 5 6

sexF:gest37 sexM:gest37 sexF:gest38 sexM:gest38 sexF:gest39 sexM:gest39

43

7 8 9 10 11 12

sexF:gest40 sexM:gest40 sexF:gest41 sexM:gest41 sexF:gest42 sexM:gest42

loglikelihood = -2622.846 using 18 parameters

Y1-Model

Wald Tests:

Df Chi Pr(>Chi)

ethnic 6 13.118 4.120e-02

smoked 1 36.337 1.660e-09

hyper 1 5.584 1.812e-02

mumwt 1 21.637 3.295e-06

mumwtc2 1 5.704 1.692e-02

agepreg 1 7.250 7.091e-03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.357983 0.9910046 2.3794 1.734e-02

ethnicIP -0.422015 0.3505923 -1.2037 2.287e-01

ethnicMA -0.132421 0.4102123 -0.3228 7.468e-01

ethnicOA 0.500500 0.7698838 0.6501 5.156e-01

ethnicOC 0.710474 0.6494617 1.0939 2.740e-01

ethnicOI 1.388536 0.4655790 2.9824 2.860e-03

ethnicRT -0.954606 0.9931126 -0.9612 3.364e-01

smoked 1.573849 0.2610906 6.0280 1.660e-09

hyper 0.856663 0.3625167 2.3631 1.812e-02

mumwt -0.058104 0.0124914 -4.6515 3.295e-06

mumwtc2 0.001008 0.0004219 2.3884 1.692e-02

agepreg -0.054777 0.0203441 -2.6925 7.091e-03

Y2-Model

Wald Tests:

Df Chi Pr(>Chi)

smoked 1 4.616 0.0316760

hyper 1 4.673 0.0306457

age1st 1 14.577 0.0001345

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.1388 0.94657 -5.429 5.672e-08

smoked -0.8927 0.41553 -2.148 3.168e-02

44

hyper 0.8471 0.39187 2.162 3.065e-02

age1st 0.1251 0.03277 3.818 1.345e-04

Association Model

Wald Tests:

Df Chi Pr(>Chi)

age1st 1 9.932 0.001624

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.6390 1.7510 3.220 0.001280

age1st -0.1979 0.0628 -3.152 0.001624

We then fit the other available models to the data. Their results are very close to one
another but no longer identical for the marginal probabilities as they were in Example 6.

> summary(z18)

Call:

bivbin2stg(formula1 = sgagp ~ ethnic + smoked + hyper + mumwt + mumwtc2 +

agepreg, formula2 = anyinf ~ smoked + hyper + age1st,

formula3 = ~age1st, weights = count, xstrata = c("sex", "gest"),

obstype.name = "instudy", data = infarct, xs.includes = TRUE,

method = "bahadur")

... ...

loglikelihood = -2622.812 using 18 parameters

Y1-Model

Wald Tests:

Df Chi Pr(>Chi)

ethnic 6 13.606 3.437e-02

smoked 1 35.185 2.998e-09

hyper 1 4.291 3.832e-02

mumwt 1 24.859 6.169e-07

mumwtc2 1 6.776 9.239e-03

agepreg 1 7.120 7.623e-03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.554869 1.0047152 2.5429 1.099e-02

ethnicIP -0.415193 0.3485228 -1.1913 2.335e-01

ethnicMA -0.240309 0.4169548 -0.5763 5.644e-01

45

ethnicOA 0.366071 0.7838269 0.4670 6.405e-01

ethnicOC 0.663465 0.6499321 1.0208 3.073e-01

ethnicOI 1.396151 0.4790277 2.9146 3.562e-03

ethnicRT -1.773118 1.2845927 -1.3803 1.675e-01

smoked 1.562472 0.2634108 5.9317 2.998e-09

hyper 0.773174 0.3732522 2.0715 3.832e-02

mumwt -0.061035 0.0122416 -4.9858 6.169e-07

mumwtc2 0.001084 0.0004166 2.6031 9.239e-03

agepreg -0.054501 0.0204250 -2.6683 7.623e-03

Y2-Model

Wald Tests:

Df Chi Pr(>Chi)

smoked 1 3.829 0.0503765

hyper 1 3.935 0.0473025

age1st 1 13.381 0.0002542

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.0894 0.99194 -5.131 2.886e-07

smoked -0.8909 0.45529 -1.957 5.038e-02

hyper 0.8407 0.42383 1.984 4.730e-02

age1st 0.1248 0.03413 3.658 2.542e-04

Association Model

Wald Tests:

Df Chi Pr(>Chi)

age1st 1 9.727 0.001815

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.92807 0.31585 2.938 0.003300

age1st -0.03269 0.01048 -3.119 0.001815

> summary(z19)

Call:

bivbin2stg(formula1 = sgagp ~ ethnic + smoked + hyper + mumwt + mumwtc2 +

agepreg, formula2 = anyinf ~ smoked + hyper + age1st,

formula3 = ~age1st, weights = count, xstrata = c("sex", "gest"),

obstype.name = "instudy", data = infarct, xs.includes = TRUE,

method = "copula")

46

... ...

loglikelihood = -2623.616 using 18 parameters

Y1-Model

Wald Tests:

Df Chi Pr(>Chi)

ethnic 6 13.250 3.923e-02

smoked 1 35.181 3.004e-09

hyper 1 5.415 1.997e-02

mumwt 1 21.374 3.779e-06

mumwtc2 1 5.623 1.773e-02

agepreg 1 7.245 7.112e-03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.385893 1.0011318 2.3832 1.716e-02

ethnicIP -0.435464 0.3522569 -1.2362 2.164e-01

ethnicMA -0.124095 0.4173603 -0.2973 7.662e-01

ethnicOA 0.493857 0.7714617 0.6402 5.221e-01

ethnicOC 0.707135 0.6505054 1.0871 2.770e-01

ethnicOI 1.411132 0.4686395 3.0111 2.603e-03

ethnicRT -0.917309 1.0020789 -0.9154 3.600e-01

smoked 1.555574 0.2622615 5.9314 3.004e-09

hyper 0.849607 0.3651212 2.3269 1.997e-02

mumwt -0.058161 0.0125802 -4.6232 3.779e-06

mumwtc2 0.001012 0.0004266 2.3712 1.773e-02

agepreg -0.055418 0.0205896 -2.6916 7.112e-03

Y2-Model

Wald Tests:

Df Chi Pr(>Chi)

smoked 1 4.871 0.0273185

hyper 1 4.618 0.0316449

age1st 1 13.024 0.0003075

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.7754 0.89448 -5.339 9.360e-08

smoked -0.9101 0.41237 -2.207 2.732e-02

hyper 0.8294 0.38596 2.149 3.164e-02

47

age1st 0.1133 0.03139 3.609 3.075e-04

Association Model

Wald Tests:

Df Chi Pr(>Chi)

age1st 1 7.312 0.006848

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.6714 3.9590 2.695 0.007029

age1st -0.3722 0.1377 -2.704 0.006848

> summary(z20)

Call:

bivbin2stg(formula1 = sgagp ~ anyinf + ethnic + smoked + hyper + mumwt +

mumwtc2 + agepreg + anyinf * age1st, formula2 = anyinf ~ smoked +

hyper + age1st, weights = count, xstrata = c("sex", "gest"),

obstype.name = "instudy", data = infarct, xs.includes = TRUE,

method = "spml2")

... ...

loglikelihood = -2624.091 using 19 parameters

Y1-Model

Wald Tests:

Df Chi Pr(>Chi)

anyinf 1 8.1344 4.343e-03

ethnic 6 13.1369 4.091e-02

smoked 1 34.4262 4.427e-09

hyper 1 4.8125 2.825e-02

mumwt 1 21.5138 3.513e-06

mumwtc2 1 5.2756 2.163e-02

agepreg 1 3.5806 5.846e-02

age1st 1 0.1547 6.941e-01

anyinf:age1st 1 7.5942 5.855e-03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.8766503 1.0888463 1.7235 8.479e-02

anyinf 4.8505593 1.7007012 2.8521 4.343e-03

48

ethnicIP -0.4712683 0.3605822 -1.3070 1.912e-01

ethnicMA -0.1411395 0.4409901 -0.3201 7.489e-01

ethnicOA 0.5006102 0.7839660 0.6386 5.231e-01

ethnicOC 0.6988698 0.6554965 1.0662 2.863e-01

ethnicOI 1.3916757 0.4804552 2.8966 3.773e-03

ethnicRT -1.0146374 1.0064577 -1.0081 3.134e-01

smoked 1.6395796 0.2794395 5.8674 4.427e-09

hyper 0.8231381 0.3752222 2.1937 2.825e-02

mumwt -0.0590960 0.0127409 -4.6383 3.513e-06

mumwtc2 0.0009963 0.0004338 2.2969 2.163e-02

agepreg -0.0474487 0.0250755 -1.8922 5.846e-02

age1st 0.0110321 0.0280525 0.3933 6.941e-01

anyinf:age1st -0.1700654 0.0617126 -2.7558 5.855e-03

Y2-Model

Wald Tests:

Df Chi Pr(>Chi)

smoked 1 5.100 0.0239231

hyper 1 4.661 0.0308616

age1st 1 11.780 0.0005986

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5877 0.88995 -5.155 2.536e-07

smoked -0.9368 0.41483 -2.258 2.392e-02

hyper 0.8441 0.39102 2.159 3.086e-02

age1st 0.1051 0.03062 3.432 5.986e-04

2.5.2 Sampling on whether or not (Y1 6= 1, Y2 6= 1)

In some situation, the case-control information on both Y1 and Y2 is available for the
first-phase population. Subsampling into the second phase is dependent on whether or

not Y1 6= 1 and Y2 6= 1, i.e., both belong to the control groups. Thus the Y -stratum is
defined as either in group (Y1 6= 1, Y2 6= 1) (named yStrat=2) or not in this group (named
yStrat=1). This type of sampling occurs, for example, when there is a registry of disease
cases with data collected on mother/daughter pairs. The pairs appearing in the registry
are then supplemented by a sample of pairs where neither is a case (i.e. control/control).

The function bivbin2stg can deal with this situation using an extra argument y1samp

= FALSE (the default is TRUE) in the function call. Only the spml1 method has been
implemented for this sampling scheme. As both Y1 and Y2 are fully observed at the first
phase (they are treated as binary variables here), there should be no NA’s for strata

49

observations except for some of the X-variables.

Example 8: An artificial data set

We now consider an artificial data set generated using this sampling scheme. The data
frame is called dat00 (see Figure 7) which contains six variables named x, y1, y2, v,

wts and obstype. Only the binary variable x, the covariate of interest, contains NAs.
Another binary variable v is fully observed and treated as the V -variable defining two
strata. The total population size is N = 10000 with the total sample size of n = 5000.

