
6.20 The xij Argument

The following is valid for VGAM 0.7-9 and higher. Prior versions of VGAM handled the xij argument differ-
ently (in a messy and an inferior way)—so be warned!

6.20.1 Introduction

In all of the above VGAM documentation, we have had

ηj(xi) = βT
j xi =

p∑

k=1

xik β(j)k (6.39)

as the jth linear predictor (j = 1, . . . ,M). Importantly, this can be generalized to

ηj(xij) = βT
j xij =

p∑

k=1

xikj β(j)k, (6.40)

or writing this another way (as a mixture),

ηj(x
∗

i ,x
∗

ij) = β∗T
j x∗

i + β∗∗T
j x∗

ij . (6.41)

Often β∗∗

j = β∗∗, say. In (6.41) the variables in x∗

i are common to all ηj , and the variables in x∗

ij have
different values for differing ηj . This allows for covariate values that are specific to each ηj , a facility which
is very important in many applications. Here are two simple examples.

1. Suppose there are two binary responses, Yj = 1 or 0 for presence/absence of a disease in the jth
eye, where j = 1, 2 for the left and right eye respectively. There is a single covariate, called ocular
pressure, which measures the internal fluid pressure within each eye. With data from n people, it
would be natural to fit an exchangeable bivariate logistic model:

logitP (Yij = 1) = β∗

(1)1 + β∗(1)2 xi2j, j = 1, 2; i = 1, . . . , n;

log ψ = β∗

(2)1, (6.42)

where the dependency between the responses is modelled through the odds ratio ψ (here, it is mod-
elled using only an intercept term). Note that the regression coefficient for xi21 and xi22 is the same,
and xi21 6= xi22 in general because each person’s eye will usually have a different ocular pressure.
The constraint matrices are H1 = I3 and H2 = (1, 1, 0)T , and they can be set up with family =

binom2.or(exchangeable=TRUE, zero=3).

2. Suppose an econometrician is interested in peoples’ choice of transport for travelling to work and
that there are four choices: Y = 1 for “bus”, Y = 2 “train”, Y = 3 “car” and Y = 4 means “walking”.
Assume that people only choose one means to go to work. Suppose there are three covariates:
X2 = cost, X3 = journey time, and X4 = distance. Of the covariates only X4 (and the intercept
X1) is the same for all transport choices; the cost and journey time differ according to the means
chosen. Suppose a random sample of n people is collected from some population, and that each
person has access to all these transport modes4. For such data, a natural regression model would
be a multinomial logit model with M = 3: for j = 1, . . . ,M , ηj =

log
P (Y = j)

P (Y = M + 1)
= β∗(j)1 + β∗(1)2 (xi2j − xi24) + β∗(1)3 (xi3j − xi34) + β∗(1)4 xi4, (6.43)

4If not then this is known as a “varying choice set” in the discrete choice model literature. Unfortunately this resides outside the
VGLM/VGAM framework.
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where, for the ith person, xi2j is the cost for the jth transport means, and xi3j is the journey time of
the jth transport means. The distance to get to work is xi4; it has the same value regardless of the
transport means.

Equation (6.43) implies H1 = I3 and H2 = H3 = H4 = 13. Note also that if the last response
category is used as the baseline or reference group (the default of multinomial()) then xik,M+1 can
be subtracted from xikj for j = 1, . . . ,M—this is the natural way xik,M+1 enters into the model.

