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Chapter 1

Prologue

This course was originally developed by Dr Wayne Stewart (formerly of The University of
Auckland) and was first offered in 2009 (Figure 1.1). I joined the Department of Statistics
in July 2012 and took over the course from him. It was good fortune for me that Wayne
left the university as I arrived. If I had been able to choose which undergraduate course I
would most like to teach, it would have been this one!

Wayne is a passionate Bayesian1 and advocate for the inclusion of Bayesian statistics in
the undergraduate statistics curriculum. I also consider myself a Bayesian and agree that
this approach to statistics should form a greater part of statistics education than it does
today. While this edition of the course differs from Wayne’s in some ways2, I hope I am
able to do the topic justice in an accessible way.

In this course we will use the following software:

• R (http://www.r-project.org/)

• JAGS (http://mcmc-jags.sourceforge.net/)

• The rjags package in R

• RStudio (http://www.rstudio.com/)

You will probably have used R, at least a little bit, in previous statistics courses. RStudio
is just a nice program for editing R code, and if you don’t like it, you’re welcome to use
any other text editor. JAGS is in a different category and you probably won’t have seen
it before. JAGS is used to implement Bayesian methods in a straightforward way, and
rjags allows us to use JAGS from within R. Don’t worry, it’s not too difficult to learn
and use JAGS! We will have a lot of practice using it in the labs.

These programs are all free and open source software. That is, they are free to use, share
and modify. They should work on virtually any operating system including the three

1Bayesian statistics has a way of creating extreme enthusiasm among its users. I don’t just use Bayesian
methods, I am a Bayesian.

2The differences are mostly cosmetic. 90% of the content is the same.
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CHAPTER 1. PROLOGUE 5

Figure 1.1: An ad for the original version of this course (then called STATS 390), showing
Wayne Stewart with two ventriloquist dolls (Tom Bayes and Freaky Frequentist), who would
have debates about which approach to statistics is best.

most popular: Microsoft Windows, Mac OS X and GNU/Linux. In previous editions of
the course, another program called WinBUGS was used instead of JAGS. Unfortunately,
WinBUGS has not been updated for several years, and only works on Microsoft Windows.
Therefore I switched over to JAGS in 2013. The differences between JAGS and WinBUGS
are fairly minor, but JAGS has the advantage of being open source and cross-platform.
All of this software is already installed on the lab computers, but if you would like to
install it on your own computer, instructions are provided on the Course Information Sheet.

1.1 Bayesian and Classical Statistics

Throughout this course we will see many examples of Bayesian analysis, and we will
sometimes compare our results with what you would get from classical or frequentist
statistics, which is the other way of doing things. You will have seen some classical
statistics methods in STATS 10X and 20X (or BioSci 209), and possibly other courses as
well. You may have seen and used Bayes’ rule before in courses such as STATS 125 or 210.
Bayes’ rule can sometimes be used in classical statistics, but in Bayesian stats it is used
all the time).

Many people have differing views on the status of these two different ways of doing
statistics. In the past, Bayesian statistics was controversial, and you had to be very
brave to admit to using it. Many people were anti-Bayesian! These days, instead of
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Bayesians and anti-Bayesians, it would be more realistic to say there are Bayesians and
non-Bayesians, and many of the non-Bayesians would be happy to use Bayesian statistics
in some circumstances. The non-Bayesians would say that Bayesian statistics is one way of
doing things, and it is a matter of choice which one you prefer to use. Most Bayesian statis-
ticians think Bayesian statistics is the right way to do things, and non-Bayesian methods
are best thought of as either approximations (sometimes very good ones!) or alternative
methods that are only to be used when the Bayesian solution would be too hard to calculate.

Sometimes I may give strongly worded opinions on this issue, but there is one important
point that you should keep in mind throughout this course:

You do not have to agree with me in order to do well in STATS 331!

1.2 This Version of the Notes

Wayne Stewart taught STATS 331 with his own course notes. When I took over the
course, I found that our styles were very different, even though we teach the same ideas.
Unfortunately, it was challenging for the students to reconcile my explanations with
Wayne’s. Therefore I thought it would be better to have my own version of the notes.
These lecture notes are a work in progress, and do not contain everything we cover in
the course. There are many things that are important and examinable, and will be only
discussed in lectures, labs and assignments!

The plots in these notes were not produced using R, but using a different plotting package
where I am more familiar with the advanced plotting features. This means that when
I give an R command for a plot, it will not produce a plot that looks exactly like the
plot that follows. However, it will give approximately the same plot, conveying the same
information. I apologise if you find this inconsistency distracting.

At this stage, the course notes contain the basic material of the course. Some more
advanced topics will be introduced and discussed in lectures, labs and assignments.

I appreciate any feedback you may have about these notes.

1.3 Assessment

The assessment for this course is broken down as follows:

• 20% Assignments. There will be four assignments, worth 5% each. The assignments
are not small, so please do not leave them until the last minute.
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• 20% Midterm test (50 minutes, calculators permitted). This will be held in class, in
place of a lecture, some time just after mid semester break.

• 60% Final exam (two hours, calculators permitted).



Chapter 2

Introduction

Every day, throughout our lives, we are required to believe certain things and not to
believe other things. This applies not only to the “big questions” of life, but also to trivial
matters, and everything in between. For example, this morning I boarded the bus to
university, sure that it would actually take me here and not to Wellington. How did I
know the bus would not take me to Wellington? Well, for starters I have taken the same
bus many times before and it has always taken me to the university. Another clue was
that the bus said “Midtown” on it, and a bus to Wellington probably would have said
Wellington, and would not have stopped at a minor bus stop in suburban Auckland. None
of this evidence proves that the bus would take me to university, but it does makes it very
plausible. Given all these pieces of information, I feel quite certain that the bus will take
me to the city. I feel so certain about this that the possibility of an unplanned trip to
Wellington never even entered my mind until I decided to write this paragraph.

Somehow, our brains are very often able to accurately predict the correct answer to many
questions (e.g. the destination of a bus), even though we don’t have all the available
information that we would need to be 100% certain. We do this using our experience of
the world and our intuition, usually without much conscious attention or problem solving.
However, there are areas of study where we can’t just use our intuition to make judgments
like this. For example, most of science involves such situations. Does a new treatment
work better than an old one? Is the expansion of the universe really accelerating? People
tend to be interested in trying to answer questions that haven’t been answered yet, so our
attention is always on the questions where we’re not sure of the answer. This is where
statistics comes in as a tool to help us in this grey area, when we can’t be 100% certain
about things, but we still want to do the best we can with our incomplete information.

2.1 Certainty, Uncertainty and Probability

In the above example, I said things like “I couldn’t be 100% certain”. The idea of using a
number to describe how certain you are is quite natural. For example, contestants on the
TV show “Who Wants to be a Millionaire” often say things like “I’m 75% sure the answer

8
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is A”1.

There are some interesting things to notice about this statement. Firstly, it is a subjective
statement. If someone else were in the seat trying to answer the question, she might say
the probability that A is correct is 100%, because she knows the answer! A third person
faced with the same question might say the probability is 25%, because he has no idea
and only knows that one of the four answers must be correct.

In Bayesian statistics, the interpretation of what probability means is that it is a description
of how certain you are that some statement, or proposition, is true. If the probability is 1,
you are sure that the statement is true. So sure, in fact, that nothing could ever change
your mind (we will demonstrate this in class). If the probability is 0, you are sure that the
proposition is false. If the probability is 0.5, then you are as uncertain as you would be
about a fair coin flip. If the probability is 0.95, then you’re quite sure the statement is
true, but it wouldn’t be too surprising to you if you found out the statement was false.
See Figure 2.1 for a graphical depiction of probabilities as degrees of certainty or plausibility.

0 1Probability

Somewhat sure
it's false, but I could be wrong

I'm very uncertain.
It's a toss-up

I am very sure that
it is true

Figure 2.1: Probability can be used to describe degrees of certainty, or how plausible some
statement is. 0 and 1 are the two extremes of the scale and correspond to complete certainty.
However, probabilities are not static quantities. When you get more information, your
probabilities can change.

In Bayesian statistics, probabilities are in the mind, not in the world.

It might sound like there is nothing more to Bayesian statistics than just thinking about a
question and then blurting out a probability that feels appropriate. Fortunately for us,
there’s more to it than that! To see why, think about how you change your mind when
new evidence (such as a data set) becomes available. For example, you may be on “Who
Wants to be a Millionaire?” and not know the answer to a question, so you might think
the probability that it is A is 25%. But if you call your friend using “phone a friend”, and
your friend says, “It’s definitely A”, then you would be much more confident that it is
A! Your probability probably wouldn’t go all the way to 100% though, because there is

1This reminds me of an amusing exchange from the TV show Monk. Captain Stottlemeyer: [about
someone electrocuting her husband] Monk, are you sure? I mean, are you really sure? And don’t give me
any of that “95 percent” crap. Monk: Captain, I am 100% sure... that she probably killed him.
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always the small possibility that your friend is mistaken.

When we get new information, we should update our probabilities to take
the new information into account. Bayesian methods tell us exactly how
to do this.

In this course, we will learn how to do data analysis from a Bayesian point of view. So
while the discussion in this chapter might sound a bit like philosophy, we will see that
using this kind of thinking can give us new and powerful ways of solving practical data
analysis problems. The methods we will use will all have a common structure, so if you
are faced with a completely new data analysis problem one day, you will be able to design
your own analysis methods by using the Bayesian framework. Best of all, the methods
make sense and perform extremely well in practice!