The data was generated as follows. We first generated two binary response varibles Y1

and Y2 of length N using binomial distribution with p = 0.2. We then generated the
binary x-variable using the same distribution with p = 0.6 if both Y1 and Y2 are zero, and
p = 0.4 otherwise. The binary v-variable was generated in the same way with p = 0.5.

If v = 0, we replaced it with a value of 2 indicating the second V -strata. Within each
V -stratum, we randomly selected equal number of cases and controls (i.e. n/4) in cor-
respondence to whether or not (Y1 6= 1, Y2 6= 1). They became our retro observations.
The rest were strata observations and all x-values for this part of data became “missing”.

We first fit this data using the Palmgren model. The fitting syntax is as follows:

> data(dat00)

> z21 <- bivbin2stg(y1~x, y2~x, ~x, weights=wts, data=dat00,

y1samp=FALSE, xstrata="v", xs.includes=FALSE, method="palmgren")

The argument y1samp=FALSE has been used specifically to distinguish from the previous
sampling scheme (i.e. sampling on Y1). The following summary of regression output is
then obtained:

> summary(z21)

Call:

bivbin2stg(formula1 = y1 ~ x, formula2 = y2 ~ x, formula3 = ~x,

weights = wts, xstrata = "v", data = dat00, xs.includes = FALSE,

y1samp = FALSE, method = "palmgren")

Stratum Counts Report:

xStrat 1 2

obstype yStrat

retro 1 1250 1250

2 1250 1250

strata 1 502 569

2 2017 1912

Models for prob of joint distribution of y1 and y2 given covariates

50

Figure 7: An artificial data set

51

Key to x-Strat:

1 2

v1 v2

loglikelihood = -47967.29 using 6 parameters

Y1-Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 64.63 8.882e-16

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3227 0.04177 -7.727 1.110e-14

x -0.5195 0.06462 -8.039 8.882e-16

Y2-Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 45.72 1.366e-11

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.4033 0.04231 -9.533 0.000e+00

x -0.4389 0.06492 -6.761 1.366e-11

Association Model

Wald Tests:

Df Chi Pr(>Chi)

x 1 9.557 0.001992

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.387 0.09467 -14.653 0.000000

x 0.483 0.15624 3.091 0.001992

We see that x is highly significant in all three models. As in Example 6, we only have

one binary explanatory variable x. Therefore, both the Bahadur and Copula models will

give the same regression output as above for the two marginal probabilities of Y1 and Y2

except for the association model. We do not present them here.

52

2.6 Bivariate Binary Linear Regression (bivlocsc2stg)

In this section, we consider the data collected under the same two-phase case-control

sampling scheme but with Y2 - the true response of interest - being a continuous variable

that is fully observed at the second phase.

Since now Y1 (the binary variable defining case-control status of all subjects) and Y2

are different types of correlated measures, we use a similar approach as for bivariate bi-

nary regression called spml2. In particular, we model the joint distribution of Y1 and Y2

in terms of a conditional factorisation

pr(Y1, Y2, X) = pr(Y1|Y2, X; θ1)pr(Y2|X; θ2)pr(X)

Both pr(Y1|Y2, X) and pr(Y2|X) are modelled parametrically, using logistic and linear
regression models respectively. As Y2 is a continuous variable, the evaluation of pr(Y1|X)
at the first phase in the loglikelihood can be a bit tricky.

The application of this model is very similar to those we have developed in Section 2.2

(Binary), 2.3 (Linear) and 2.4 (Bivariate Binary). Therefore, we will only introduce the
syntax for the function call which is named as bivlocsc2stg.

Using the following R codes, we have created a simple sample data with only one co-
variate x. The interaction between Y2 and x is particularly considered in the Y1-model

for generalisation. Categorical information of x based on defined cutoff points is used for
stratification at the first phase. Using the defined parameter values, the proportion of
cases in the population is approximately 10%.

Data generation

N <- 5000

x <- rnorm(N)

eps <- rnorm(N)

theta2 <- c(0.5,1,0)

y2 <- theta2[1]+theta2[2]*x+exp(theta2[3])*eps

theta1 <- c(-3,-0.5,1,0.5)

eta1 <- theta1[1]+theta1[2]*y2+theta1[3]*x+theta1[4]*y2*x

p1 <- plogis(eta1)

y1 <- 1*(runif(N)<p1)

xcut <- c(-30,-1,0,1,30)

xstrata <- as.numeric(cut(x,xcut))

53

indca <- (1:N)[y1==1]

indct <- sample((1:N)[y1==0],length(indca))

ind <- sort(c(indca,indct))

rest <- (1:N)[-ind]

obstype <- rep("retro",N)

obstype[rest] <- "strata"

y2[rest] <- NA; x[rest] <- NA

dat <- data.frame(y1,y2,x,xstrata,obstype)

Proportion of cases in population

prca <- length(indca)/N

prca

The results are as follows. We see that the parameter estimates are fairly close to their
true values.

> z22 <- bivlocsc2stg(y1~y2*x, y2~x, ~1, xstrata="xstrata",

data=dat, xs.includes=FALSE)

> summary(z22)

Call:

bivlocsc2stg(formula1 = y1 ~ y2 * x, formula2 = y2 ~ x, formula3 = ~1,

xstrata = "xstrata", data = dat, xs.includes = FALSE)

Stratum Counts Report:

xStrat 1 2 3 4

obstype yStrat

retro 1 59 69 115 253

2 86 204 156 50

strata 1 0 0 0 0

2 688 1447 1394 479

Models for prob of joint distribution of y1 and y2 given covariates

Key to x-Strat:

1 2 3 4

xstrata1 xstrata2 xstrata3 xstrata4

loglikelihood = -8258.786 using 7 parameters

Y1-Model

Wald Tests:

54

Df Chi Pr(>Chi)

y2 1 60.48 7.438e-15

x 1 126.85 0.000e+00

y2:x 1 175.94 0.000e+00

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.9262 0.08479 -34.513 0.000e+00

y2 -0.6105 0.07850 -7.777 7.327e-15

x 1.2192 0.10825 11.263 0.000e+00

y2:x 0.4833 0.03644 13.264 0.000e+00

Y2-Model (Location)

Wald Tests:

Df Chi Pr(>Chi)

x 1 1292 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5565 0.03769 14.76 0

x 0.9851 0.02740 35.95 0

Y2-Model (Scale)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

-0.01946 0.02185 -0.89056 0.37317

2.7 Random Effects Models for Clustered Binary Data (rclus-

bin)

2.7.1 Model description

One way in which this type of data can arise is as follows. In medical studies, we sometimes

collect information on not only the individual sampled into a study (named “probands”

afterwards) but also their family members. If we treat each family as an independent

cluster, we have clustered binary data when the case-control status of all family members

and their explanatory variables are recorded. As each family can have different number

of persons, clusters can be of various sizes.

In this section, we consider random effects models in which cluster-specific random inter-

cepts are used to account for correlations within clusters. Even if we only have information

55

on the probands, we can still apply this model with the individual being thought of as a

cluster of size one. Data sets that can be analysed under binary regression models can

also be analysed under binary random intercept models.

Suppose a random effect ai is specified for the ith-cluster which has a Normal distrib-

ution with mean 0 and variance σ2. We will work with ai = ewǫi where w = log(σ) and

ǫi ∼ N(0, 1). The following probability model is considered:

Pr(yi|ai, xi) =

Ji∏

j=1

Pr(yij|ai + ηij), where ηij = xT
ijβ.

Here, Ji indicates the total number of individuals in ith-cluster and ηij is the linear pre-

dictor related to the vector xij. Thus,

Pr(yi|xi) =

∫ Ji∏

j=1

Pr(yij|e
wǫi + ηij)φ(ǫ)dǫ =

∫ [
Ji∏

j=1

Pij

]
φ(ǫ)dǫ

where Pij = Pr(yij|e
wǫi+ηij). The parameters of interest are then denoted by ϑ = (β, w).

In the missreg library, the function written to carry out such analyses is called rclusbin,

which can be used for data collected under both prospective and retrospective sampling

schemes. Three different strategies have been particularly considered in the function to

define appropriate Y -strata for retrospective sampling:

1. Proband only

The Y -strata are defined based on the case-control status of the proband only.

2. All controls

The Y -strata are defined based on the case-control status of all members in the

same cluster. If any of the subjects in the cluster are cases, they belongs to Y = 1

and otherwise Y = 0.

3. Gamma probabilities

The Y -strata are defined based on the case-control status of all members in the

same cluster with probabilities depending on two gammas.

Pr(Y strata = 1|ithcluster) =

0,
∑

j yij = 0

γ1,
∑

j yij = 1

γ2,
∑

j yij > 1

.

56

Some important details are discussed below.

1. Cluster/Intra-Cluster membership

Because we have clustered binary data and we assume that the input data frame

consists of one row per individual, the specification of cluster membership is required

in the function call using the parameter ClusInd. If there is only one individual

in each of the clusters (e.g. when we analyse simple case-control data using a ran-

dom intercepts model), ClusInd can be left as NULL (the default). The function

automatically assigns a cluster variable (1:n), which is of the same length as other

variables in the data frame, whenever ClusInd=NULL.

If some clusters contain more than one subject, the program assumes that the

proband is the first one unless additional information is supplied via the argument

IntraClus. When IntraClus is present, all subjects in the cluster will be sorted

by their intra-cluster ID and the one with the smallest ID is treated as the proband.

2. Extra V -stratification

As in other sections, V -stratification can be considered as either a real stratifica-

tion above Y -strata, or a post-stratification aimed at increasing the efficiency of

the method. Such information is again provided using the parameter xstrata in

the function call. When we have strata, each subject is not only classified by their

cluster membership but also the stratum they belong to. Therefore, how clusters

and strata are related in the data becomes very important.

The function rclusbin can currently only deal with the situation in which clus-

ters are defined within strata (i.e. individuals in the same cluster must be in the

same stratum). This puts limits on the V -variables that can be used. If they are

not constant within a cluster, the program will stop and print out an error message.

3. Specification of Weights

The weights variable used in rclusbin function call is treated in one of two ways

depending upon whether there are any clusters of size greater than one. If no

ClusInd values repeat, the programme decides all clusters are of size one. The

weights variable gives the number of clusters=individuals with this set of variable

values. If there are any repeated values of ClusInd, the programme treats each row

as per individual rather than a cluster of size one. The weights variable so provided

gives the number of individuals with this set of variable values within a cluster.

4. Starting values provided by start/Qstart/sigma

In rclubsin function call, the parameter start is used to provide starting values

for ϑ = (β, w) with w = log(σ). A starting value of σ alone can also be provided

57

using the parameter sigma in the function call when the starting values for β are

hard to obtain. As in other functions, the starting values for Q, which is defined

as the probabilities falling into each of the Y -strata in the population within each

V -stratum4, are provided via the argument Qstart.