The use of the xij argument with the VGAM family function multinomial() has a very important appli-
cation in economics with consumer choice or discrete choice modelling. In that field the term “multinomial
logit model” includes a variety of models such as the “generalized logit model” where (6.39) holds, the
“conditional logit model” where (6.40) holds, and the “mixed logit model,” which is a combination of the two,
where (6.41) holds. The generalized logit model focusses on the individual as the unit of analysis, and
uses individual characteristics as explanatory variables, e.g., age of the person in the transport example.
The conditional logit model assumes different values for each alternative and the impact of a unit of xk is
assumed to be constant across alternatives, e.g., journey time in the choice of transport mode. The condi-
tional logit model was proposed into econometrics by McFadden (1974) and it has been used in biomedical
research to estimate relative risks in matched case-control studies as well. Unfortunately, there is confu-
sion in the literature for the terminology of the models. Some authors call multinomial() with (6.39) the
“generalized logit model”. Others call the mixed logit model the “multinomial logit model” and view the gen-
eralized logit and conditional logit models as special cases. In VGAM terminology there is no need to give
different names to all these slightly differing special cases. They are all still called multinomial logit models,
although it may be added that there are some covariate-specific linear/additive predictors. The important
thing is that the framework accommodates xij , so one tries to avoid making life unnecessarily complicated.
And xij can apply in theory to any VGLM and not just to the multinomial logit model.

6.20.2 The xij Argument

VGAM handles variables whose values depend on ηj , (6.41), using the xij argument. It is assigned an S
formula or a list of S formulas. Each formula, which must have M different terms, forms a matrix that
premultiplies a constraint matrix. In detail, (6.39) can be written in vector form as

η(xi) = BT xi =

p∑

k=1

Hk β∗

k xik, (6.44)

where β∗

k = (β∗(1)k, . . . , β
∗

(rk)k)
T is to be estimated. This may be written

η(xi) =

p∑

k=1

diag(xik, . . . , xik) Hk β∗

k. (6.45)

To handle (6.40)–(6.41) we can generalize (6.45) to

ηi =

p∑

k=1

diag(xik1, . . . , xikM) Hk β∗

k (=

p∑

k=1

X∗

(ik) Hk β∗

k, say). (6.46)

Each component of the list xij is a formula having M terms (ignoring the intercept) which specifies the
successive diagonal elements of the matrix X∗

(ik). Thus each row of the constraint matrix may be multiplied
by a different vector of values. The constraint matrices themselves are not affected by the xij argument.
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How can one fit such models in VGAM? Here are the examples revisited.

1. fit1 = vglm(formula = cbind(leye,reye) ~ op,

family = binom2.or(exchangeable=TRUE, zero=3),

xij = list(op ~ lop + rop + fill1(lop)),

form2 = ~ op + lop + rop + fill1(lop), data=eyesdata)

Here, lop and rop are the ocular pressures of the left and right eyes. The specific values of the
vector op are not needed (unless plotted—see Section 6.20.5) because they are overwritten by lop

and rop when forming XVLM. One could call op a “dummy” vector since its purpose is labelling,
however this is not to be confused with dummy variables! The function fill1() makes the number
of terms equal to three (= M for binom2.or()) and the value it returns is a structure of zeros the
same dimension as lop—here it is just a vector. One could have used fill1(rop) instead (or any
vector really—why?). Each response term in the formulas in xij link with the same term in formula,
so essentially it is for labelling purposes only (here, “op”). However, if plotvgam() is to be used on
fit1 then the terms in formula should match the first term of each (RHS) formula in xij—this could
be achieved by replacing “op” by “lop”. One can see this labelling by typing model.matrix(fit1,

type="vlm") to get XVLM; there will be a column called “op”. The argument form2 contains all terms
used; it creates an all-encompassing LM matrix from which columns are extracted out; this matrix is
called XF2.

By the way,

bad2 = vglm(cbind(leye,reye) ~ lop + rop, data=eyesdata,

fam = binom2.or(exchangeable=TRUE, zero=3))

would result in the model

logitP (Yi1 = 1) = β∗

(1)1 + β∗(1)2 xi21 + β∗(1)3 xi22

logitP (Yi2 = 1) = β∗

(1)1 + β∗(1)2 xi21 + β∗(1)3 xi22

log ψ = β∗

(2)1, (6.47)

which is inappropriate. Another related model is

logitP (Yi1 = 1) = β∗

(1)1 + β∗(1)2xi21

logitP (Yi2 = 1) = β∗

(1)1 + β∗(1)3xi22

log ψ = β∗

(2)1,

which can be fitted with

cmat = matrix(c(1,1,0, 0,0,1), 3, 2)

bad3 = vglm(cbind(leye,reye) ~ lop + rop,

fam = binom2.or, data=eyesdata,

constraints=list("(Intercept)"=cmat, lop=rbind(1,0,0), rop=rbind(0,1,0)))