Chapter 3

First Examples

We will now look at a simple example to demonstrate the basics of how Bayesian statistics
works. We start with some probabilities at the beginning of the problem (these are called
prior probabilities), and how exactly these get updated when we get more information
(these updated probabilities are called posterior probabilities). To help make things more
clear, we will use a table that we will call a Bayes’ Box to help us calculate the posterior
probabilities easily.

Suppose there are two balls in a bag. We know in advance that at least one of them is
black, but we’re not sure whether they’re both black, or whether one is black and one is
white. These are the only two possibilities we will consider. To keep things concise, we
can label our two competing hypotheses. We could call them whatever we want, but I will
call them BB and BW. So, at the beginning of the problem, we know that one and only one
of the following statements/hypotheses is true:

BB: Both balls are black
BW: One ball is black and the other is white.

Suppose an experiment is performed to help us determine which of these two hypotheses
is true. The experimenter reaches into the bag, pulls out one of the balls, and observes its
colour. The result of this experiment is (drumroll please!):

D: The ball that was removed from the bag was black.

We will now do a Bayesian analysis of this result.

3.1 The Bayes’ Box

A Bayesian analysis starts by choosing some values for the prior probabilities. We have
our two competing hypotheses BB and BW, and we need to choose some probability values
to describe how sure we are that each of these is true. Since we are talking about two
hypotheses, there will be two prior probabilities, one for BB and one for BW. For simplicity,

11
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we will assume that we don’t have much of an idea which is true, and so we will use the
following prior probabilities:

P (BB) = 0.5 (3.1)

P (BW) = 0.5. (3.2)

Pay attention to the notation. The upper case P stands for probability, and if we just
write P (whatever), that means we are talking about the prior probability of whatever.
We will see the notation for the posterior probability shortly. Note also that since the two
hypotheses are mutually exclusive (they can’t both be true) and exhaustive (one of these
is true, it can’t be some undefined third option). We will almost always consider mutually
exclusive and exhaustive hypotheses in this course1.

The choice of 0.5 for the two prior probabilities describes the fact that, before we did the
experiment, we were very uncertain about which of the two hypotheses was true. I will
now present a Bayes’ Box, which lists all the hypotheses (in this case two) that might be
true, and the prior probabilities. There are some extra columns which we haven’t discussed
yet, and will be needed in order to figure out the posterior probabilities in the final column.
The first column of a Bayes’ Box is just the list of hypotheses we are considering. In

Hypotheses prior likelihood prior × likelihood posterior

BB 0.5
BW 0.5

Totals: 1

this case there are just two. If you need to construct a Bayes’ box for a new problem,
just think about what the possible answers to the problem are, and list them in the first
column. The second column lists the prior probabilities for each of the hypotheses. Above,
before we did the experiment, we decided to say that there was a 50% probability that
BB is true and a 50% probability that BW is true, hence the 0.5 values in this column. The
prior column should always sum to 1. Remember, the prior probabilities only describe our
initial uncertainty, before taking the data into account. Hopefully the data will help by
changing these probabilities to something a bit more decisive.

3.1.1 Likelihood

The third column is called likelihood, and this is a really important column where the
action happens. The likelihood is a quantity that will be used for calculating the posterior
probabilities. In colloquial language, likelihood is synonymous with probability. It means
the same thing. However, in statistics, likelihood is a very specific kind of probability. To
fill in the third column of the Bayes’ Box, we need to calculate two likelihoods, so you can
tell from this that the likelihood is something different for each hypothesis. But what is it
exactly?

1If this does not appear to be true in a particular problem, it is usually possible to redefine the various
hypotheses into a set that of hypotheses that are mutually exclusive and exhaustive.
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The likelihood for a hypothesis is the probability that you would have
observed the data, if that hypothesis were true. The values can be found
by going through each hypothesis in turn, imagining it is true, and asking,
“What is the probability of getting the data that I observed?”.

Here is the Bayes’ Box with the likelihood column filled in. I will explain how these
numbers were calculated in a bit more detail in the next subsection. If you have taken

Hypotheses prior likelihood h = prior × likelihood posterior

BB 0.5 1
BW 0.5 0.5

Totals: 1

STATS 210 and used the maximum likelihood method, where you find the value of a
parameter that maximises the likelihood function, that is the same as the likelihood we
use in this course! So you have a head start in understanding this concept.

3.1.2 Finding the Likelihood Values

We will first calculate the value of the likelihood for the BB hypothesis. Remember, the
data we are analysing here is that we chose one of the balls in the bag “at random”, and it
was black. The likelihood for the BB hypothesis is therefore the probability that we would
get a black ball if BB is true.

Imagine that BB is true. That means both balls are black. What is the probability that the
experiment would result in a black ball? That’s easy – it’s 100%! So we put the number 1
in the Bayes Box as the likelihood for the BB hypothesis.

Now imagine instead that BW is true. That would mean one ball is black and the other is
white. If this were the case and we did the experiment, what would be the probability of
getting the black ball in the experiment? Since one of the two balls is black, the chance of
choosing this one is 50%. Therefore, the likelihood for the BW hypothesis is 0.5, and that’s
why I put 0.5 in the Bayes’ Box for the likelihood for BW.

In general, the likelihood is the probability of the data that you actually got, assuming
a particular hypothesis is true. In this example it was fairly easy to get the likelihoods
directly by asking “if this hypothesis is true, what is the probability of getting the black
ball when we do the experiment?”. Sometimes this is not so easy, and it can be helpful
to think about ALL possible experimental outcomes/data you might have seen – even
though ultimately, you just need to select the one that actually occurred. Table 3.1 shows
an example of this process.

The fact that only the blue probabilities in Table 3.1 enter the Bayes’ Box calculation
is related to the likelihood principle, which we will discuss in lectures. Note also that
in Table 3.1, the probabilities for the different possible data sets add to 1 within each
hypothesis, but the sum of the blue “selected” likelihood values is not 1 (it is, in fact,
meaningless).
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Hypotheses Possible Data Probability
BB Black Ball 1

White Ball 0
BW Black Ball 0.5

White Ball 0.5

Table 3.1: This table demonstrates a method for calculating the likelihood values, by
considering not just the data that actually occurred, but all data that might have occurred.
Ultimately, it is only the probability of the data which actually occurred that matters, so
this is highlighted in blue.

When we come to parameter estimation in later chapters, we will usually set up our problems
in this way, by considering what data sets are possible, and assigning probabilities to them.

3.1.3 The Mechanical Part

The third column of the Bayes’ Box is the product of the prior probabilities and the
likelihoods, calculated by simple multiplication. The result will be called “prior times
likelihood”, but occasionally we will use the letter h for these quantities. This is the
unnormalised posterior. It does not sum to 1 as the posterior probabilities should, but it
is at least proportional to the actual posterior probabilities.

To find the posterior probabilities, we take the prior × likelihood column and divide
it by its sum, producing numbers that do sum to 1. This gives us the final posterior
probabilities, which were the goal all along. The completed Bayes’ Box is shown below:

Hypotheses prior likelihood h = prior × likelihood posterior

BB 0.5 1 0.5 0.667
BW 0.5 0.5 0.25 0.333

Totals: 1 0.75 1

We can see that the posterior probabilities are not the same as the prior probabilities,
because we have more information now! The experimental result made BB a little bit more
plausible than it was before. Its probability has increased from 1/2 to 2/3.

3.1.4 Interpretation

The posterior probabilities of the hypotheses are proportional to the prior probabilies
and the likelihoods. A high prior probability will help a hypothesis have a high posterior
probability. A high likelihood value also helps. To understand what this means about
reasoning, consider the meanings of the prior and the likelihood. There are two things
that can contribute to a hypothesis being plausible:

• If the prior probability is high. That is, the hypothesis was already plausible, before
we got the data.

• If the hypothesis predicted the data well. That is, the data was what we would have
expected to occur if the hypothesis had been true.
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I hope you agree that this is all very sensible.

In class we will also study variations on this problem, considering different assumptions
about the prior probabilities and how they affect the results, and also considering what
happens when we get more and/or different data.

3.2 Bayes’ Rule

Bayes’ rule is an equation from probability theory, shown in Figure 3.1. The various terms
in Bayes’ rule are all probabilities, but notice that there are conditional probabilities in
there. For example, the left hand side of the equation is P (A|B) and that means the
probability of A given B. That is, it’s the probability of A after taking into account the
information B. In other words, P (A|B) is a posterior probability, and Bayes’ rule tells
us how to calculate it from other probabilities. Bayes’ rule is true for any statements A

Figure 3.1: A blue neon sign displaying Bayes’ rule. You can use it to calculate the
probability of A given B, if you know the values of some other probabilities on the right
hand side. Image credit: Matt Buck. Obtained from Wikimedia Commons.

and B. If you took the equation in Figure 3.1 and replaced A with “Kākāpō will survive
beyond 2050” and B with “I had coffee this morning”, the resulting equation would still
be true2.

It is helpful to relabel A and B in Bayes’ rule to give a more clear interpretation of how
the equation is to be used. In this version of Bayes’ rule (which is one you should commit
to memory), A has been replaced by H, and B has been replaced by D. The reason for
these letters is that you should interpret H as hypothesis and D as data. Then you can
interpret Bayes’ rule as telling you the probability of a hypothesis given some data, in

2It would still be true, but it would not very interesting, because whether or not I had coffee doesn’t
tell you much about the survival prospects of endangered New Zealand parrots.
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other words, a posterior probability.