Unfortunately, we do not have good strategies for obtaining an appropriate starting

value for σ. If no starting value for σ is supplied, the program uses σ = 0.5 as the

default. If the programme cannot converge in one fit, the user has to increase the

number of iterations (the default is 20) in the function mlefn (See Section 4 for

more detail) in the hope that the programme finally converges.

When we have observations of the type "strata", there are some obvious strategies

for obtaining starting values for β (based on weighted binary regression) and Q if

the user has not provided one. We calculate the N -matrix with rows and columns

in correspondence to Y - and V -strata using information collected on all "strata"

observations.

For the case in which starting values for β and Q can also be calculated and some-

times work when there are no "strata" observations in the data frame, is when we

have more than one individual in some of the clusters and the data are collected

based on the case-control information of the probands. The population counts can

be roughly estimated using the total number of cases and controls in the data re-

gardless of their proband status. In all other cases, the user must supply starting

values for both β and Q.

In following three subsections, we will use examples to illustrate the type of analyses we

carry out and explain the summary of results we obtain.

2.7.2 Prospective sampling

The function rclusbin can be applied to data collected prospectively, although its pri-
mary purpose is for retrospectively sampled data.

Example 9: Prospective leprosy data

Let’s start from a simple example. Recall in Example 1 we used the leprosy data (see
Figure 1) which were collected as a case-control sample with post-stratification on age

groups. The covariate of interest scar was only observed for the cases and those controls
sampled. We now consider the original prospective BCG scar data set from which the
Example 1 data set was subsampled. These data, obtained from Clayton and Hills (1993,

4See Section 3.2.3 to 3.2.4 for details

58

Figure 8: The prospective leprosy data

p. 230), are shown in Figure 8 with all variables being fully observed.

Because this is a prospective data set, tbe obstype variable should only contain "uncond"

observations. Recall that we needn’t specify any cluster variable in the function call when
we apply the random intercept model with the individual being thought of as a cluster
of size one. A cluster variable (1:n) is automatically generated in the function whenever
ClusInd=NULL (the default) is specified. The fitting syntax is as follows:

> data(leprosypros)

> leprosypros$age.trans <- 100*(leprosypros$age+7.5)^-2

> leprosypros$obstype <- rep("uncond",dim(leprosypros)[1])

> z23 <- rclusbin(leprosy~age.trans + scar, weights=counts,

59

data=leprosypros, linkname="logit")

Here, we use the same regression model as in Example 1. The variable counts is provided

as a weights variable to count for the number of clusters=individuals with the same set
of covariable values. Recall that the function bin2stg fits binary regression models using
several links which are specified using the parameter linkname and the default is "logit"
(other choices are "probit" and "cloglog"). We have the same options here.

We found that the program could not converge from the default starting value of σ = 0.5
but converged much faster when a sigma value of greater than 1 was supplied in the
call. When simga=2.5 is specified, for example, the program converges in one fit and the
following results are obtained:

> summary(z23)

Call:

rclusbin(formula = leprosy ~ age.trans + scar, weights = counts,

data = leprosypros, linkname="logit", sigma=2.5)

Cluster Size Report:

xStrat 1

obstype Clusize

uncond 1 80882

Stratum Counts Report:

xStrat 1

obstype

uncond 80882

Model for prob of leprosy=yes (y=1) given covariates

loglikelihood = -1644.876 using 4 parameters

Wald Tests:

Df Chi Pr(>Chi)

age.trans 1 19.422 1.048e-05

scar 1 6.724 9.512e-03

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.9956 2.9744 -2.352 1.868e-02

60

age.trans -4.5131 1.0241 -4.407 1.048e-05

scar -0.6385 0.2462 -2.593 9.512e-03

logsigma 0.8843 0.6551 1.350 1.771e-01

In the Cluster Size Report, information is provided on how many clusters we have in

the data for each obstype at various sizes within each V -stratum (named "xStrat" in the

table). As in other functions, the next table Stratum Counts Report tells us how many

clusters we have in the data for each obstype within each Y -stratum and V -stratum.

Because we have a prospective sample here, there are no Y -strata and counts are only

reported within each of the V -strata.

In fact, whether or not information on V -stratification is provided in a prospective

data set like this, will make no difference to the regression results although the Stratum

Counts Report is different with or without V -strata. Note that when observations with

obstype=="strata" are considered, the data set is no longer treated as “prospective” in

our definition.

From the table of Coefficients, we see that the term logsigma is non-significant (p-

value is 0.177) in the model with an estimate of 0.8843, which gives σ̂ = 2.4. When σ is

close to zero and we fix its value between iterations, both β̂ and their standard errors are

almost identical to those obtained using the function bin2stg.

2.7.3 Sampling on probands only

When we have information on the case-control status of all probands (say Y(1) = 1 and
Y(1) =0), we take random samples from the Y(1) =1 and Y(1) =0 populations respectively

with the possibility of extra stratification on other fully-observed categorical variables V .
Recall that we always assume the clusters are defined within strata so that individuals in
the same cluster must be in the same stratum. Information on other family members of
those selected probands is then collected with both Y and X, the covariates of interest,
being fully observed.

Example 10: Brain-cancer Pairs data

The brain-cancer pairs data were constructed from data obtained by Wrensch et al. (1997).
It contains 785 different clusters, all of size two, which are pairs of siblings and constructed
by taking the proband and the sibling closest in age to him/her. There are 385 proband

cases (Y(1) =1) and 400 proband controls (Y(1) =0) in the data set.

The data for the first 10 clusters are shown in Figure 9. Cluster membership is spec-
ified using the variable "id". Note that each value of ID is repeated twice in the data
frame. This indicates that we have two individuals in each cluster. The variable "relid"

61

Figure 9: The brain cancer data

is a within-cluster identifier specifying the intra-cluster membership. Recall we can use it
to indicate the position of the proband in each cluster when necessary. The response of
interest is "bt".

We now analyse this data set using the function rclusbin as in Example 9 with different
values of arguments in the function call. The syntax is as follows.

> data(brainpairs)

> brainpairs$obstype <- rep("retro",dim(brainpairs)[1])

> z24 <- rclusbin(bt ~ ep + ca, ClusInd=id, IntraClus=relid,

data=brainpairs, retrosamp="proband")

Since the sub-sampling was based on the probands only, retrosamp="proband" needs to
be specified in the function call which is the default one. Because there is no obstype

variable in the original data frame, we need to specify one. We have set all observations

to being of obstype "retro". The regression output is summarised below.

> summary(z24)

Call:

rclusbin(formula = bt ~ ep + ca, ClusInd = id, data = brainpairs,

retrosamp="proband", IntraClus = relid)

62

Cluster Size Report:

xStrat 1

obstype Clusize

retro 2 785

Stratum Counts Report:

xStrat 1

obstype yStrat

retro 1 385

2 400

Cluster Counts Reports:

Model for prob of bt=1 (y=1) given covariates

loglikelihood = -5261.996 using 4 parameters

Wald Tests:

Df Chi Pr(>Chi)

ep 1 16.6644 4.461e-05

ca 1 0.1739 6.766e-01

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.07788 0.9099 -5.5810 2.392e-08

ep 1.57094 0.3848 4.0822 4.461e-05

ca 0.09496 0.2277 0.4171 6.766e-01

logsigma -0.58624 1.2785 -0.4585 6.466e-01

Note that the program converges from the default starting values strategy. Both the

"ca" and "logsigma" terms are non-significant in the model. If we look at the Stratum

Counts Report, we see that there are two Y -strata defined by Y(1) = 1 (yStrat=1) and

Y(1) =0 (yStrat=2) respectively. There are no V -strata.

�

Recall that when all clusters are of size 1, sampling probands only simply gives us a usual
case-control sample. We can either use the function bin2stg to fit ordinary binary re-

gression models, or use the function rclusbin to fit a random intercept model using the
same link.

63

Example 1 (continue): Leprosy data

In Example 1 we have analysed the leprosy data with an ordinary logistic regression model
using the function bin2stg. We now re-analyse this data with the random intercepts ver-
sion of this model using the function rclusbin. The fitting syntax is as follows.

> data(leprosy1)

> leprosy1$age.trans <- 100 * (leprosy1$age + 7.5)^-2

> z25 <- rclusbin(leprosy~age.trans + scar, weights=counts,

xstrata="age", data=leprosy1, xs.includes=TRUE,

start=c(-4.48,-4.09,-0.42,log(1)), retrosamp="proband")

Here, we have used the results obtained from summary(z1) in Example 1 as starting
values for β and a positive value of 1 as starting value for σ. The programme could not
converge in one fit which only took 20 iterations. The user is required to either increase

the number of iterations5, or refit the model using ϑ̂ obtained in the last iteration as new
starting values. The following summary of results is obtained:

> summary(z25)

... ...

Cluster Size Report:

xStrat 1 2 3 4 5 6 7

obstype Clusize

retro 1 57 86 100 71 60 69 77

strata 1 19257 17266 13122 10298 8005 5959 6455

Stratum Counts Report:

xStrat 1 2 3 4 5 6 7

obstype yStrat

retro 1 2 25 50 44 39 47 53

2 55 61 50 27 21 22 24

strata 1 0 0 0 0 0 0 0

2 19257 17266 13122 10298 8005 5959 6455

Key to x-Strat:

1 2 3 4 5 6 7

age2.5 age7.5 age12.5 age17.5 age22.5 age27.5 age32.5

5The command used in the function call would be "control=mlefn.control(niter=35)". See the

help file for mlefn.control for more detail.

64

Model for prob of leprosy=yes (y=1) given covariates

loglikelihood = -3900.178 using 4 parameters

Wald Tests:

Df Chi Pr(>Chi)

age.trans 1 20.284 6.674e-06

scar 1 3.277 7.027e-02

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -8.1519 3.2432 -2.514 1.195e-02

age.trans -4.8132 1.0687 -4.504 6.674e-06

scar -0.5792 0.3200 -1.810 7.027e-02

logsigma 1.0858 0.5158 2.105 3.530e-02

As in Example 9, the variable counts is used as a weights variable to provide the number
of clusters=individuals with the same set of covariable values. If we compare the Stratum
Counts Report with that provided by bin2stg (see summary(z1)), we find that they are
identical. The Coefficients table shows a significant logsigma term with a p-value of

0.035.

If we refit the above data using the starting values (-4.48,-4.09,-0.42,log(0.001))6

and fix the logsigma parameter so that it cannot change as iterations proceed, we obtain
the following coefficents table:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.4809 0.1144 -39.179 0.00000

age.trans -4.0906 0.4495 -9.101 0.00000

scar -0.4212 0.1785 -2.360 0.01827

logsigma -6.9078 NaN NaN NaN

We see that, ignoring the last row which corresponds to the fixed tiny value for σ, this

coefficients table is identical to that presented in summary(z1) from the ordinary logistic

regression fit. This is what we would expect. The loglikelihood has the same value, too.

6The last term indicates a very small σ value (=0.001) and we call it a logsigma parameter.