This is different to (6.42) because it allows for a different regression coefficient for each eye, i.e., the
effect of ocular pressure on each eye is different. In other words, this model is not exchangeable. For
this reason, it too is unsatisfactory.
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2. Let’s fit (6.43). Suppose the journey cost and time variables have had the cost and time of walking
subtracted from them. Then, using “.trn” to denote train,

fit2 = vglm(cbind(bus,train,car,walk) ~ Cost + Time + Distance,

fam = multinomial(parallel = FALSE ~ 1),

xij = list(Cost ~ Cost.bus + Cost.trn + Cost.car,

Time ~ Time.bus + Time.trn + Time.car),

form2 = ~ Cost.bus + Cost.trn + Cost.car +

Time.bus + Time.trn + Time.car +

Cost + Time + Distance,

data=gotowork)

should do the job. It has H1 = I3 and H2 = H3 = H4 = 13 because the lack of parallelism only applies
to the intercept. However, unless Cost is the same as Cost.bus and Time is the same as Time.bus,
this model should not be plotted with plotvgam(); see Section 6.20.5 for details.

By the way, suppose β∗

(1)4 in (6.43) is replaced by β∗

(j)4. Then the above code but with

fam = multinomial(parallel = FALSE ~ 1 + Distance),

should fit this model. Equivalently,

fam = multinomial(parallel = TRUE ~ Cost + Time - 1),

As an exercise, discuss the relative merits of the two models, i.e., having β ∗

(j)4 versus a single coeffi-
cient β∗

(1)4.
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6.20.3 More Complicated Examples

The above examples are reasonably straightforward because the variables were entered linearly. However,
things become more tricky if data-dependent functions are used in any xij terms, e.g., bs() or poly().
In particular, regression splines such as bs() can be used to estimate a general smooth function f(x ij),
which is very useful for exploratory data analysis.

For the eyesdata example the code

fitwrong = vglm(cbind(leye,reye) ~ bs(op), data=eyesdat,

fam = binom2.or(exchangeable=TRUE, zero=3),

xij = list(bs(op) ~ bs(lop) + bs(rop) + fill(bs(lop))),

form2 = ~ bs(op) + bs(lop) + bs(rop) + fill(bs(lop)))

is incorrect because the basis functions for bs(lop) and bs(rop) are not identical as the knots differ.
Consequently, they represent two different functions despite having common regression coefficients.

Fortunately, it is possible to force the two bs() terms to have identical basis functions by using a trick:
combine the vectors temporarily. To do this, one can use

BS = function(x, ..., df=3) bs(c(x,...), df=df)[1:length(x),,drop=FALSE]

This computes a B-spline evaluated at x but using other arguments as well to form an overall vector from
which to obtain the (common) knots. Then the usage of BS() can be something like

fit5 = vglm(cbind(leye,reye) ~ BS(op),

fam = binom2.or(exchangeable=TRUE, zero=3), data=eyesdat,

xij = list(BS(op) ~ BS(lop,rop) + BS(rop,lop) + fill1(BS(lop,rop))),

form2 = ~ BS(op) + BS(lop,rop) + BS(rop,lop) + fill1(BS(lop,rop)) +

op + lop + rop)

So BS(lop,rop) is the smooth term for lop, and BS(rop,lop) is the smooth term for rop. To plot the terms
of fit5 correctly, however, we can replace “BS(op)” by “BS(lop,rop)”—see Section 6.20.5 for details.
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6.20.4 Prediction

The generic predict() should work as usual with vglm() models utilizing the xij argument provided the
argument newdata is assigned a data frame with all the variables in the argument form2.