P (H|D) =
P (H)P (D|H)

P (D)
(3.3)

In Bayesian statistics, most of the terms in Bayes’ rule have special names. Some of them
even have more than one name, with different scientific communities preferring different
terminology. Here is a list of the various terms and the names we will use for them:

• P (H|D) is the posterior probability. It describes how certain or confident we
are that hypothesis H is true, given that we have observed data D. Calculating
posterior probabilities is the main goal of Bayesian statistics!

• P (H) is the prior probability, which describes how sure we were that H was true,
before we observed the data D.

• P (D|H) is the likelihood. If you were to assume that H is true, this is the
probability that you would have observed data D.

• P (D) is the marginal likelihood. This is the probability that you would have
observed data D, whether H is true or not.

Since you may encounter Bayesian methods outside of STATS 331, I have included an
Appendix called “Rosetta Stone” that lists some common alternative terminology.

In the above example, we did some calculations to work out the numbers in the Bayes’ Box,
particularly the posterior probabilities, which are the ultimate goal of the calculation. What
we were actually doing in these calculations was applying Bayes’ rule. We actually applied
Bayes’ rule twice, once to compute P (BB|D) and a second time to calculate P (BW|D).

When you use a Bayes’ Box to calculate posterior probabilities, you are
really just applying Bayes’ rule a lot of times: once for each hypothesis
listed in the first column.

3.3 Phone Example

This example is based on Question 1 from the 2012 final exam. I got the idea for this
question from an example in David MacKay’s wonderful book “Information Theory,
Inference and Learning Algorithms” (available online as a free PDF download. You’re
welcome to check it out, but it is a large book and only about 20% of the content is
relevant to this course!).

You move into a new house which has a phone installed. You can’t remember the phone
number, but you suspect it might be 555-3226 (some of you may recognise this as being
the phone number for Homer Simpson’s “Mr Plow” business). To test this hypothesis,
you carry out an experiment by picking up the phone and dialing 555-3226.

If you are correct about the phone number, you will definitely hear a busy signal because
you are calling yourself. If you are incorrect, the probability of hearing a busy signal is
1/100. However, all of that is only true if you assume the phone is working, and it might
be broken! If the phone is broken, it will always give a busy signal.
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When you do the experiment, the outcome (the data) is that you do actually get the busy
signal. The question asked us to consider the following four hypotheses, and to calculate
their posterior probabilities: Note that the four hypotheses are mutually exclusive and

Hypothesis Description Prior Probability
H1 Phone is working and 555-3226 is correct 0.4
H2 Phone is working and 555-3226 is incorrect 0.4
H3 Phone is broken and 555-3226 is correct 0.1
H4 Phone is broken and 555-3226 is incorrect 0.1

Table 3.2: The four hypotheses about the state of the phone and the phone number. The
prior probabilities are also given.

exhaustive. If you were to come up with hypotheses yourself, “phone is working” and
“555-3226 is correct” might spring to mind. They wouldn’t be mutually exclusive so you
couldn’t do a Bayes’ Box with just those two, but it is possible to put these together
(using “and”) to make the four mutually exclusive options in the table.

3.3.1 Solution

We will go through the solution using a Bayes’ Box. The four hypotheses listed in Table 3.2
and their prior probabilities are given, so we can fill out the first two columns of a Bayes’
Box right away: The next thing we need is the likelihoods. The outcome of the experiment

Hypotheses prior likelihood prior × likelihood posterior

H1 0.4
H2 0.4
H3 0.1
H4 0.1

Totals: 1

(the data) was the busy signal, so we need to work out P (busy signal|H) for each H in
the problem (there are four of them). Let’s start (naturally!) with H1.

If we assume H1 is true, then the phone is working and 555-3226 is the correct phone
number. In that case, we would definitely get a busy signal because we are calling ourselves.
Therefore P (busy signal|H1) = 1 is our first likelihood value.

Next, let’s imagine that H2 is true, so the phone is working, but 555-3226 is not the right
phone number. In this case, it is given in the question that the probability of getting a
busy signal is 1/100 or 0.01 (in reality, this would be based on some other data, or perhaps
be a totally subjective judgement). Therefore P (busy signal|H2) = 0.01, and that’s our
second likelihood value.

The likelihoods for H3 and H4 are quite straightforward because they both imply the
phone is broken, and that means a busy signal is certain. Therefore P (busy signal|H3) =
P (busy signal|H4) = 1. We have our four likelihoods, and can proceed to work out
everything in the Bayes’ Box, including the main goal – the posterior probabilities! Here
it is:
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Hypotheses prior likelihood prior × likelihood posterior

H1 0.4 1 0.4 0.662
H2 0.4 0.01 0.004 0.00662
H3 0.1 1 0.1 0.166
H4 0.1 1 0.1 0.166

Totals: 1 0.604 1

To conclude this phone problem, I should admit that I actually calculated the numbers
in the Bayes’ Box using R. My code is shown below. A lot of the code we write in labs
will look like this. Obviously in the 2012 exam the students had to use their calculators
instead.

prior = c(0.4, 0.4, 0.1, 0.1) # Vector of prior probs

lik = c(1, 0.01, 1, 1) # Vector of likelihoods

h = prior*lik

Z = sum(h) # Sum of prior times likelihood

post = prior*lik/Z # Normalise to get posterior

# Look at all the results

print(prior)

print(lik)

print(h)

print(Z)

print(post)

Now let’s try to see if this makes sense. There are many things we could think about,
but let’s just consider the question of whether the phone is working or not. The first two
hypotheses correspond to the phone being in a working state. If you want to calculate
the probability of A or B, then you can just add the probabilities if they are mutually
exclusive. The prior probability that the phone is working is therefore:

P (phone working) = P (H1 ∨H2) (3.4)

= P (H1) + P (H2) (3.5)

= 0.4 + 0.4 (3.6)

= 0.8. (3.7)

Here, I have introduced the notation ∨, meaning “logical or”: For any two propositions A,
B, the proposition (A ∨B) is true if either one of A or B is true (or both).

The posterior probability is worked out in a similar way, but using the posterior probabilities
instead of the prior ones:

P (phone working|busy signal) = P (H1 ∨H2|busy signal) (3.8)

= P (H1|busy signal) + P (H2|busy signal) (3.9)

= 0.662 + 0.00662 (3.10)

= 0.6689. (3.11)

Our probability that the phone is working has gone down a little bit as a result of this
evidence! That makes sense to me. A busy signal is what you would expect to happen if
the phone was broken. This data doesn’t prove the phone is broken, but it does point in
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that direction a little bit, and hence the probability that the phone is working has been
reduced from 0.8 to 0.6689.

3.4 Important Equations

Posterior probabilities are calculated using Bayes’ rule. For a single hypothesis H given
data D, Bayes’ rule is:

P (H|D) =
P (H)P (D|H)

P (D)
(3.12)

This gives the posterior probability P (H|D) in terms of the prior probability P (H), the
likelihood P (D|H) and the marginal likelihood P (D) in the denominator. To obtain P (H),
think about your prior beliefs (which may indicate a large amount of uncertainty, or may
already be well informed based on previous data sets). To obtain P (D|H), think about
what the experiment is doing: If H is true, what data would you expect to see and with
what probabilities?

The denominator is the probability of obtaining the data D but without assuming that H is
either true or false. This is obtained using the sum rule. There are two ways that the data
D could occur, either via the route of H being true (this has probability P (H)P (D|H)),
or via the route of H being false (this has probability P (H̄)P (D|H̄)). These two ways are
mutually exclusive, so we can add their probabilities:

P (D) = P (H)P (D|H) + P (H̄)P (D|H̄). (3.13)

Bayes’ rule can be applied to a whole set of hypotheses (that are mutually exclusive
and exhaustive) simultaneously. This is a more common way of using it, and it is the
way we use it when we use a Bayes’ Box. If we applied Equation 3.12 to N hypotheses
H1, H2, ..., HN , given data D, we would get the following for the posterior probability of
each hypothesis Hi (for i = 1, 2, ..., N):

P (Hi|D) =
P (Hi)P (D|Hi)

P (D)
(3.14)

The denominator P (D) is a single number. It does not depend on the index i. It can
again be obtained using the sum rule. There are N mutually exclusive ways that the
data D could have occurred: via H1 being true, or via H2 being true, etc. Adding the
probabilities of these gives:

P (D) =
N∑
i=1

P (Hi)P (D|Hi). (3.15)

which just happens to be the sum of the prior times likelihood values. If you don’t find
equations particularly easy to read, just remember that following the steps for making
a Bayes’ Box is equivalent to applying Bayes’ rule in this form! The P (Hi) values are
the prior probability column, the P (D|Hi) values are the likelihood column, and the
denominator is the sum of the prior times likelihood column. For example, the posterior
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probability for H1 (the top right entry in a Bayes’ Box) is given by the prior probability
for H1 times the likelihood for H1, divided by the sum of prior times likelihood values.
That is, P (H1|D) = P (H1)P (D|H1)/P (D). The correspondence between the probabilities
that go in a Bayes’ Box (in general) and the terms in the Equations are given in Table 3.3.

Hypotheses prior likelihood prior × likelihood posterior

H1 P (H1) P (D|H1) P (H1)× P (D|H1) P (H1|D)
H2 P (H2) P (D|H2) P (H2)× P (D|H2) P (H2|D)
. . . . . . . . . . . . . . .

Totals: 1 P (D) 1

Table 3.3: A general Bayes’ Box. Using Bayes’ rule or making a Bayes’ Box are actually
the same thing, and this table can be used to identify the terms.