65

2.7.4 Sampling on all family members

Recall in Section 2.4 we talked about two sampling schemes. The second-phase data can

be either collected based on the binary information of Y1 (the original response of inter-

est), or whether or not both Y1 and Y2 (the new response of interest) belong to the control

groups. In previous subsection, we choose our sample based on the case-control status of

the probands only. We now consider another sampling scheme that is similar to those we

discussed in Section 2.4.2.

Consider a situation in which all cases of disease are centrally registered. We define two

Y -strata. The first consists of clusters containing at least one case which can be identified

from the register. The second contains clusters with no cases, i.e. Y(1) 6= 1, ..., Y(Ji) 6= 1.

Here, Ji indicates the total number of individuals in ith cluster. This sampling strategy

is what we have called ”All controls” in Section 2.5.1.

Example 11: An artificial data set (2)

We now consider another artificial data set. Suppose we have two individuals in each

cluster with their case-control information on Y being fully observed. If both of them are

controls, the corresponding cluster belongs to the second Y -stratum (yStrat=2). If any

one of them is a case, the cluster belongs to the first Y -stratum with yStrat=1. There is

no extra V -stratification and only one X-variable is considered.

Let N =10000 and n=1000. We first generate a binary X-variable of length 2N from a

Binomial distribution with p = 0.5. We then generate a random effect variable of length

N from a Normal distribution with mean 0 and standard deviation 2 (i.e. σ=2). As this

variable should be constant within a cluster, we repeat its values twice assuming that the

first N observations indicate the first subject in each cluster and the last N observations

indicate the second subject in each cluster. The derived variable is of length 2N and used

as the random effect a in the model. Let β = (−3, 1). The response variable Y is next

generated from a Binomial distribution with

p =
exp(a + xT β)

1 + exp(a + xT β)

At the next step, we define two Y -strata based on the case-control information of the two
subjects in each cluster. Within each Y -stratum, we randomly choose n/2 clusters. Sub-
jects in the chosen clusters are defined as "retro" observations. The rest are "strata"

observations and their X values become missing. The data frame contains four variables:
the response variable y, the explanatory variable x, the obstype variable and a variable

specifying the cluster membership.

66

We now analyse this data using the function rclusbin. The fitting syntax is as follows.

> rdat00 <- data.frame(y=y, x=x, obstype=obstype, cluster=rep(1:N, 2))

> z26 <- rclusbin(y~x, ClusInd=cluster, data=rdat00, retrosamp="allcontrol")

Here we have used the parameter retrosamp="allcontrol" in the function call to dis-
tinguish from other sampling strategies. The results are then summarised below.

> summary(z26)

Call:

rclusbin(formula = y ~ x, ClusInd = cluster, data = rdat00,

retrosamp="allcontrol")

Cluster Size Report:

xStrat 1

obstype Clusize

retro 2 1000

strata 2 9000

Stratum Counts Report:

xStrat 1

obstype yStrat

retro 1 500

2 500

strata 1 2248

2 6752

Model for prob of y=1 (y=1) given covariates

loglikelihood = -13306.00 using 3 parameters

Wald Tests:

Df Chi Pr(>Chi)

x 1 53.31 2.85e-13

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.0791 0.12961 -23.756 0.000e+00

x 1.0439 0.14298 7.301 2.851e-13

logsigma 0.7447 0.05783 12.877 0.000e+00

67

We see that all terms are highly significant in the model. The parameter estimates are

fairly close to their true values (-3, 1, log(2)).

�

We can also use pre-specified gamma probabilities to define Y -stratum for a cluster based

on the case-control status of all members. The principle is that those clusters with more

than one case are more likely to be in the first stratum (i.e. Y = 1) than those with one

case only. When none of the members in a cluster are cases, they all belong to the second

stratum with Y = 0. Therefore, γ2 should be no less than γ1 and normally assumed twice

as large as γ1 for simplicity.

When this sampling stragy is used, strata membership for each cluster must be speci-

fied in the function call using ystrata. The gamma probabilities should also be provided.

3 Semiparametric Maximum Likelihood

All functions we have implemented so far in the missreg library fit various regression

models to data with the two-phase missingness structure by semiparametric maximum

likelihood. If we want to know more about how the program engine works in each of the

functions, we first need to understand the underlying method that these functions are

based on.

Scott and Wild (2003) have given detailed description on semiparametric maximum like-

lihood approach for two-phase data. We will only represent some important ideas in this

section.

3.1 Introduction

We consider a unified method for fitting essentially arbitrary regression models to a large

class of two-phase missing data and/or response-selective sampling problems using semi-

parametric maximum likelihood. The profile likelihood methods discussed in Scott and

Wild (1997), Lawless et al. (1999) and Neuhaus et al. (2002) have been developed and

implemented. It began as the manuscript Lawless et al. referenced as giving the com-

putational details of the profile likelihood approach. However, we have since discovered

that we can substantially expand the range of applicability of the method with minimal

increase in complexity. We begin by motivating a class of likelihood functions.

Suppose that v represents a set of variables containing easily obtainable information

68

which is available for every individual under study. For our development, v must be dis-

crete, whereas all other variables may be either discrete or continuous. Information on a

(possibly multivariate) response variable y, is available for at least a subset of individuals

under study, and more “expensive” set of explanatory variables z is also available for a

subset. We may wish to use a subset, v1, of the variables in v as explanatory variables in

our model; other variables in v can play the role of informative surrogates for expensive

covariates in z. The object is to estimate the parameters θ of f(y | z, v1; θ). Thus

we have a parametric regression model for the conditional density of the response given

explanatory variables. Data sources for our class of likelihoods can include observations

on z and any or all of (y, v), (y | v), (y, z, v), (y, z | v), (y | z, v), (z | y, v), (z, v) and

(z | v) where “|” refers to information obtained from conditional sampling.

Let g(z, v) denote the density of the covariates. With standard prospective sampling

and no missing data, the likelihood factorises into a term involving θ and a term involv-

ing g() so that information on the distribution of the explanatary variables is orgthogonal

to information on θ. Consequently, we do not need to model the covariate distribution.

This is very convenient in practice because we often have many covariates of different

types for it to be feasible to model their joint distribution in any realistic fashion. Unfor-

tunately, with response-selective data, or most missing data mechanisms, information on

θ and g() is no longer orthogonal and we are forced to use some sort of joint modelling.

However, the practical need for methods which do not require parametric modelling of

g() is just as great. Thus, we consider semi-parametric methods in which the marginal

distribution of (z, v) is left unspecified and estimated nonparametrically.

Recall that v is discrete and denote the distinct values of v that we observe ṽ1, . . . , ṽS.

The class of likelihoods we consider first are those of the form

S∏

s=1

∏

i:vi=evs

f(yi | zi, ṽ1s; θ)∆1ig1(zi | ṽs)
∆2ipr(yi | ṽs; θ)∆3i. (3)

Here, pr(y | v; θ) =
∫

f(y | z, v1; θ)dG1(z|v), ∆1i and ∆2i are 0/1 indicators, whereas

∆3i can take values 0 and ±1. Frequently, the ith observation will contribute to all three

terms in (3). A single profile likelihood method can cater for all likelihoods in this class.

This enables general software to be written whereby a new regression model can be catered

for simply by coding a new function to calculate f(y | z, v1; θ) and its derivatives.

69

3.2 Profile Likelihood

3.2.1 Preliminaries

We wish to maximise a likelihood of the form

L[θ, {g(·|vs)}) =

S∏

s=1

∏

i:vi=evs

f(yi | zi, ṽ1s; θ)∆1ig(zi | ṽs)
∆2ipr(yi | ṽs; θ)∆3i , (4)

where pr(y | v; θ) =
∫

f(y | z, v1; θ)dG(z|v), as a function of θ and the S conditional

densities g(z | ṽs). As is standard in semiparametric maximum likelihood, we treat these

densities as discrete with all of the mass being placed at the observed z values.

We now make some helpful notational changes. We write x = (z, v1) to include all

covariates that are to be used in the model. When we consider only the sizes of proba-

bility atoms, pr(x|v) = pr(z, v1|v) = pr(z|v). We note that the only remaining role of

v in (4) is to divide the data set up into S strata with separate distributions of x to be

estimated for each stratum.

Let Ss be the stratum containing all observations with vi = ṽs. Our problem is now

to maximise

ℓ(θ, g1, . . . , gS) =

S∏

s=1

∏

i∈Ss

f(yi | xi; θ)∆1ig(xi | Ss)
∆2ipr(yi | Ss; θ)∆3i .

The log-likelihood is of the form ℓ(θ, g1, . . . , gS) =
∑

s ℓs(θ, gs). Thus, the profile likeli-

hood, in which we maximise out the gs’s for fixed θ, is of the form

ℓP (θ) = ℓ{θ, ĝ1(·; θ), . . . , ĝS(·; θ)} =
∑

s

ℓs{θ, ĝs(·; θ)} =
∑

s

ℓP,s(θ).

Thus, we need only to be able to solve the problem of obtaining the profile for θ (and its

derivatives) for a single stratum, i.e. for the case of

L(θ, g) =
∏

f(yi | xi; θ)∆1ig(xi)
∆2ipr(yi; θ)∆3i. (5)

In terms of implementation in software, we need to write a function to find ℓP (θ) for the

case of (5). When we have multiple strata, we can send the data from each stratum in

turn to that function and accumulate the results.

3.2.2 The direct approach

In essence, we will let δi = g(xi) and work with ℓ(θ, δ) with δ = (δ1, δ2, . . .) as if it were

an ordinary parametric likelihood. One of the problems with the method below, however,

70

is that it often results in us working with some very large arrays. It is particularly im-

portant to keep the dimension of δ as small as possible. Trapping replicate data points

is one way of reducing the size of these arrays. Thus, we will write in terms of replicated

data. Whether or not we do this makes no difference at all to the profile that we obtain

for θ, but it can substantially reduce storage.

Let A = {i : ∆1i = 1}, B = {i : ∆2i = 1}, C = {i : ∆3i 6= 0}. Let x̃1, . . . , x̃J be

the unique values of x in B, mj be the multiplicity of x̃j in B and δj = pr(x̃j). Let

ỹ1, . . . , ỹK be the unique values of y in C (ignoring x) and let rk =
∑

i∈C,y
i
=ey

k
∆3i. Note

that rk can be positive, negative or zero. On noting that pr(y) =
∑

f(y|x̃j)δj, our log

likelihood from (5) is

ℓ(θ, δ) =
∑

A

ni log f(yi | xi; θ) +
∑

j

mj log δj +
∑

k

rk log

{
∑

j

f(ỹk | x̃j ; θ)δj

}
. (6)

Since the δj parameters have to satisfy the constraints 0 < δj < 1 and
∑

δj = 1, we repa-

rameterize in terms of ρj = log(δj/δJ) and work with ℓ(θ, ρ). With this parametrization

δj = exp(ρj)/
∑

exp(ρℓ) (with ρJ ≡ 0) and the constraints are satisfied automatically.