6.20.5 Plotting

Plotting via plotvgam(vglmObject) (where vglmObject uses the xij argument) requires some finesse.
The details are as follows.

For a valid plot the important rules are:

(i) terms in RHS of formula should match both

(a) the LHS term (response) of each formula in the xij list, and

(b) the first term of the RHS of each formula in the xij list.

For example, term1 and term2 in

fit = vglm(response ~ term1 + term2 + term3 + ...,

fam = VGAMfamilyfunction,

xij = list(term1 ~ term1 + term1a + term1b + ...,

term2 ~ term2 + term2a + term3b + ...),

form2 = ~ term1 + term2 + term3 + ... +

term1a + term1b + ... +

term2a + term2b + ... ,

data=dataframe)

plotvgam(fit, se=TRUE)

Here, the first component functions of term1 and term2 should plot correctly against their first (inner)
arguments, e.g., if term1 is myfun(x5,x6,df=4) then its first inner argument is x5.

(ii) the varxijth (inner) argument of each such term is used for the plotting. The default is varxij=1,
meaning the first. For example, suppose term1 was NS(dum1,dum2). It has two variables dum1 and
dum2, and so its component functions would be plotted against dum1. If term2 was NS(dum3,dum4).
then its component functions would be plotted against dum3 by default.

The above rules arise because the default for plotvgam() is raw=TRUE, meaning that if a constraint
matrix Hk has rk columns then Hk is temporarily replaced by

H∗

k =

(
Irk

O

)
, (6.48)

so that

H∗

k f∗

k(xk) =

(
f∗

k(xk)

0

)
.

Since only the first rk component functions of xk are plotted, these are then just the f̂
∗

k(xk) plotted
against xk.

The call plotvgam(VGLMobject) uses the formula argument of VGLMobject to obtain the xk variable
for which the plots of the component functions f̂

∗

k(xk) are produced. Since xk may vary for each ηj this
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means that only one of them is potentially correct. By default VGAM chooses the first argument (more
generally the varxijth one) of the first term of the RHS of each formula in the xij list. For example, the
term NS(dum1,dum2) has two variables dum1 and dum2, and so all the raw component functions for that term
are plotted against dum1.

With terms affected by xij, the default values of some other arguments need to be changed to give a
more accurate representation. For example, something like xlab="dum1" should be assigned in plotvgam()

because NS(dum1,dum2) produces an xlab equalling dum1 and dum2 written on two lines. Also, it may be
necessary to use the which.term and which.cf arguments to select only ‘correct’ component functions.

The above method of how plotvgam() works means that essentially only one-column constraint matri-
ces are handled. If necessary use the which.cf argument to select the component function. Note that the
xij argument is not restricted to one-column constraint matrices but plotting essentially is.

Example 1

The call

Fit1 = vglm(cbind(leye,reye) ~ BS(lop,rop),

fam = binom2.or(exchangeable=TRUE, zero=3),

xij = list(BS(lop,rop) ~ BS(lop,rop) + BS(rop,lop) + fill1(BS(lop))),

form2 = ~ lop + rop +

BS(lop,rop) + BS(rop,lop) + fill1(BS(lop)),

data=eyesdata)

plotvgam(Fit1, se=TRUE)

plots the estimated smooth component function against lop. To plot the (same) component function against
rop try

plotvgam(Fit1, varxij=2, se=TRUE)

Example 2

As another example, suppose we wish to modify fit2 for plotting. This could be done with

Fit2 = vglm(cbind(bus,train,car,walk) ~ Cost.bus + Time.bus + Distance,

fam = multinomial(parallel = FALSE ~ 1),

xij = list(Cost.bus ~ Cost.bus + Cost.trn + Cost.car,

Time.bus ~ Time.bus + Time.trn + Time.car),

form2 = ~ Cost.bus + Cost.trn + Cost.car +

Time.bus + Time.trn + Time.car +

Distance,

data=gotowork)

plotvgam(Fit2, se=TRUE, lcol="red", scol="blue")