Chapter 4

Parameter Estimation I: Bayes’ Box

One of the most important times to use Bayes’ rule is when you want to do parameter
estimation. Parameter estimation is a fairly common situation in statistics. In fact, it is
possible to interpret almost any problem in statistics as a parameter estimation problem
and approach it in this way!

Firstly, what is a parameter? One way to think of a parameter is that it is just a fancy
term for a quantity or a number that is unknown1. For example, how many people are
currently in New Zealand? Well, a Google search suggests 4.405 million. But that does not
mean there are exactly 4,405,000 people. It could be a bit more or a bit less. Maybe it is
4,405,323, or maybe it is 4,403,886. We don’t really know. We could call the true number
of people in New Zealand right now θ, or we could use some other letter or symbol if we
want. When talking about parameter estimation in general we often call the unknown
parameter(s) θ, but in specific applications we will call the parameter(s) something else
more appropriate for that application.

The key is to realise that we can use the Bayes’ Box, like in previous chapters. But now,
our list of possible hypotheses is a list of possible values for the unknown parameter.
For example, a Bayes’ Box for the precise number of people in New Zealand might look
something like the one in Table 4.1.

There are a few things to note about this Bayes’ box. Firstly, it is big, which is why I just
put a bunch of “. . . ”s in there instead of making up numbers. There are lots of possible
hypotheses, each one corresponding to a possible value for θ. The prior probabilities I
have put in the second column were for illustrative purposes. They needn’t necessarily
all be equal (although that is often a convenient assumption). All the stuff we’ve seen
in smaller examples of Bayes’ rule and/or use of a Bayes’ Box still applies here. The
likelihoods will still be calculated by seeing how the probability of the data depends on
the value of the unknown parameter. You still go through all the same steps, multiplying
prior times likelihood and then normalising that to get the posterior probabilities for all
of the possibilities listed. Note that a set of possible values together with the probabilities
is what is commonly termed a probability distribution. In basic Bayesian problems, like in
the introductory chapters, we start with some prior probabilities and update them to get

1Another use for the term parameter is any quantity that something else depends on. For example, a
normal distribution has a mean µ and a standard deviation σ that defines which normal distribution we
are talking about. µ and σ are then said to be parameters of the normal distribution.

21
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Possible Hypotheses prior likelihood prior × likelihood posterior

. . . . . . . . . . . . . . .
θ = 4404999 0.000001 . . . . . . . . .
θ = 4405000 0.000001 . . . . . . . . .
θ = 4405001 0.000001 . . . . . . . . .
θ = 4405002 0.000001 . . . . . . . . .
θ = 4405003 0.000001 . . . . . . . . .
θ = 4405004 0.000001 . . . . . . . . .
θ = 4405005 0.000001 . . . . . . . . .
θ = 4405006 0.000001 . . . . . . . . .

. . . . . . . . . . . . . . .
Totals: 1 . . . 1

Table 4.1: An example of how a Bayes’ Box may be used in a parameter estimation
situation.

posterior probabilities. In parameter estimation, we start with a prior distribution for the
unknown parameter(s) and update that to get a posterior distribution for the unknown
parameter(s).

A quantity which has a probability associated with each possible value is
traditionally called a “random variable”. Random variables have proba-
bility distributions associated with them. In Bayesian stats, an unknown
parameter looks mathematically like a “random variable”, but I try to
avoid the word random itself because it usually has connotations about
something that fluctuates or varies. In Bayesian statistics, the prior dis-
tribution and posterior distribution only describe our uncertainty. The
actual parameter is a single fixed number.

4.1 Parameter Estimation: Bus Example

This is a beginning example of parameter estimation from a Bayesian point of view. It
shows the various features that are always present in a Bayesian parameter estimation
problem. There will be a prior distribution, the likelihood, and the posterior distribution.
We will spend a lot of time on this problem but keep in mind that this is just a single
example, and certain things about this example (such as the choice of the prior and the
likelihood) are specific to this example only, while other things about it are very general
and will apply in all parameter estimation problems. You will see and gain experience
with different problems in lectures, labs, and assignments.

After moving to Auckland, I decided that I would take the bus to work each day. However,
I wasn’t very confident with the bus system in my new city, so for the first week I just
took the first bus that came along and was heading in the right direction, towards the city.
In the first week, I caught 5 morning buses. Of these 5 buses, two of them took me to
the right place, while three of them took me far from work, leaving me with an extra 20
minute walk. Given this information, I would like to try to infer the proportion of the
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buses that are “good”, that would take me right to campus. Let us call this fraction θ
and we will infer θ using the Bayesian framework. We will start with a prior distribution
that describes initial uncertainty about θ and update this to get the posterior distribution,
using the data that 2/5 buses I took were “good”.

First we must think about the meaning of the parameter θ in our particular problem so
we can choose a sensible prior distribution. Since θ is, in this example, a proportion, we
know it cannot be less than 0 or greater than 1. In principle, θ could be any real value
between 0 and 1. To keep things simple to begin with, we shall make an approximation
and assume that the set of possible values for θ is:

{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.
This discrete approximation means that we can use a Bayes’ Box. The first things to
fill out in the Bayes’ Box are the possible values and the prior probabilities (the prior
distribution). For starters, let us assume that before we got the data (two successes out of
5 trials), we were very uncertain about the value of θ, and this can be modelled by using a
uniform prior distribution. There are 11 possible values for θ that are being considered
with our discrete approximation, so the probability of each is 1/11 = 0.0909. The partially
complete Bayes’ Box is given in Table 4.2. Note the new notation that I have put in
the column titles. We will use this notation in all of our parameter estimation examples
(although the parameter(s) and data may have different symbols when θ and x respectively
are not appropriate).

possible values prior likelihood prior × likelihood posterior

θ p(θ) p(x|θ) p(θ)p(x|θ) p(θ|x)
0 0.0909

0.1 0.0909
0.2 0.0909
0.3 0.0909
0.4 0.0909
0.5 0.0909
0.6 0.0909
0.7 0.0909
0.8 0.0909
0.9 0.0909
1 0.0909

Totals 1 1

Table 4.2: Starting to make a Bayes’ Box for the bus problem. This one just has the
possible parameter values and the prior distribution.

To get the likelihoods, we need to think about the properties of our experiment. In
particular, we should imagine that we knew the value of θ and were trying to predict what
experimental outcome (data) would occur. Ultimately, we want to find the probability of
our actual data set (2 out of the 5 buses were “good”), for all of our possible θ values.

Recall that, if there are N repetitions of a “random experiment” and the “success”
probability is θ at each repetition, then the number of “successes” x has a binomial
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distribution:

p(x|θ) =

(
N
x

)
θx (1− θ)N−x . (4.1)

where

(
N
x

)
= N !

x!(N−x)! . This is the probability mass function for x (if we imagine θ to

be known), hence the notation p(x|θ), read as “the probability distribution for x given θ”.
Since there are five trials (N = 5) in the bus problem, the number of successes x must
be one of 0, 1, 2, 3, 4, or 5. If θ is a high number close to 1, then we would expect the
resulting value of the data (number of successes) x to be something high like 4 or 5. Low
values for x would still be possible but they would have a small probability. If θ is a small
number, we would expect the data to be 0, 1, or 2, with less probability for more than
2 successes. This is just saying in words what is written precisely in Equation 5.1. The
probability distribution for the data x is plotted in Figure 4.1 for three illustrative values
of the parameter θ. To obtain the actual likelihood values that go into the Bayes’ Box, we
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Figure 4.1: The binomial probability distribution for the data x, for three different values
of the parameter θ. If θ is low then we would expect to see lower values for the data. If θ
is high then high values are more probable (but all values from 0 to 5 inclusive are still
possible). The actual observed value of the data was x = 2. If we focus only on the values
of the curves at x = 2, then the heights of the curves give the likelihood values for these
three illustrative values of θ.

can simply substitute in the known values N = 5 and x = 2:

P (x = 2|θ) =

(
5
2

)
θ2 (1− θ)5−2 (4.2)

= 10× θ2 (1− θ)3 . (4.3)

The resulting equation depends on θ only! We can go through the list of θ values and get a
numerical answer for the likelihood P (x = 2|θ), which is what we need for the Bayes’ Box.
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possible values prior likelihood prior × likelihood posterior

θ p(θ) p(x|θ) p(θ)p(x|θ) p(θ|x)
0 0.0909 0 0 0

0.1 0.0909 0.0729 0.0066 0.0437
0.2 0.0909 0.2048 0.0186 0.1229
0.3 0.0909 0.3087 0.0281 0.1852
0.4 0.0909 0.3456 0.0314 0.2074
0.5 0.0909 0.3125 0.0284 0.1875
0.6 0.0909 0.2304 0.0209 0.1383
0.7 0.0909 0.1323 0.0120 0.0794
0.8 0.0909 0.0512 0.0047 0.0307
0.9 0.0909 0.0081 0.0007 0.0049
1 0.0909 0 0 0

Totals 1 0.1515 1

Table 4.3: The completed Bayes’ Box for the bus problem (using a binomial distribution to
obtain the likelihood).

The final steps are, as usual, to multiply the prior by the likelihood and then normalise
that to get the posterior distribution. The completed Bayes’ Box is given in Table 4.3.

There are a few interesting values in the likelihood column that should help you to
understand the concept of likelihood a bit better. Look at the likelihood for θ = 0: it is
zero. What does this mean? It means that if we imagine θ = 0 is the true solution, the
probability of obtaining the data that we got (x = 2 successes) would be zero. That makes
sense! If θ = 0, it means none of the buses are the “good” buses, so how could I have
caught a good bus twice? The probability of that is zero.