The profile loglikelihood is ℓP (θ) = ℓ(θ, ρ̂(θ)), where ρ̂(θ) solves ∂ℓ(θ, ρ)/∂ρ = 0, and

ℓP has score vector

UP (θ) =
∂ℓ(θ,ρ)

∂θ

∣∣∣
ρ=bρ(θ)

(see Seber and Wild, 1989, equation (2.69)) and information matrix

IP =
{
J θθ − J θρJ

−1
ρρ J

T

θρ

} ∣∣∣
ρ=bρ(θ)

written in terms of the blocks of the information matrix from ℓ(θ, ρ) (see Seber and Wild,

1989, just prior to equation (2.72)).

We have been applying a Newton-Raphson based algorithm to maximize the profile log-

likelihood ℓP (θ), i.e., θ(a+1) = θ(a) + I
−1
P UP |θ=θ(a) for a = 1, 2, At each iteration,

when θ is updated to θ(a+1) we solve for the accompanying ρ̂(θ(a+1)) also by using New-

ton Raphson to maximise ℓ(θ(a+1), ρ) with respect to ρ. Our “Newton-Raphson based

algorithm” employs simple versions of the hill-climbing techniques discussed in Section

13.3.1 of Seber and Wild (1989) to improve robustness.

A clear disadvantage with the particular profile likelihood algorithm discussed in this

section is that the parameter vectors can be very large indeed requiring substantial stor-

age. We will find in the next section that, when y is discrete we can obtain a substantial

reduction in dimensionality, and consequent increase in speed. Whereas ρ has dimension

71

J − 1 where J is the number of distinct values observed for x, in the case of binary

regression models we can work with a nuisance parameter of dimension 1. The same sort

of reduction can be made for continuous y where only class interval information on y is

available for those data points for which x is not fully observed.

Before going on, however, we do note that when we have several strata, the method

discussed in the current subsection never needs to store a J ρρ matrix for more than one

stratum. These matrices are used to find the contribution of the current stratum to the

overall information matrix IP and then discarded when we move on to process the data

from the next stratum; see the discussion surrounding (5).

3.2.3 An extension to the class of likelihoods

There are important extensions of the likelihood class (3) which do not affect the essen-

tial nature of the maximization problem. Example 3 of Lawless et al. (1999) concerns

failure time data in which whether of not a data point was fully observed depended on

membership of strata defined in terms of both y and x. They also used strata involving

both y and x to avoid the problem of empty or near-empty strata. Neuhaus et al. (2002)

concerns retrospectively sampled family data. Here, y records the set of binary responses

for each member of a cluster (or family) and sampling is conditional upon observation of

some specified pattern in the responses from a cluster. This data can also be supplemented

in various ways, for example by knowledge of stratum sizes in the finite population from

which the individuals were sampled.

We can expand (3) to cater for such examples as follows. Let hv(y, x) be a known

function of the data, where we may use different functions for different v. Imagine that

observation depends upon the value of h. We may, for example, sample conditionally

upon h values and then observe (y, x). We may also use a random mechanism by which

h values are obtained according to some probability π4(h) and then (y, x) are sampled

obtained from the conditional distribution of (y, x) given h. We may supplement such

data with finite population data, or data from a random sample of h values. Or we may

may have data produced by a random process, observe the h values as they arise and then

further observe (y, x) with probability π5(h). In all of these situations, the likelihood is

of the following form, generalised from (3), for suitably chosen ∆jis.

S∏

s=1

∏

i:vi=vs

f(yi | zi, v1s; θ)∆1ig1(zi | vs)
∆2ipr{hvs

(y, z) = h[i] | vs; θ}
∆3i,

72

where h[i] = hvs
(yi, xi). Considering the profiling problem for a single stratum, (5)

becomes

L(θ, g) =
∏

f(yi | xi; θ)∆1ig(xi)
∆2ipr{h(y, z) = h[i] | vs; θ}

∆3i,

where pr{h(y, z) = h̃; θ} =

∫

h(y,x)=eh
dF (y|x; θ)dG(x), and (6), the formulation we use

computationally, becomes

ℓ(θ, δ) =
∑

A

ni log f(yi | xi; θ) +
∑

j

mj log δj +
∑

k

rk log

{
∑

j

pr(h̃k|x̃j ; θ)δj

}
, (7)

where {h̃k} are the distinct values of h observed, that h̃k occurs with multiplicity rk, and

pr{h̃k | x; θ} =

∫

y:h(y,x)=ehk

dF (y|x; θ). The profile likelihood algorithm for the larger

class of likelihoods in this subsection differs only from that in Section 3.2 only in that

pr{h̃k | x; θ} replaces f(ỹk|x; θ) in the last term of the loglikelihood. In computational

terms, this means that to accomodate a new model f(y | x; θ) when h(y, x) is more

complicated than simply h(y, x) = y, an additional function must be written to evaluate

pr{h | x; θ} and its derivatives with respect to θ.

3.2.4 The discrete partition version

When the h(y, x) defines a finite partition of range of (y, x), a substantial reduction of

the dimension of the maximisation problem can be achieved. If we maximise (7) with

respect to δ for fixed θ, using a Lagrange multiplier to cater for the constraint
∑

j δj = 1,

we find that δ̂(θ) satisfies the set of equations

δj = mj

/{
(m+ + r+) −

∑

k

rkpr(h̃k | x̃j; θ)
∑

j′ pr(h̃k | x̃j′; θ)δj′

}
, j = 1, . . . , J, (8)

where m+ =
∑

j mj is the total number of observations in B and R+ =
∑

rk. Suppose

that the range of h(y, x) is a finite set and that all possible values have been observed at

least once. Thus
∑

k pr(h̃k | x; θ) = 1 and it is straightforward to verify that the system

(8) is satisfied when we write

p̃k = (m+ + r+) −
rk

Qk

and set

δj =
mj

(m+ + r+) −
∑

k rk
pr(

ehk|exj ;θ)
Qk

=
mj∑

k p̃kpr(h̃k | x̃j ; θ)
, (9)

73

where the set of Qk’s corresponding to nonzero rk solve the system

Qk =
∑

j

mjpr(h̃k | x̃j ; θ)

(m+ + r+) −
∑

k
mk

Qk
pr(h̃k | x̃j ; θ)

=
∑

j

mjpr(h̃k | x̃j ; θ)
∑

k p̃kpr(h̃k | x̃j ; θ)
. (10)

We note that definition (9) together with (10) leads to
∑

j pr(h̃k | x̃j; θ)δj = Qk, and also

that p̃k is a function of Qk. The system of equations (10) is equivalent to the set of score

equations in Q for fixed θ from,

ℓ∗(θ, Q) =
∑

A

ni log f(yi | xi ; θ) −
∑

j

mj log

{
∑

k

p̃k(Qk)pr(h̃k | x̃j ; θ)

}

+
∑

rk log Qk. (11)

The following relationships are important.

1. ℓ(θ, δ̂(θ)) = ℓ∗(θ, Q̂(θ)) = ℓP (θ).

2. ℓ∗(θ, Q) can be obtained from ℓ(θ, δ) by substituting for the δjs using (9) and

ignoring contants. However, ℓ∗ itself is not a loglikelihood. We elaborate later.

3. Both ℓ∗(θ, Q) and the system (10) depend upon only those Qk for which rk 6= 0.

[Values of rk = 0 arise for h̃k values for which all (y, x) are completely observed.]

4. If all possible values of x have been observed Qk =
∑

j pr(h̃k | x̃j ; θ)δj = pr(h̃k).

Otherwise Qk can be interpreted as estimating pr(h̃k).

5.
∑

k Qk = 1 since
∑

k pr(h̃k | x; θ) = 1.

6. Dim(δ) = J , the number of distinct observed x values, whereas dim(Q) = K, the

number of distinct values of h. For binary regression models, K = 2.

We stated that ℓ∗ is not a log-likelihood. To illustrate, ℓ∗ typically has a minimum rather

than a maximum in Q when the nonzero rks are all positive as is the case with missing

data problems, whereas when the nonzero rKs are negative as with unsupplemented ret-

rospective sampling, ℓ∗ typically has a maximum in Q.

We have experimented with several reparameterizations of Q to take care of positivity

and summation constraints including Qk = exp(ρk)/{1 +
∑

exp(ρℓ)} and

Qk = exp(ξk)/{1 + exp(ξk)} or ξk = logit(Qk).

The former leads to singular information matrices when two or more rk = 0, which is not

surprising given Note 2 above, whereas both parameterizations lead to the identical sets

74

of derivatives when at most one rk = 0. Thus, we routinely use ℓ∗(θ, ξ), where ξ contains

only those ξk for which rk 6= 0. Now,

ℓP (θ) = ℓ∗{θ, ξ̂(θ)},

where ξ̂(θ) solves ∂ℓ(θ, ξ)/∂ξ = 0. Despite ℓ∗ not being a likelihood, we can still calculate

the score vector and information matrix of ℓP (θ) using

UP (θ) =
∂ℓ(θ,ξ)

∂θ

∣∣∣
ξ=

bξ(θ)
and IP =

{
J θθ − J θξJ

−1
ξξ J

T

θξ

} ∣∣∣
ξ=

bξ(θ)
.

4 How the Program Engine Works

Recall that we have taken a two tiered approach in generating the missreg library. As

a first tier, we have written specific functions to perform a limited number of specific

types of regression with some specific missing data structures. All of these functions call

a single general program engine. As a second tier, we have also documented key parts of

the wider system to enable a more sophisticated user to implement new models and/or

new missingness structures. This latter use requires an understanding of the class of like-

lihood functions and missing data structures catered for and also of the program structure.

In this section, we will discuss the program structure of those functions that are frequently

used in the library and designed to be generalised easily. Descriptions are provided to

enable people to develop functions to cater for models or sampling schemes in addition

to those we have implemented so far.

4.1 Illustration using Ordinary Prospective Maximum Likeli-

hood

To facilitate generality, the program consists of functions that perform general tasks that

need to know nothing about how subtasks are performed. To enable subtasks to be per-

formed in different ways, a general function’s call sequence includes one or more arguments

that are “user”-supplied functions will perform the subtasks. Since a parent function has

no knowledge of what information a user-supplied function might require, we make heavy

use of the “. . .” facility of Splus/R which enables a call to a high level function to pass

information on down to any other functions that a parent function might call and on in

turn to any functions that they might call.

The top of this tree is a general purpose Newton-method maximiser called mlefn. This

function will maximise (or minimise or solve the score equations) of any function passed

to it through the call argument loglkfn. The function being optimised is thought of as

75

 mlefn(theta, loglkfn, ...)

Example

seveta.loglkfn(theta, nderivs modelfn, y, x, ...)

Example

locscale(y,eta,nderivs, errdist, ...)