The downside of this is that “Cost.bus” is not a good name because it is not really only for bus. An
alternative is to use

plotvgam(fit2, se=TRUE, lcol="red", scol="blue")

provided Cost is the same as Cost.bus and Time is the same as Time.bus.
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Example 3

Here’s another example. Suppose we wish to fit smooth functions in the gotowork data frame. Then

NS = function(x, ..., df=4) ns(c(x,...), df=df)[1:length(x),,drop=FALSE]

FIT2 = vglm(cbind(bus,train,car,walk) ~ NS(Cost.bus, Cost.trn, Cost.car) +

NS(Time.bus, Time.trn, Time.car) +

ns(Distance),

fam = multinomial(parallel = FALSE ~ 1),

xij = list(NS(Cost.bus, Cost.trn, Cost.car) ~

NS(Cost.bus, Cost.trn, Cost.car) +

NS(Cost.trn, Cost.car, Cost.bus) +

NS(Cost.car, Cost.bus, Cost.trn),

NS(Time.bus, Time.trn, Time.car) ~

NS(Time.bus, Time.trn, Time.car) +

NS(Time.trn, Time.car, Time.bus) +

NS(Time.car, Time.bus, Time.trn)),

form2 = ~ NS(Cost.bus, Cost.trn, Cost.car) +

NS(Cost.trn, Cost.car, Cost.bus) +

NS(Cost.car, Cost.bus, Cost.trn) +

NS(Time.bus, Time.trn, Time.car) +

NS(Time.trn, Time.car, Time.bus) +

NS(Time.car, Time.bus, Time.trn) +

ns(Distance) +

Distance +

Cost.bus + Cost.trn + Cost.car +

Time.bus + Time.trn + Time.car,

data=gotowork)

plotvgam(FIT2, se=TRUE, lcol="red", scol="blue")

should work. The fitted smooths are plotted against Cost.bus and Time.bus. Note that H1 = I3 and
H2 = H3 = H4 = 13.

The call

plotvgam(FIT2, varxij=2)

plots the cost component function against Cost.trn, and the time component function against Time.trn.
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Example 4

Consider the following code. Here, the constraint matrix for the NS() term has one column and there is an
exchangeable error structure.

fit8 = vglm(cbind(nBnW,nBW,BnW,BW) ~ Age + NS(dum1,dum2),

binom2.or(exchang=TRUE, zero=3),

data = mydata,

xij = list(NS(dum1,dum2) ~ NS(dum1,dum2) +

NS(dum2,dum1) +

fill1(NS(dum1))),

form2 = ~ NS(dum1,dum2) + NS(dum2,dum1) + fill1(NS(dum1)) +

Age + dum3 + dum2 + dum1)

Then

par(mfrow=c(2,2))

mych = as.character(~ NS(dum1,dum2))[2]

plotvgam(fit8, which.term=mych, se=TRUE)

plotvgam(fit8, which.term=mych, se=TRUE, varxij=2)

confirms that adjustments are needed since two of the plots are plotted against the wrong predictor. They
are also labelled incorrectly. One can select out and plot the ‘correct’ plots by

par(mfrow=c(1,2))

plotvgam(fit8, which.term=mych, se=TRUE,

which.cf=1, xlab="dum1")

plotvgam(fit8, which.term=mych, se=TRUE,

which.cf=2, xlab="dum2", varxij=2)
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6.20.6 Last word

The xij argument operates after the ordinary XVLM matrix is created. Then selected columns of XVLM

are modified from information in the constraint matrices, xij and form2 arguments. That is, from XF2

and Hk. This whole operation is possible because XVLM remains structurally the same. The crucial equation
is (6.46).

Other xij examples are given in the online help of fill() and vglm.control().
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