The likelihood for θ = 1 is also zero for similar reasons. If all of the buses are good,
then having 2/5 successes is impossible. You would get 5/5 with 100% certainty. So
P (x = 2|θ = 1) = 0. The likelihood is highest for θ = 0.4, which just so happens to equal
2/5. This θ = 0.4 predicted the data best. It does not necessarily mean that θ = 0.4 is the
most probable value. That depends on the prior as well (but with a uniform prior, it does
end up being that way. As you can see in the posterior distribution column, θ = 0.4 has
the highest probability in this case).

4.1.1 Sampling Distribution and Likelihood

As we study more examples of parameter estimation, you might notice that we always find
the likelihood by specifying a probability distribution for the data given the parameters
p(x|θ), and then we substituting in the actual observed data (Equations 4.1 and 4.3).
Technically, only the version with the actual data set substituted in is called the likelihood.
The probability distribution p(x|θ), which gives the probability of other data sets that did
not occur (as well as the one that did), is sometimes called the sampling distribution. At
times, I will distinguish between the sampling distribution and the likelihood, and at other
times I might just use the word likelihood for both concepts.
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4.1.2 What is the “Data”?

Even though this example is meant to be introductory, there is a subtlety that has been
swept under the rug. Notice that our data consisted of the fact that we got 2/5 successes in
the experiment. When we worked out the likelihood, we were considering the probability
of getting x = 2, but we didn’t have a probability for N = 5. In principle, we could treat
x and N as two separate data sets. We could first update from the prior to the posterior
given N = 5, and then update again to take into account x as well as N . However, the
first update would be a bit weird. Why would knowing the number of trials tell you
anything about the success probability? Effectively, what we have done in our analysis
is assume that N = 5 is prior information that lurks in the background the whole time.
Therefore our uniform prior for θ already “knows” that N = 5, so we didn’t have to
consider P (N = 5|θ) in the likelihood. This subtlety usually doesn’t matter much.

4.2 Prediction in the Bus Problem

We have now seen how to use information (data) to update from a prior distribution to a
posterior distribution when the set of possible parameter values is discrete. The posterior
distribution is the complete answer to the problem. It tells us exactly how strongly we
should believe in the various possible solutions (possible values for the unknown parameter).
However, there are other things we might want to do with this information. Predicting
the future is one! It’s fun, but risky. Here we will look at how prediction is done using the
Bayesian framework, continuing with the bus example. To be concrete, we are interested
in the following question: what is the probability that I will catch the right bus tomorrow?.
This is like trying to predict the result of a future experiment.

In the Bayesian framework, our predictions are always in the form of probabilities or
(later) probability distributions. They are usually calculated in three stages. First, you
pretend you actually know the true value of the parameters, and calculate the probability
based on that assumption. Then, you do this for all possible values of the parameter θ
(alternatively, you can calculate the probability as a function of θ). Finally, you combine
all of these probabilities in a particular way to get one final probability which tells you
how confident you are of your prediction.

Suppose we knew the true value of θ was 0.3. Then, we would know the probability of
catching the right bus tomorrow is 0.3. If we knew the true value of θ was 0.4, we would
say the probability of catching the right bus tomorrow is 0.4. The problem is, we don’t
know what the true value is. We only have the posterior distribution. Luckily, the sum
rule of probability (combined with the product rule) can help us out. We are interested in
whether I will get the good bus tomorrow. There are 11 different ways that can happen.
Either θ = 0 and I get the good bus, or θ = 0.1 and I get the good bus, or θ = 0.2 and I
get the good bus, and so on. These 11 ways are all mutually exclusive. That is, only one
of them can be true (since θ is actually just a single number). Mathematically, we can
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obtain the posterior probability of catching the good bus tomorrow using the sum rule:

P (good bus tomorrow|x) =
∑
θ

p(θ|x)P (good bus tomorrow|θ, x) (4.4)

=
∑
θ

p(θ|x)θ (4.5)

This says that the total probability for a good bus tomorrow (given the data, i.e. using
the posterior distribution and not the prior distribution) is given by going through each
possible θ value, working out the probability assuming the θ value you are considering
is true, multiplying by the probability (given the data) this θ value is actually true, and
summing. In this particular problem, because P (good bus tomorrow|θ, x) = θ, it just so
happens that the probability for tomorrow is the expectation value of θ using the posterior
distribution. To three decimal places, the result for the probability tomorrow is 0.429.
Interestingly, this is not equal to 2/5 = 0.4.

In practice, these kinds of calculations are usually done in a computer. The R code for
computing the Bayes’ Box and the probability for tomorrow is given below. This is very
much like many of the problems we will work on in labs.

# Make a vector of possibilities (first column of the Bayes' Box)

theta = seq(0, 1, by=0.1)

# Corresponding vector of prior probabilities

# (second column of the Bayes' Box)

prior = rep(1/11,11)

# Likelihood. Notice use of dbinom() rather than formula

# because R conveniently knows a lot of

# standard probability distributions already

lik = dbinom(2,5,theta)

# Prior times likelihood, then normalise to get posterior

h = prior*lik

post = h/sum(h)

# Probability for good bus tomorrow (prediction!)

# This happens to be the same as the posterior expectation of theta

# *in this particular problem* because the probability of a

# good bus tomorrow GIVEN theta is just theta.

prob_tomorrow = sum(theta*post)

4.3 Bayes’ Rule, Parameter Estimation Version

Mathematically, what we did to calculate the posterior distribution was to take the prior
distribution as a whole (the whole second column) and multiply it by the likelihood (the
whole third column) to get the unnormalised posterior, then normalise to get the final
posterior distribution. This can be written as follows, which we will call the “parameter
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estimation” version of Bayes’ rule. There are three ways to write it:

p(θ|x) =
p(θ)p(x|θ)
p(x)

(4.6)

p(θ|x) ∝ p(θ)p(x|θ) (4.7)

posterior ∝ prior× likelihood. (4.8)

Writing the equations in these ways is most useful when you can write the prior p(θ) and
the likelihood p(x|θ) as formulas (telling you how the values depend on θ as you go through
the rows). Then you can get the equation for the posterior distribution (whether it is a
discrete distribution, or a continuous one, in which case p(θ) and p(θ|x) are probability
densities. We will do this in the next chapter.

The notation in Equation 4.8 is very simplified and concise, but is a popular kind of
notation in Bayesian work. For an explanation of the relationship between this notation
and other common choices (such as P (X = x) for a discrete distribution or f(x) for a
density), see Appendix A.



Chapter 5

Parameter Estimation: Analytical
Methods

Analytical methods are those which can be carried out with a pen and paper, or the “old
school” way before we all started using computers. There are some problems in Bayesian
statistics that can be solved in this way, and we will see a few of them in this course. For
an analytical solution to be possible, the maths usually has to work out nicely, and that
doesn’t always happen, so the techniques shown here don’t always work. When they do –
great! When they don’t, that’s what MCMC (and JAGS) is for!

Let’s look at the binomial likelihood problem again, with the familiar bus example. Out of
N = 5 attempts at a “repeatable” experiment, there were x = 2 successes. From this, we
want to infer the value of θ, the success probability that applied on each trial, or the overall
fraction of buses that are good. Because of its meaning, we know with 100% certainty
that θ must be between 0 and 1 (inclusive).

Recall that, if we knew the value of θ and wanted to predict the data x (regarding N as
being known in advance), then we would use the binomial distribution:

p(x|θ) =

(
N
x

)
θx (1− θ)N−x . (5.1)

Let’s use a uniform prior for θ, but instead of making the discrete approximation and
using a Bayes’ Box, let’s keep the continuous set of possibilities, that θ can be any real
number between 0 and 1. Because the set of possibilities is continuous, the prior and the
posterior for θ will both be probability densities. If we tried to do a Bayes’ Box now, it
would have infinitely many rows! The equation for our prior, a uniform probability density
between 0 and 1, is:

p(θ) =

{
1, 0 ≤ θ ≤ 1
0, otherwise

(5.2)

If we keep in mind that θ is between 0 and 1, and therefore remember at all times that
we are restricting our attention to θ ∈ [0, 1], we can write the uniform prior much more
simply as:

p(θ) = 1. (5.3)

29
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If you find the Bayes’ Box way of thinking easier to follow than the mathematics here, you
can imagine we are making a Bayes’ Box like in Table 4.2, but with an “infinite” number of
rows, and the equation for the prior tells us how the prior probability varies as a function
of θ as we go down through the rows (since the prior is uniform, the probabilities don’t
vary at all).

To find the posterior probability density for θ, we use the “parameter estimation” form of
Bayes’ rule:

posterior ∝ prior× likelihood (5.4)

p(θ|x) ∝ p(θ)p(x|θ). (5.5)

We already wrote down the equations for the prior and the likelihood, so we just need to
multiply them.

p(θ|x) ∝ p(θ)p(x|θ) (5.6)

∝ 1×
(
N
x

)
θx (1− θ)N−x (5.7)

Since we are using the abbreviated form of the prior, we must remember this equation
only applies for θ ∈ [0, 1]. To simplify the maths, there are some useful tricks you can
use a lot of the time when working things out analytically. Notice that the “parameter
estimation” form of Bayes’ rule has a proportional sign in it, not an equals sign. That’s
because the prior times the likelihood can’t actually be the posterior distribution because
it is not normalised. The sum or integral is not 1. However, the equation still gives the
correct shape of the posterior probability density function (the way it varies as a function
of θ). This is helpful because you can save ink. If there are some constant factors in your
expression for the posterior that don’t involve the parameter (in this case, θ), you can
ignore them. The proportional sign will take care of them. In this case, it means we can
forget about the pesky “N choose x” term, and just write:

p(θ|x) ∝ θx (1− θ)N−x (5.8)

∝ θ2 (1− θ)3 . (5.9)

The final step I included was to substitute in the actual values of N and x instead of leaving
the symbols there. That’s it! We have the correct shape of the posterior distribution. We
can use this to plot the posterior, as you can see in Figure 5.1.