Example

logisterr(eps,nderivs)

Argument loglkfn.
Call mlefn with the name of a function here that will give the value and
dervivatives of a loglikelihood function.

An example in the library is seveta.loglkfn which is intended to handle
arbitrary loglikelihoods which are functions of M linear predictors.

Argument model fn.
seveta.loglkfn needs information from a specific
model written in terms of linear predictors. This
is to be supplied through argument modelfn.

An example is locscale which implements this
scheme for the location and scale family.

Argument errdist
locscale needs a specific error distribution to work with.
This is to be supplied through the argument errdist.

An example is logisterr which performs errror distribution
calculations for the logistic distribution.

Figure 10: Maximum likelihood for models with M linear predictors

a loglikelihood function, though it need not be, but we use the “loglikelihood” language

in our descriptions. The only other required argument of mlefn is theta, a vector of

starting values for the regression parameters. Any function called as a specific loglkfn

must be capable of taking a value of theta and supplying the loglikelihood value, the

score vector (vector of first derivatives) and the information matrix (negative matrix of

second derivatives).

The program structure is illustrated in Figure 10 in a simple prospective setting without

the complication of missing values. This example also introduces the approach imple-

mented in the library for models which involve several (1 or more) linear predictors.

Consider a standard independence-case loglikelihood of the form

ℓ(θ) =
∑

i

log f(yi | xi; θ). (12)

We wish to implement maximum likelihood for the class of models for which f(yi | xi; θ)

is of the form

f(yi | xi; θ) = f(yi | ηi(1), . . . , ηi(M)), (13)

with ηi(j) = xT
i(j)θ (j = 1, . . . , M). Thus a likelihood in this class is a function of M linear

predictors. Generalised linear models fall into this class with M = 1, bivariate binary

76

regression models such as the Palmgren and Bahadur fall into this class with M = 3.

Other examples are given in Yee and Wild (1996). A simple subclass, which we will

use for illustrative purposes is the class of location and scale regression models (M = 2)

written as

yi = ηi(1) + eηi(2)εi

where the εi’s are random errors from some distribution (e.g. normal, logistic, t, etc). Any

single parameter can be treated as a linear predictor modelled using an intercept alone

(i.e., without inclusion of explanatory variables). Allowing it to be a linear predictor gives

additional modelling flexibility. For example, the scale parameter above can either be a

single parameter or it can be modelled in terms of covariates.

If the loglikelihood is of the form (13), then for j = 1, . . . , M and k = 1, . . . , M ,

∂ℓ

∂θ
=

∑

i

∑

j

∂ log f(yi | ηi(1), . . . , ηi(M))

∂η(j)

xi(j)

∂2ℓ

∂θ∂θT
=

∑

i

∑

j

∑

k

∂2 log f(yi | ηi(1), . . . , ηi(M))

∂η(j)∂η(k)

xi(j)x
T
i(k)

Such calculations can be performed using vector arithmetic without looping over i. The

other dimensions are typically small.

In Figure 10, mlefn is called with loglkfn=seveta.loglkfn which performs maximum

likelihood for any M-linear predictor model. What seveta.loglkfn does is to translate

x and theta into a matrix eta made up of M columns of values of the linear predictors.

It then sends these to an user-specified function called modelfn in the call sequence which

is being relied upon to supply the log f values and their derivatives with respect to the

η(j)’s. Last, seveta.loglkfn translates these back into derivatives with respect to θ.

Thus, although there is a sense in which seveta.loglkfn handles all M-linear predictor

models, it does so by passing the buck to modelfn. All seveta.loglkfn really does itself

is to handle translation to and from linear predictors.

At the next level down in Figure 10, seveta.loglkfn is being called with modelfn =

locscale. The function locscale allows seveta.loglkfn to handle the location and

scale models described above which is a subclass of M-linear predictor models. Here,

locscale calculates log f values and their derivatives with respect to the η(j)’s for lo-

cation and scale models specified up to an arbitrary error distribution which must be

supplied via the argument errdist.

Next, locscale is being called with errdist=logisterr. This is the bottom level be-

77

cause the model is now completely specified. The complete call illustrated in Figure 10,

omitting arguments which are peripheral to the current discussion, is

mlefn(theta,loglkfn=seveta.loglkfn, modelfn=locscale,

errdist=logisterr, y=y, x=x)

In this call, the data y and x are available to all functions below mlefn. The covari-

ate information x is only recognised and used by seveta.loglkfn, while the response

information y is used by both seveta.loglkfn and locscale.

4.2 Implementation for Retrospective and Missing Data

To understand this material, it is necessary to first read Section 3.

4.2.1 The direct approach

This subsection draws heavily on the ideas in Section 3.2.1 to 3.2.3. We deal with log-

likelihood which are a summation over strata of loglikelihoods of the form (7). More

specifically, we deal with loglikelihood of the form

ℓ(θ, δ(1), . . . , δ(S)) =
S∑

s=1

ℓ(s)(θ, δ(s))

=
S∑

s=1

[
∑

A(s)

n
(s)
i log f(y

(s)
i | x

(s)
i ; θ) +

∑

j

m
(s)
j log δ

(s)
j

+
∑

k

r
(s)
k log

{
∑

j

pr(h̃
(s)

k |x̃
(s)
j ; θ)δ

(s)
j

}]
, (14)

where S is the total number of V -strata defined for subsampling. For an unstratified

design, we have S = 1. Here, s indexes the set of V -strata, A(s) indexes the set of com-

plete (x, y)-values we have from stratum s, n
(s)
i is the multiplicity of (x

(s)
i , y

(s)
i). Sums

over j range over the values of x observed in stratum s, m
(s)
j is the multiplicity of x

(s)
j ,

δ
(s)
j = pr(x

(s)
j), δ(s) = (δ

(s)
1 , . . . , δ

(s)

J(s)), Q
(s)
k = pr(h̃(y, x) = h̃

(s)

k) where the h̃
(s)

k ’s are the

distinct values of h̃(y, x) observed in stratum s. Note that as strata are defined in terms

of the x-values, different h̃(y, x) formulae can be used in different strata.

In the missreg library, the function MLdirectInf is specified as a loglkfn to return

the value, score vector and information matrix at θ for ℓP (θ) = ℓ(θ, δ̂(θ)) when the class

of loglikelihoods (14) is considered. Note that this approach requires starting values for δ

as well as starting values for θ. The function MLdirectInf is at present set up for models

of the form (13) which use M ≥ 1 linear predictors. As ℓP (θ) is a sum of individual

78

terms ℓ(s)(θ, δ(s)), we use a subfuntion ML2directInf to return the values, score vectors

and information matrices at θ for a ℓ(s)(θ, δ(s)) (s = 1, ..., S) within each of the V -strata.

MLdirectInf is simply a tool to take input data, split the data by V -strata, send the part

of the data set from a particular V -stratum off to ML2directInf, and finally accumulate

(sum) the values, score vectors and information matrices returned from these strata to

provide values for ℓ(θ, δ̂(θ)) and its derivatives.

Recall in Section 3.2.2, we actually use the profile loglikelihood l(θ, ρ̂(θ)) instead of

l(θ, δ̂(θ)) in which δ
(s)
j = exp(ρ

(s)
j)/

∑
l exp(ρ

(s)
l). With such parametrization, the con-

staints for δ
(s)
j being a probability are satisfied automatically. The maximization of

ρ for fixed θ at each V -stratum is done within ML2directInf. A special subfunction

rhodirectInf has been written to return the values of ρ(s) and their derivatives at the

current estimate of θ. Both ML2directInf and its subfunction rhodirectInf are au-

tomatically called by MLdirectInf when this function is used. The user wanting to

implement new models does not have to know about any of this, however.

Similar to seveta.loglkfn we discussed in Figure 10, what MLdirectInf does is to trans-

late x and θ into a matrix η made up of M columns of values of the linear predictors. It

then sends these to user-specified functions in the call sequence to supply the loglikelihood

values and their derivatives with respect to the η’s. Afterwards, MLdirectInf translates

these back into derivatives with respect to θ. The difference now is that MLdirectInf

needs two user-supplied functions which will provide values and their derivatives with

respect to the η’s for not only f(y
(s)
i | x

(s)
i ; θ) but also pr(h̃

(s)

k |x̃
(s)
j ; θ) within each V -

stratum. These are:

• modelfn which allows the loglkfn to handle a particular model in this class. It

calculates the values and their derivatives with respect to the η’s for both f(y
(s)
i |

x
(s)
i ; θ) and its logarithm.

• hmodelfn which calculates the values and their derivatives with respect to the η’s

for pr(h̃
(s)

k |x̃
(s)
j ; θ) under the same model as that specified in modelfn.

In principle, pr(h̃k|x̃j ; θ) and its derivatives can be obtained from the model and the
missing data structure. In practice, however, this is too hard and we leave it to the user
to program for her or his own special case.

The program structure is illustrated in Figure 11 using the location and scale class of

models as an example. When the direct approach is considered, at the first step, the
function mlefn is called with loglkfn = MLdirectInf. Recall that MLdirectInf han-
dles all M-linear predictor models by passing the buck to two user-supplied subfunctions,

79

locscale hylocscale (eta, nderivs, errdist, ...)

mlefn(theta, loglkfn= MLdirectInf , ...)

(y, eta, nderivs, erridist, ...)

MLdirectInf (theta, modelfn, hmodelfn, y, x, ...)

(direct approach)

(Example)

(eps, nderivs)logisterr

(Example)

Figure 11: Direct method for models with M linear predictors

named modelfn and hmodelfn. Therefore, at the second step, we choose (for this exam-
ple) the location and scale regression model using modelfn = locscale and hmodelfn =

hylocscale in the call sequence. Next, both locscale and hylocscale are called with

errdist which specifies an arbitrary error distribution. In this example, the function calls
use errdist = logisterr which caters for the logistic error distribution7. The model is
now completely specified at the bottom level.

The function for the location and scale class of models provided in the library for users is

called locsc2stg. The main work of this function is to not only implement calls described
above, but also deal with input data and model description, obtain starting values for θ,
and organise the output. Such a function enables us to input data in a required format,
pre-check the data for “random” missing values, report strata counts, output results in
well-presented tables, etc.

Recall in Example 5 when the "direct" method was considered, the following commands
were used to call the function locsc2stg.

> data(lowbirth.ls)

> z8 <- locsc2stg(birthwt~gest+mumht+bmi+ethnicdb+hyper+smoke,~ 1,

xstrata=c("sex.age"), data=lowbirth.ls, obstype.name=c("instudy"),

xs.includes=FALSE, method="direct",)

Inside locsc2stg, the function mlefn was invoked using loglk = MLdirectInf with both
modelfn and hmodelfn specified simultaneously under this model. The command lines

7Other error distributions catered for include the standard Normal and Student-t distributions.

80

were as follows:

mlefn(theta, loglkfn=MLdirectInf, modelfn=locscale, hmodelfn=hylocscale,

errdist=errdist, errmodpars=errmodpars, x=xarray, y=as.matrix(y),

xStrat=as.numeric(xStrat),)

Note that the error distribution is specified using the argument errdist along with

errmodpars which provides required parameter values for some of the error distributions,

e.g. the degrees of freedom for a Students’ t-distribution.

4.2.2 The discrete partition version

This subsection draws heavily on the ideas in Section 3.2.4. Here, we deal with finding

stationary values for “loglikelihoods” which are sums over strata of terms of the form

(11). More specifically, we work with ℓ∗(θ, Q) =
∑S

s=1 ℓ∗(s)(θ, Q(s)) where

ℓ∗(s)(θ, Q(s)) =
∑

A(s)

n
(s)
i log f(y

(s)
i | x

(s)
i ; θ) +

∑

k

r
(s)
k log Q

(s)
k

−
∑

j

m
(s)
j log

{
∑

k

p̃
(s)
k pr(h̃

(s)

k | x̃
(s)
j ; θ)

}
. (15)

Here, p̃
(s)
k = (m

(s)
+ + r

(s)
+) −

r
(s)
k

Q
(s)
k

where m
(s)
+ =

∑
j m

(s)
j and r

(s)
+ =

∑
k r

(s)
k . Note that in

practice we do not require the x
(s)
j -values supplied to (15) to be distinct. This approach is

normally used when there are considerably fewer h̃
(s)

k values than x
(s)
j values, and requires

starting values for Q as well as starting values for θ.

In the missreg library, this apporach is applied using loglkfn = MLInf in the mlefn

function call. The function MLInf imposes even fewer restrictions on the models fitted

than does the function MLdirectInf, and actually does very little. The subfunction

ML2Inf (which does the real work) has been written to return the values, score vectors

and information matrices at θ for (15) within each V -stratum (s = 1, ..., S). MLInf just

knows enough about the input data structure to split up the input data by stratum, send

the data set for each stratum off to ML2Inf, and finally sum the values, score vectors and

information matrices returned by ML2Inf across strata.

We can still use transformation Q
(s)
k = exp(ρ

(s)
k)/

∑
l exp(ρ

(s)
k) as for δj ’s to look af-

ter the constraints posed on Q
(s)
k . Alternatively, we may use a logit transformation

Q
(s)
k = exp(ξ

(s)
k)/{1 + exp(ξ

(s)
k)} which corresponds to ξ

(s)
k = logit(Q

(s)
k) (see Section

3.2.4 for detail). Inside ML2Inf, two subfunctions rhoInf and xiInf have been written

to return the values, score vectors and information matrices according to ρ and ξ at the

81

current estimate of θ respectively within each V -stratum. Either one can be chosen in

the program. As in previous subsection, both ML2Inf and its subfunctions rhoInf and

xiInf are automatically called by MLInf when this function is used. Again, those users

who simply want to implement new models do not have to know about any of this.

In fact, ML2Inf is not restricted to models with M linear predictors which is the case

for ML2directInf. It is for general models but the nature of the model is unspecified.

ML2Inf

In its default mode, ML2Inf returns the value, score vector and information matrix at θ

for ℓ∗(s)(θ, Q̂
(s)

(θ)) which is of the form (15).

As we have mentioned, ML2Inf does not impose any restrictions on the models fitted

either. Everything Ml2Inf knows about the model being fitted, it gets from the following

two user-supplied functions in the call,

• ProspModInf, a function to be supplied by the user to supply values of

∑

A(s)

n
(s)
i log f(y

(s)
i | x

(s)
i ; θ)

and its derivatives with respect to θ.;

• StratModInf, a function to be supplied by the user to supply values of

∑

j

m
(s)
j log

{
∑

k

p̃
(s)
k pr(h̃

(s)

k | x̃
(s)
j ; θ)

}

and its derivatives with respect to θ.

The functions we have written to be ProspModInf or StratModInf functions again han-

dle classes of models rather than specific models. Only two examples of these functions

are currrently available in the library. One is to implement models that are functions of

M linear predictors. Another handles binary random effects models. Here, we will only

discuss the use of the former.

In the missreg library, the functions MEtaProspModInf and MEtaStratModInf are spec-

ified as ProspModInf and StratModInf functions respectively when M-linear predictor

models of the form (13) is considered. As they only handle this class of models, any

specific model in this class is next specified using the following two subfunctions:

82

• modelfn which allows ProspModInf to handle a particular model in its class. It

calculates the values and their derivatives with respect to the η’s for both f(y
(s)
i |

x
(s)
i ; θ) and its logarithm.

• stratfn which allows StratModInf to handle the same model as that specified in

modelfn. It calculates the values of pr(h̃
(s)

k |x̃
(s)
j ; θ), its first derivative with respect

to the η’s, and the second derivative of
∑

k p̃
(s)
k pr(h̃

(s)

k | x̃
(s)
j ; θ) with respect to the

η’s.

Note that the differences between the function stratfn and the function hmodelfn, which

is used in the direct approach, are not only their output but also the way the values of

pr(h̃
(s)

k |x̃
(s)
j ; θ) and their derivatives are calculated. Recall that h̃

(s)

k defines group mem-
bership of Y in sth V -stratum when the discrete partion version is considered, even though
Y is fully observed as a continuous variable.

MEtaProspModInf

mlefn (theta, loglkfn=MLInf, ...)

MEtaStratModInf(theta, modelfn, ...) (theta, stratfn, ...)

MLInf (theta, ProspModInf, StratModInf, y, x, ...)

(Example)

 binlogistic (eta, nderivs, ...) binlogisticstrat(y, eta, nderivs, ...)

(Example)

(discrete partition version)

Figure 12: Discrete partition version for models with M linear predictors

The program structure is illustrated in Figure 12 using binary regression models as a
simple example. When the discrete partition version is considered8, at the first step, the
function mlefn is called with loglkfn = MLInf. Recall that MLInf is not restricted to
models with M-linear predictors. The nature of the model is unspecified and passed to

MLInf (and then ML2Inf) by two user-supplied functions given in the argument, namely
ProspModInf and StratModInf. For M-linear predictor models of the form (13), for ex-
ample, we choose the functions MEtaProspModInf and MEtaStratModInf in the library

8In fact, we consider only this approach in binary regression analyses as the dimention of Q in which

Qk =
∑

j pr(h̃k | x̃j ; θ) is simply 2.

83

respectively.

Next, MEtaProspModInf requires a model function to handle a particular model in this
class and MEtaStratModInf requires a stratum model function that is consistent with that
specified in MEtaProspModInf. This is realized using two subfunctions named modelfn

and stratfn in their function call. If we choose a binary logistic regression model,
for example, we specify modelfn = binlogistic in MEtaProspModInf function call and
stratfn = binlogisticstrat in MEtaStratModInf function call. The model is then
completely specified.

As in previous subsection, we normally use a specially-written function (e.g. bin2stg)
to carry out a particular analysis. The mlefn is then automatically invoked inside such
model-specific function. In Section 2.2 when we analysed the Leprosy data, the fitting
syntax was as follows:

> data(leprosy1)

> leprosy1$age.trans <- 100 * (leprosy1$age + 7.5)^-2

> z1 <- bin2stg(leprosy ~ age.trans + scar, data=leprosy1, weights=counts,

xstrata="age",xs.includes=TRUE)

Recall that the function bin2stg fits binary regression models using several links and the
default is a logistic model (i.e. "logit") which has been chosen here. The mlefn was then

applied inside this function using one linear predictor with both modelfn and stratfn

specified simultaneously under a logistic model. The command lines were as follows:

mlefn(theta, loglkfn=MLInf, ProspModInf=MEtaProspModInf,

StratModInf=MEtaStratModInf, modelfn=binlogistic,

hmodelfn=binlogisticstrat, x=xarray, y=as.matrix(y),

xStrat=as.numeric(xStrat),)

We see that the model is complete when both binlogistic and binlogisticstrat are

specified.

4.3 Function Generalisation for Specific Types of Analysis

In this subsection, we will find out in more detail how each type of analysis we have

discussed in Section 2 can be generalised. More specifically, we will discuss how and what

the user is required to do if he or she wants to implement new models in addition to those

that have been implemented in the library.

We have to mention that these functions in the library for specific types of analysis were

originally written to facilitate our research and were not specifically designed for easy

generalisation. Some generalisation is possible, however, with relatively minor additions

or alternations to the code.

84

4.3.1 bin2stg

The function bin2stg fits binary regression models using several links. The links are

specified using the parameter linkname in the function call and the default is "logit",

the logistic model. Other implemented models are the probit ("probit") and the com-

plementary log-log ("cloglog"). If the user wants to use another link other than these

three, he or she will need to write new modelfn and stratfn functions for each new link

and also make a few appropriate modification on the bin2stg function itself.

Recall that when we carry out a binary regression analysis, only the discrete partion

version is considered. This means that the user must first write two sub-model functions

for modelfn and stratfn with requirement. Currently available functions in the library

are as follows:

• Logistic: modelfn = binlogistic; stratfn = binlogisticstrat.

• Probit: modelfn = binprobit; stratfn = binprobitstrat.

• Cloglog: modelfn = bincloglog; stratfn = bincloglogstrat.

The user can look at how these functions are orginised and write his/her own modelfn

and stratfn in a similar manner.

This is not all the user is required to do, however. Inside bin2stg, commands have been

written to choose right modelfn and stratfn functions corresponding to the linkname

specified in the call. This is done right before the function mlefn is invoked. If the users

want to carry out analyses using the new link they have written, they have to add a few

lines of code to allow for this link name.

Another thing attention should be drawn to is the way that the starting values of the

parameters are obtained when start=NULL is used. The function bin2stg calculates ap-

propriate starting values using glm under the links that the glm function can cope with.

Also, as we normally have a retrospective data set, an offset is required in glm to obtain

consistent parameter estimates. The user will have to add a line stating an appropriate

value for the offset.

4.3.2 locsc2stg

The function locsc2stg carries out a linear regression anlaysis using the location and

scale class of models.The function allows for two types of information on the Y -variable

for observations of type strata: the actual y-values (i.e. the direct approach), or class-

interval information on the y-values (i.e. the discrete partition version).

85

Different approaches will correspond to different program structures inside locsc2stg.

When the direct approach is considered, we specify modelfn = locscale and hmodelfn =

hylocscale in the mlefn function call inside locsc2stg. Otherwise, we specify modelfn

= locscale and stratfn = locscstrat1 in the mlefn function call for the discrete par-

tition version.

Recall that the location and scale class of models is specified up to an arbitrary error

distribution which must be supplied via the argument errdistrn in the locsc2stg func-

tion call. Currently implemented error distributions in the library cater for the Logistic

("logistic", the default), standard Normal ("normal") and Student-t ("t") distrib-

utions. The program will then choose appropriate submodel functions for these error

distributions with respect to the name specified in errdistrn.