5.1 “∼” Notation

While it is very helpful to know the full equations for different kinds of probability
distributions (both discrete and continuous), it is useful to be able to communicate about
probability distributions in an easier manner. There is a good notation for this which we
will sometimes use in STATS 331. If we want to communicate about our above analysis,
and someone wanted to know what prior distribution we used, we could do several things.
We could say “the prior for θ was uniform between 0 and 1”, or we could give the formula
for the prior distribution (Equation 5.2). However, a convenient shorthand in common use
is to simply write:

θ ∼ Uniform(0, 1) (5.10)
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Figure 5.1: The prior and the posterior for θ in the bus problem, given that we had 2/5
successes. The prior is just a uniform density and this is plotted as a flat line, describing
the fact that θ can be anywhere between 0 and 1 and we don’t have much of an idea. After
getting the data, the distribution changes to the posterior which is peaked at 0.4, although
there is still a pretty wide range of uncertainty.

or, even more concisely:

θ ∼ U(0, 1). (5.11)

This notation conserves ink, and is good for quick communication. It is also very similar
to the notation used in JAGS, which will be introduced in later chapters.

We can also write the binomial likelihood (which we used for the bus problem) in this
notation, instead of writing out the full equation (Equation 5.1). We can write:

x|θ ∼ Binomial(N, θ) (5.12)

This says that if we knew the value of θ, x would have a binomial distribution with N
trials and success probability θ. We can also make this one more concise:

x ∼ Bin(N, θ) (5.13)

The differences here are that “Binomial” has been shortened to “Bin” and the “given θ”
part has been left out. However, we see that there is a θ present on the right hand side, so
the “given θ” must be understood implicitly.

5.2 The Effect of Different Priors

We decided to do this problem with a uniform prior, because it is the obvious first choice
to describe “prior ignorance”. However, in principle, the prior could be different. This
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will change the posterior distribution, and hence the conclusions. This isn’t a problem
of Bayesian analysis, but a feature. Data on its own doesn’t tell us exactly what should
believe. We must combine the data with all our other prior knowledge (i.e. put the data
in context) to arrive at reasoned conclusions.

In this section we will look at the effect of different priors on the results, again focusing
on the bus problem for continuity. Specifically, we will look at three different priors: the
uniform one that we already used, and two other priors discussed below.

5.2.1 Prior 2: Emphasising the Extremes

One possible criticism of the uniform prior is that there is not much probability given to
extreme solutions. For example, according to the Uniform(0, 1) prior, the prior probability

that θ is between 0 and 0.1 is only
∫ 0.1

0
1 dθ = 0.1. But, depending on the situation, we

might think values near zero should be more plausible1. One possible choice of prior
distribution that assigns more probability to the extreme values (close to 0 or 1) is:

p(θ) ∝ θ−
1
2 (1− θ)− 1

2 . (5.14)

5.2.2 Prior 3: Already Being Well Informed

Here’s another scenario that we might want to describe in our prior. Suppose that, before
getting this data, you weren’t ignorant at all, but already had a lot of information about
the value of the parameter. Say that we already had a lot of information which suggested
the value of θ was probably close to 0.5. This could be modelled by the following choice of
prior:

p(θ) ∝ θ100(1− θ)100. (5.15)

The three priors are plotted in Figure 5.2 as dotted lines. The three corresponding posterior
distributions are plotted as solid lines. The posteriors were computed by multiplying the
three priors by the likelihood and normalising. The blue curves correspond to the uniform
prior we used before, the red curves use the “emphasising the extremes” prior, and the
green curves use the “informative” prior which assumes that θ is known to be close to 0.5.

There are a few interesting things to notice about this plot. Firstly, the posterior dis-
tributions are basically the same for the red and blue priors (the uniform prior and the
“emphasising the extremes” prior). The main difference in the posterior is, as you would
expect, that the extremes are emphasised a little more. If something is more plausible
before you get the data, it’s more plausible afterwards as well.

The big difference is with the informative prior. Here, we were already pretty confident
that θ was close to 0.5, and the data (since it’s not very much data) hasn’t given us any

1Here’s another parameter that is between 0 and 1: the proportion of households in New Zealand that
keep a Macaw as a pet (call that φ). I hope this number is low (it is very difficult to take responsible care
of such a smart bird). I also think it probably is low. I would definitely object to a prior that implied
P (φ < 0.1) = 0.1. I would want a prior that implied something like P (φ < 0.1) = 0.999999.
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Figure 5.2: Three different priors (dotted lines) and the corresponding three posteriors
(solid lines) given the bus example data. See the text for discussion of these results.

reason to doubt that, so we still think θ is close to 0.5. Since we already knew that θ
was close to 0.5, the data are acting only to increase the precision of our estimate (i.e.
make the posterior distribution narrower). But since we had so much prior information,
the data aren’t providing much “extra” information, and the posterior looks basically the
same as the prior.

5.2.3 The Beta Distribution

The three priors we have used are all examples of beta distributions. The beta distributions
are a family of probability distributions (like the normal, Poisson, binomial, and so on)
which can be applied to continuous random variables known to be between 0 and 1. The
general form of a beta distribution (here written for a variable x) is:

p(x|α, β) ∝ xα−1(1− x)β−1. (5.16)

The quantities α and β are two parameters that control the shape of the beta distribution.
Since we know the variable x is between 0 and 1 with probability 1, the normalisation
constant could be found by doing an integral. Then you could write the probability
distribution with an equals sign instead of a proportional sign,

p(x|α, β) =
xα−1(1− x)β−1∫ 1

0
xα−1(1− x)β−1 dx

(5.17)

=
xα−1(1− x)β−1

B(α, β)
. (5.18)

where B(α, β) (called the “beta function”) is defined (usefully. . . ) as the result of doing
that very integral (it can be related to factorials too, if you’re interested). Thankfully, we
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can get away with the “proportional” version most of the time. In “∼” notation the beta
distribution is written as:

x|α, β ∼ Beta(α, β). (5.19)

Again, the “given α and β” can be dropped. It is implicit because they appear on the
right hand side. By identifying the terms of Equation 5.16 with the form of our three
priors (Equations 5.2, 5.14 and 5.15)), we see that our three priors can be written in “∼”
notation like this:

Prior 1: θ ∼ Beta(1, 1)
Prior 2: θ ∼ Beta

(
1
2
, 1
2

)
Prior 3: θ ∼ Beta(101, 101)

When you work out the posterior distributions analytically and then compare them to
the formula for the beta distribution, you can see that the three posteriors are also beta
distributions! Specifically, you get:

Posterior 1: θ ∼ Beta(3, 4)
Posterior 2: θ ∼ Beta(2.5, 3.5)
Posterior 3: θ ∼ Beta(103, 104)

This is “magic” that is made possible by the mathematical form of the beta prior and the
binomial likelihood2. It is not always possible to do this.

We can also derive the general solution for the posterior for θ when the prior is a Beta(α, β)
distribution, the likelihood is a binomial distribution, and x successes were observed out
of N trials. The posterior is:

p(θ|x) ∝ p(θ)p(x|θ) (5.20)

∝ θα−1(1− θ)β−1 × θx(1− θ)N−x (5.21)

= θα+x−1(1− θ)β+N−x−1 (5.22)

which can be recognised as a Beta(α + x, β +N − x) distribution.

Remember that in this particular problem, the probability of a success tomorrow is simply
the expectation value (mean) of the posterior distribution for θ. We can look up (or
derive) the formula for the mean of a beta distribution and find that if x ∼ Beta(α, β)
then E(x) = α/(α + β). Applying this to the three posterior distributions gives:

P (good bus tomorrow|x) = 3/7 ≈ 0.429 (using prior 1)
P (good bus tomorrow|x) = 2.5/6 ≈ 0.417 (using prior 2)
P (good bus tomorrow|x) = 103/207 ≈ 0.498 (using prior 3)

The result for Prior 1 is Laplace’s infamous “rule of succession” which I will discuss a
little bit in lectures.

2The technical term for this magic is that the beta distribution is a conjugate prior for the binomial
likelihood.
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5.2.4 A Lot of Data

As shown above, the choice of prior distribution has an impact on the conclusions.
Sometimes it has a big impact (the results using prior 3 were pretty different to the results
from priors 1 and 2), and sometimes not much impact (e.g. the results from priors 1 and 2
were pretty similar). There is a common phenomenon that happens when there is a lot
of data: the prior tends not to matter so much. Imagine we did a much bigger version
of the bus experiment with N = 1000 trials, which resulted in x = 500 successes. Then
the posterior distributions corresponding to the three different priors are all very similar
(Figure 5.3).
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Figure 5.3: When you have a lot of data, the results are less sensitive to the choice of
prior distribution. Note that we have zoomed in and are only looking around θ = 0.5: these
posterior distributions are quite narrow because there is now a lot more information about
θ. The red and blue posteriors (based on priors 1 and 2) are so similar that they overlap
and look like one purple curve.