When the functions locscale and hylocscale are used in the direct approach, they

work with a specific error distribution which is supplied through the argument errdist

in their function calls. The functions that have been written in the library to perform

error distribution calculations are as follows:

• Logistic: errdist = logisterr;

• Normal: errdist = normerr;

• Student-t: errdist = terr with errmodpars = 4 (the default df).

If the user wants to implement another error distribution, he/she needs to write a new

errdist function as above and gives a name for that error distribution to be used in

errdistrn.

When the functions locscale and locscstrat1 are used in the discrete partition version,

the error distribution is specified via the argument errdist in the locscale function call,

but via the argument errdistcdf in the locscstrat1 function call. The functions writ-

ten for errdistcdf return the values and their derivatives with respect to the η’s for the

cumulative distribution function of an error distribution. They are currently implemented

as follows:

• Logistic: errdistcdf = logistcdf;

• Normal: errdistcdf = normcdf;

• Student-t: errdistcdf = tcdf with errmodpars = 4 (the default df).

86

If the user wants to implement another error distribution with the discrete partition ver-

sion, he/she needs to write not only a new errdist function but also a new errdistcdf

function as above.

Another thing attention should be drawn to is that when the starting values of the para-

meters are calculated in the program, the scale parameter estimate σ̂ (recall that σ = eη2)

can be obtained using the sigma output from the summary of lm fit. As different error

distributions might have different variances, this value should be next scaled to one unit

of variance as the standard Normal distribution. Therefore, it is also the user’s job to

state the standard deviation of the error distribution he/she is interested via the vector

scalef named inside the locsc2stg function. For the Logistic, standard Normal and

Student-t distributions, for example, the values of scalef are 1.8, 1, and
√

df/(df − 2)

respectively.

4.3.3 bivbin2stg

The function bivbin2stg carries out various semiparametric maximum likelihood analy-

ses with bivariate binary data. One most frequently used approach is to model the joint

distribution of Y1 and Y2 given X by separately modelling the marginal distributions of

Pr(Y1|X) and Pr(Y2|X), and the association between Y1 and Y2 given X (i.e. specifying 3

models). Currently implemented models for this approach are the Palmgren ("palmgren",

the default), Bahadur ("bahadur") and Copula ("copula") models, which must be spec-

ified via the argument method in the bivbin2stg function call.

Similar to binary regression analysis, we only consider the discrete partition version here

when both Y1 and Y2 are binary variables. This indicates that we first need to specify

appropriate ProspModInf and StratModInf functions, and if necessary, specify modelfn

and stratfn functions within that class of models.

In bivbin2stg, we have used ProspModInf = MEtaProspModInf and StratModInf =

MEtaProspModInf. That is, we implement models that are functions of M linear pre-

dictors9. If the user wants to implement maximum likelihood for other classes of mod-

els, he/she has to write his/her own ProspModInf and StratModInf functions. If the

new functions are written at the similar structure as that in MEtaProspModInf and

MEtaStratModInf, the user also needs to write modelfn and stratfn functions to specify

a particular model in this class.

For the Palmgren, Bahadur and Copula models, the following functions have been written

9With the Palmgren, Bahadur and Copula models, the number of linear predictors we use is three.

87

in the library to specify a particular model in the mlefn function call inside bivbin2stg.

Which one should be used depends on not only the model we are interested, but also the

sampling scheme:

• Sampling on Y1: stratfn = biv1pbc.strat;

– Palmgren: modelfn = lpalmgrn.

– Bahadur: modelfn = lbahad.

– Copula: modelfn = lcopula.

• Sampling on (Y1 6= 1, Y2 6= 1): stratfn = biv00pbc.strat;

– Palmgren: modelfn = lpalmgrn.

– Bahadur: modelfn = lbahad.

– Copula: modelfn = lcopula.

Again, the users can have a look about these functions and write their own in a similar

manner.

Recall that the function bin2stg can fit binary regression models using several links.

In principle, this should also be available when we carry out bivariate binary regression

analyses. That is, we can model the marginal distributions of Pr(Y1|X) and Pr(Y2|X),

and the association model between Y1 and Y2 given X using different links. So far we

have only implemented logistic links.

Finally, when the starting values of the parameters are calculated, those used to ex-

plain the marginal distributions of Pr(Y1|X) and Pr(Y2|X) are obtained uniformly using

glm with weights regardless of the method we choose. The parameters for the association

model, however, are obtained in different ways. This is because the Palmgren, Bahadur

and Copula models use the same marginal distributions but with different association

model10. If the user wants to use a new method in which the joint distribution of Y1 and

Y2 given X is modelled in a similar way, he/she is required to write a few more commands

inside the function bivbin2stg to calculate the starting values of those parameters for

the association model. If the new method models the joint distribution in a completely

different way, the user needs to reorginize the way that the starting values are calculated.

4.3.4 bivlocsc2stg

Recall that this function models the joint distribution of Y1 and Y2 as a conditional fac-

torisation of pr(Y1|Y2, X; θ1) and pr(Y2|X; θ2). A logistic regression model is used for the

10See Section 2.4.1 for details.

88

binary outcome Y1 and a location-scale model for the continuous outcome Y2. Again, the

discrete partition version is chosen here.

Since the linear location-scale model is used for pr(Y2|X), same error distributions are

considered including "logistic", "normal" and "student-t".

There is only one modelfn required in ProspModInf which is called lspm2locsc. The

new StratModInf function called MEtaStratModInf.spml2locsc works on its own and

does not require modelfn or stratfn as input any more.

4.3.5 rclusbin

The function rclusbin fits random effects models for clustered binary data in which

cluster-specific random intercepts are used to account for correlations within clusters. The

same set of links are available as in bin2stg using the same linkname in the rclusbin

function call. More specifically, the logistic ("logit"), probit ("probit") and comple-

mentary log-log ("cloglog") links are currently available.

As we have binary data, this function is also an implementation of the discrete parti-

tion version. When we handle binary random intercept models, we specify ProspModInf

= RClusProspModInf and the function supplied as StratModInf in the mlefn function

call depends on the following sampling schemes:

• Proband only: StratModInf = RProbandStratModInf;

• All controls: StratModInf = R0StratModInf;

• Gamma probabilities: StratModInf = R1StratModInf;

Note that no StratModInf function is required when we have a prospective sample.

Both ProspModInf and StratModInf require the same submodel function modelfn to

work with. This is different from the structure we see in M linear predictor models

in which both modelfn and stratfn are required. Currently available functions in the

library are as follows:

• Logistic: modelfn = binlogistic.

• Probit: modelfn = binprobit.

• Cloglog: modelfn = bincloglog.

89

If the user wants to use another link other than the above three, he/she only need to write

a new modelfn function. Again, the user will have to add a few lines of code in rclusbin

to allow for this new link name.

The starting values of the parameters are calculated (if necessary) using the glm function

with weights inside rclusbin. Therefore, an offset value is no longer required by the

regression model in order to obtain consistent parameter estimates. As long as the link

that the user is interested in can be handled by the function glm, there is no extra work

required for the user to modify any command that are relevant.

90

REFERENCES

Becroft, D.M.O., Thompson, J.M.D. and Mitchell, E.A. (2002). The epidemi-

ology of placental infarction at term, Placenta, 23, 4:343–351.

Breslow, N.E. and Chatterjee, N. (1999). Design and analysis of two-phase

studies with binary outcome applied to Wilms tumour prognosis. Applied

Statistics, 48, 457–468.

Clayton, D. and Hills, M. (1993). Statistical models in epidemiology. Oxford

University Press, Oxford.

Genest, C. (1987). Frank’s family of bivariate distributions. Biometrika, 74,

3:549–555.

Jiang, Y., Scott, A.J. and Wild, C.J. (2006). Secondary analysis of case-

control data. Statistics in Medicine, 25, 1323–1339.

Jiang, Y. (2004). Semiparametric maximum likelihood for multi-phase response-

selective sampling and missing data problems. Awarded Phd thesis in

Statistics at the University of Auckland, New Zealand.

Lawless, J.F., Kalbfleish, J.D. and Wild, C.J. (1999). Semiparametric meth-

ods for response-selective and missing data problems in regression. J. R.

Statist. Soc. B 61, 413–38.

Le Cessie, S. & Van Houwelingen, J.C. (1994). Logistic regression for corre-

lated binary data. Appl. Statist. 43, 95–108.

Lee, A.J., McMurchy, L. & Scott, A.J. (1997). Re-using data from case-control

studies. Statist. in Med. 16, 1377–89.

Meester, S.G. & MacKay, J. (1994). A parametric model for cluster correlated

categorical data. Biometrics 50, 954–63.

Millar, R.B. (1992) Estimating the size-selectivity of fishing gear by condition-

ing on the total catch. J. Amer. Statist. Assoc. 87, 962-968.

Mitchell, E.A., Scragg, R., Stewart, A.W., Becroft, D.M.O., Taylor, B.J.,

Ford, R.P.K., Hassall, I.B., Barry, D.M.J., Allen, E.M. and Roberts, A.P.,

(1991) Results from the first year of the New Zealand Cot Death Study.

New Zealand Medical Journal, 104, 71-76.

Neuhaus, J., Scott, A.J. and Wild, C.J. (2002). The analysis of retrospective

family studies. Biometrika, 89, 23-37.

Scott, A.J. and Wild, C.J. (1997). Fitting regression models to case-control

data by maximum likelihood. Biometrika 84, 57-71.

Scott, A.J. and Wild, C.J. (2001). Maximum likelihood for generalised case-

conrol studies. J. Statist. Planning and Inference 96, 3-27.

Scott, A.J. and Wild, C.J. (2003). Semiparametric maximum likelihood for

two-phase sampling. Unpublished manuscript.

91

Seber, G.A.F and Wild, C.J. (1989) Nonlinear regression. John Wiley and

Sons, New York.

Whittemore, A.S. (1995). Logistic regression of family data from case-control

studies. Biometrika 82, 57–67. (Correction: 84, 989–90.)

Wrensch, M., Lee, M., Miike, R., Newman, B., Barger, G., Davis, R., Wiencke,

J., & Neuhaus, J. (1997). Familial and personal medical history of cancer

and nervous system conditions among adults with glioma and controls.

Am. J. Epidemiol. 145, 581–93.

Thompson, J.M.D., Clark,, P.M., Robinson, E., Becroft, DMO, Pattison, N.S.,

Glavish, N., Pryor, J.E., Wild, C.J., and Rees, B.A. and ., Mitchell, E.A.

(2001). Risk factors for small-for-gestational-age babies: the Auckland

Birthweight Collaborative (ABC) Study. Journal of Paediatrics and Child

Care, 37, 369–375.

Yee, T.W. and Wild, C.J. (1996). Vector generalised additive models. Journal

of the Royal Statistical Society B 58, 481–493.

92