This is reassuring. Note, however, that this only occurs because the three analyses used
the same likelihood. If three people have different prior distributions for something and
they can’t agree on what the experiment even means, there is no guarantee they will end
up agreeing, even if there’s a large amount of data!

Remember though, that when the results are sensitive to the choice of prior, that is not
a problem with the Bayesian approach, but rather an important warning message: the
data aren’t very informative! Then, the options are: i) think really hard about your prior
distribution and be careful when deciding what it should be, and ii) get more or better
data!



Chapter 6

Summarising the Posterior
Distribution

The posterior distribution is the full answer to any Bayesian problem. It gives a complete
description of our state of knowledge and our uncertainty about the value(s) of unknown
parameters. From the posterior distribution, we can calculate any probability we want. For
example, if we had a posterior distribution p(θ|x) and we wanted to know the probability
that θ is greater than or equal to 100, we could do:

P (θ ≥ 100|x) =

∫ ∞
100

p(θ|x) dθ (6.1)

or

P (θ ≥ 100|x) =
∞∑
100

p(θ|x) (6.2)

depending on whether the set of possible θ values is continuous or discrete. We could
also work out the probability of anything else. However, the posterior distribution is
sometimes too much information for us to think about easily. Maybe a giant list of θ values
and probabilities isn’t easy to digest. Sometimes, we need to summarise the posterior
distribution to help us communicate our results with others. A giant Bayes’ Box (or a
million MCMC samples of the parameter, we’ll see that later), might technically contain
everything we want, but it’s not easy to talk about.

For example, say you were trying to estimate a parameter, and a colleague asked you to
state your uncertainty about the parameter. Well, your posterior distribution might be
complicated. It might have bumps and wiggles in it, or some other kind of structure. If
there were two or more unknown parameters, there might be dependence in the posterior
distribution. In some cases there might even me multiple separate peaks! Figure 6.1 shows
an example of what a complicated posterior distribution might look like. If this was your
result, your colleague might not care about all the little wiggles in this plot. They just
want to know the “big picture” of your results.

The idea of summarising the posterior distribution is very closely related to the idea of
summarising a data set, which you probably encountered when you studied descriptive
statistics.

36
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Figure 6.1: A complicated posterior distribution. When communicating with others, it
is often useful to summarise the posterior distribution with a few numbers. In this case,
something like “the parameter = 5± 1” might be a useful summary.

In descriptive statistics, you often make summaries of a complex data set
(e.g. the mean and the standard deviation) so that you can communicate
about the data set in a concise way. In Bayesian statistics, you often do a
similar thing, but instead of giving a concise description of the data, you
give a concise description of the posterior distribution.

6.1 Point Estimates

A “point estimate” refers to a single number guess for the value of a parameter. If you
have several parameters, a point estimate would be a single guess for the value of each
parameter (like a single point in a multidimensional space). If you look at the posterior
distribution plotted in Figure 6.1, you can see that the true value of the parameter is
probably somewhere around 5, but with some uncertainty. If you were to provide a single
number as a guess of the parameter, you would probably say something close to 5. In
classical statistics, a single number guess is called an “estimate”, and a rule for generating
such guesses is called an “estimator”. Estimates are usually written by putting a hat over
the name of the parameter. So, by looking at the plot of the posterior, you could give an
estimate like this:

θ̂ = 5. (6.3)

But there are better things you could do than just looking at the plot, and you’ve probably
learnt some of them in previous statistics courses. Here are three methods you could
use to choose a point estimate using the posterior distribution: the posterior mean (the
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expectation value of the parameter), the posterior median (the value that divides the
probability in half), and the posterior mode (the value where the posterior distribution
has its peak). In our illustrative example, the values of these three point estimates are:

θ̂ = 4.988 (the posterior mean) (6.4)

θ̂ = 4.924 (the posterior median) (6.5)

θ̂ = 4.996 (the posterior mode) (6.6)

In this example, there’s not much of a difference between these three methods. But in other
situations, they can be quite different (this usually happens if the posterior distribution is
skewed, or has multiple modes; you may notice a strong analogy between this topic and
descriptive statistics). Is there a way to say which one is the best? It turns out there is,
but that depends on what you mean by “best”.

Before we move on to the formal ways of deciding what constitutes a good estimate, I would
like to mention a very common method that is easy to use. If the posterior distribution
looks even vaguely like a normal distribution, it is common to summarise it like this:

θ = posterior mean ± posterior standard deviation. (6.7)

I use this kind of summary frequently in my own research.

6.1.1 A Very Brief Introduction to Decision Theory

Decision theory is a very important topic. In this course we will use a tiny amount of it,
just enough to solve the problem of “which point estimate is best?”. If you think about
it, this is a bit of a weird question. Obviously, the best point estimate is the true value.
Of course it is, how could it be otherwise? Our only problem is that we can’t actually
implement this suggestion. We don’t know the true value. We only have the posterior
distribution (which is based on all the evidence we have), and we have to do the best we
can with our incomplete information. To think about which decision is best, the first thing
we should think about is which decisions are possible. For estimating a single parameter,
any real number is a possible guess.

The key idea in decision theory is the concept of utility, and the related concept of loss (loss
is just negative utility). Utility is a numerical measure of how good it would be if a certain
outcome came true. Conversely, loss is a measure of how bad it would be if a certain
outcome came true. Utilities are often subjective (not unlike prior probabilities), but in
some applications utility can be more concrete. For example, in betting or investment
decisions the utility can be measured in dollars. The problem with utility is that we
have uncertainty about what is going to happen, or about what is true, so we can’t just
choose the decision that gives us the greatest utility. Instead we will use our posterior
probabilities and choose the decision that gives us the maximum possible expected value of
the utility.

Imagine we were estimating a parameter θ and we wanted to give a point estimate θ̂. One
idea for what the utility or loss might be is the quadratic loss function, which is given by

L(θ, θ̂) =
(
θ̂ − θ

)2
. (6.8)
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This expression inside the parentheses is the difference between our point estimate and
the true value. This formula says that if our point estimate is off by 2, that is four times
worse than if we were off by 1. If we were off by 10, that is 100 times worse than if we
were off by 1, due to the squaring in the quadratic loss function formula.

It turns out (we will prove this below) that if the loss function is quadratic, the best
estimate you can give is the posterior mean. Here is the proof. The expected value of the
loss is

E
[
L(θ, θ̂)

]
=

∫
p(θ|x)(θ̂ − θ)2 dθ (6.9)

Since we are summing (integrating) over all possible true θ values, the expected loss is
only a function of our estimate θ̂. To minimise a function of one variable, you differentiate
it and then set the derivative to zero. The derivative is

d

dθ̂
E
[
L(θ, θ̂)

]
=

∫
p(θ|x)

d

dθ̂
(θ̂ − θ)2 dθ (6.10)

=

∫
p(θ|x)2(θ̂ − θ) dθ (6.11)

Setting this equal to zero and then solving for θ̂ gives the final result:

θ̂ =

∫
θp(θ|x) dθ. (6.12)

which is the posterior mean. Some people call the posterior mean the “Bayes Estimate”
for this reason. I don’t like that term because I don’t think point estimates are really
Bayesian. The actual output of a Bayesian analysis is the posterior distribution.

Note that I didn’t verify that θ̂ actually minimises the expected loss , because setting the
derivative to zero would also find a maximum. To make sure it really does minimise the
expected loss, you can calculate the second derivative and verify that it is positive. But
that’s not really needed. It would be pretty bizarre if the posterior mean was the worst
estimate!

6.1.2 Absolute Loss

Sometimes, the quadratic loss/utility is not a reasonable model for the consequences of an
incorrect estimate. Another plausible form for the loss function is the absolute loss. This
looks like:

L(θ̂, θ) = |θ̂ − θ|. (6.13)

With this assumption, the “badness” of an incorrect estimate is proportional to how far
the estimate is from the true value. If the estimate is twice as far from the true value, it is
twice as bad. We will not prove it (although you are welcome to derive this yourself), but
for this loss function the best estimate is the posterior median, which is the value of θ̂ for
which P (θ ≤ θ̂) = P (θ > θ̂) = 0.5.
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6.1.3 All-or-nothing Loss

The third kind of loss function we will look at is the “all-or-nothing” loss, also sometimes
called 0-1 loss. Sometimes, you may need your estimate to be completely correct, and if
it isn’t correct, then it is irrelevant how far your estimate was from the true value. All
incorrect estimates are equally bad. The all-or-nothing loss looks like:

L(θ̂, θ) =

{
0 θ̂ = θ
1, otherwise.

(6.14)

If you were in this situation you would want to make your chances as high as possible,
which implies you should simply choose the most probable value of θ as your point estimate
θ̂. That is, the appropriate estimate is the posterior mode. This intuition is correct. With
all-or-nothing loss, the best estimate is the posterior mode. The three loss functions we
consider in STATS 331 are shown in Figure 6.2.
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Figure 6.2: Three kinds of loss function, which measure how bad it is for our point estimate
θ̂ to be different from the true value of the parameter θ. Note that the all-or-nothing loss
has a small amount of width in this plot, just so that we can clearly see the spike at θ̂ − θ
= 0.

6.1.4 Invariance of Decisions

You may be wondering about the definitions of our loss functions. For example, we defined
the quadratic loss as (θ̂− θ)2, but what if we defined it as 3(θ̂− θ)2 + 5 instead? Would our
best decision change? Luckily, the answer is no. The decision (estimate) which minimises
the expected value of a loss function L also minimises the expected value of a different
loss function aL+ b, where a is any positive number and b is any other number. For the
mathematicians, the optimal decision is invariant under positive affine transformations of
the utility or loss function. Phew!
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6.1.5 Computing Point Estimates from a Bayes’ Box

We have just discussed three different point estimates, and under what circumstances we
can consider them to be the best possible estimate we could make. Now, we will look at
how to actually obtain the point estimates. The posterior mean is straightforward. It’s
the expectation value of the parameter using the posterior distribution. In R, the code is:

post_mean = sum(theta*post)

You should also know how to compute this manually from a Bayes’ Box, using a calculator.

The posterior mode is also fairly straightforward. First, we can find the highest probability
in the Bayes’ Box. Then we find the corresponding parameter value.

highest_probability = max(post)

post_mode = theta[post == highest_probability]

In the case of a tie, post mode might be a vector, indicating that there isn’t a single mode.

The posterior median is a little harder. We need to find the θ value which has 50% of
the probability to the left and 50% of the probability to the right. Note that this isn’t
precisely defined in some cases, particularly with discrete distributions. For example, if θ
could be 1, 2, or 3, and the probabilities of these were 0.3, 0.6, and 0.1, then what is the
median? It is not entirely clear. However, if there are a large number of possibilities then
the definition becomes more clear.

To calculate the posterior median in R, we need to use the cumulative distribution which
is defined as F (t) = P (θ ≤ t). If we then find the value of t where F (t) = 0.5, we have
found the posterior median. This isn’t always possible but we can always find the value of
t which makes F (t) very close to 0.5. To obtain the cumulative distribution in R you can
use the cumsum function, which calculates the cumulative sum of a vector. The posterior
vector contains the probabilities of θ equalling certain values. If we want the probability
that θ is less than or equal to a certain value, we sum all the probabilities up to and
including that value. The cumulative sum function achieves this. Here is the code for
calculating the posterior median:

F = cumsum(post)

dist = abs(F - 0.5) # Distance of the F-values from 0.5

post_median = theta[dist == min(dist)]

Note that this may also produce more than one result. Like the mode, the posterior
median is not always uniquely defined.

6.1.6 Computing Point Estimates from Samples

When we use a Bayes’ Box (or the equivalent R commands which represent the columns
of a Bayes’ Box as vectors), we end up with a vector of possible parameter values and
another vector containing the posterior distribution. When we use MCMC and JAGS, the
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output is different. We will only have a vector of parameter values, without corresponding
probabilities. The vector of parameter values is meant to be a random sample of values
drawn from the posterior distribution. It’s like saying “here are a bunch of guesses for the
parameter”, and any region where there are a lot of guesses is considered to be a region
with high probability.

When we have samples instead of an exhaustive list of parameter values and probabilities,
the methods for computing the summaries are different. For a parameter called θ, the
methods for computing the summaries are given below.

# Posterior mean using samples

post_mean = mean(theta)

# Posterior mode using samples

# post_mode = ??? (this can't be done easily with samples!)

# If you have a really large number of samples,

# visually finding the peak of

# a histogram can work.

# Posterior median using samples

sorted = sort(theta)

post_median = sorted[0.5*length(theta)]

6.2 Credible Intervals

Credible intervals are another useful kind of summary. They are used to make statements
like “There is a 95% probability the parameter is between 100 and 150”. The basic idea is
to use the posterior distribution to find an interval [a, b] such that

P (a ≤ θ ≤ b|x) = α (6.15)

where α is some pre-defined probability. 95% seems to be the most popular choice. An
example of a 95% credible interval is given in Figure 6.3.

Note that the interval shown in Figure 6.3 is not the only possible interval that would
contain 95% of the probability. However, to make the notion of a credible interval precise,
we usually use a central credible interval. A central credible interval containing an amount
of probability α will leave (1− α)/2 of the probability to its left and the same amount
(1− α)/2 of the probability to its right.

6.2.1 Computing Credible Intervals from a Bayes’ Box

The method for computing credible intervals is closely related to the method for computing
the posterior median. With the median, we found the value of θ which has 50% of the
posterior probability to its left and 50% to its right. To find the lower end of a 95%
credible interval, we find the θ value that has 2.5% of the probability to its left. To find
the upper end we find the value of θ that has 2.5% of the posterior probability to its right,
or 97.5% to the left.
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Figure 6.3: A central 95% credible interval is defined as an interval that contains 95% of
the posterior probability, while having 2.5% of the probability above the upper limit and
2.5% of the probability below the lower limit. The credible interval is formed by finding the
edges of the grey region. In this case the credible interval is [3.310, 7.056].

6.2.2 Computing Credible Intervals from Samples

If you have used MCMC and have obtained random samples from the posterior distribution,
you can find a credible interval in a similar way to how you would find the posterior median.
Again, instead of finding the 0.5 quantile of the posterior distribution you would find the
0.025 quantile and the 0.975 quantile (if you wanted a central 95% credible interval).

6.3 Confidence Intervals

In previous stats courses you have probably come across the concept of a confidence
interval. A confidence interval is a concept in classical statistics that is somewhat similar
to a credible interval in Bayesian statistics. When people calculate confidence intervals,
they usually want to say they are 95% sure that the parameter is in that interval, given the
data. This is what Bayesian credible intervals do, but it is not what classical confidence
intervals do!

Luckily, a lot of the time, the classical and the Bayesian methods for making intervals will
actually give the same interval. But this isn’t always the case! In lectures we will study
an example (taken from an Ed Jaynes paper from the 70s) where the Bayesian credible
interval and the classical confidence interval give completely different results. The result is
shown in Figure 6.4. The key thing to note is the classical confidence interval lies entirely
in a region where we are certain (from the data) that θ cannot possibly be!
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Figure 6.4: An example of a Bayesian credible interval and a frequentist confidence interval
applied to a particular problem where they give different answers. The posterior distribution
in blue shows that the parameter θ is probably somewhere between 11 and 12, and values
above 12 are completely impossible. However, the entire frequentist confidence interval lies
above θ = 12.



Chapter 7

Hypothesis Testing and Model
Selection

Hypothesis testing (also known as model selection, particularly when it is done using
the method in Section 7.4) is a very important topic that is traditionally considered a
different topic from parameter estimation. However, in Bayesian statistics we will see that
hypothesis testing is basically the same thing as parameter estimation! The one difference,
for us, will be that we will sometimes change the prior distribution a little bit.

One big advantage of Bayesian statistics is that it unifies parameter estimation and
hypothesis testing1. That’s good news, because instead of having to understand two
different topics, we only have to understand one!

To see why hypothesis testing is fundamentally the same as parameter estimation, you only
need to understand how parameter estimation works from a Bayesian point of view, which
we have already studied. Parameter estimation is nothing more than testing a bunch of
hypotheses about the value of the parameter. For example, θ = 1 vs. θ = 2 vs. θ = 3 and
so on. If we have their posterior probabilities, then we’ve tested them.

7.1 An Example Hypothesis Test

Suppose we were performing a Bayesian parameter estimation analysis using a Bayes’ Box.
Here is an example Bayes’ Box with made up numbers:

possible values prior likelihood prior × likelihood posterior

θ p(θ) p(x|θ) p(θ)p(x|θ) p(θ|x)
1.5 0.25 0.2 0.05 0.1
2.0 0.25 0.4 0.1 0.2
2.5 0.25 0.6 0.15 0.3
3.0 0.25 0.8 0.2 0.4

Totals 1 0.5 1

1“Unifies” is a popular word for physicists. It means that two seemingly different topics are fundamen-
tally the same, or at least closely related.

45
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Suppose we wanted to test the following two hypotheses about the parameter θ. The first
hypothesis H0 is a “null hypothesis”, and the second hypothesis, H1, is an “alternative
hypothesis”.

H0 : θ = 2 (7.1)

H1 : θ 6= 2 (7.2)

In classical statistics, if you saw a question phrased in this way, you would need to come
up with a test statistic and then calculate a p-value, which tries to say something about
whether the value of the test statistic would be considered extreme, under the assumption
that H0 is true. In Bayesian statistics, the only thing we need to do is calculate the
posterior probability of H0 and the posterior probability of H1. The posterior probability
of H0 is given by:

P (H0|x) = P (θ = 2|x) (7.3)

= 0.2 (7.4)

All we did here was look up the appropriate number in the Bayes’ Box! The posterior
probability of H1 is only slightly harder (but still easy) to calculate: H1 will be true if θ
takes any value other than 2. Therefore, the posterior probability of H1 is

P (H1|x) = P (θ = 1.5 ∨ θ = 2.5 ∨ θ = 3|x) (7.5)

= P (θ = 1.5|x) + P (θ = 2.5|x) + P (θ = 3|x) (7.6)

= 0.1 + 0.3 + 0.4 (7.7)

= 0.8. (7.8)

Here we used the fact that everything in a Bayes’ Box is mutually exclusive (only one
of the hypotheses is true) so we could add the probabilities. Alternatively, you could
have just noticed that H1 is true if H0 is false. So P (H0|x) + P (H1|x) = 1, which implies
P (H1|x) = 1− P (H0|x).

7.2 The “Testing” Prior

Here we will study a hypothesis testing example that involves a null and an alternative
hypothesis. Since the bus example has been used a lot, we will now switch over to a
different example.

Suppose it is known that the mean systolic blood pressure in the general population is
120 mm Hg, with a standard deviation of 15 mm Hg (millimetres of mercury is an old
fashioned unit for pressure, even though it sounds like a unit of length). A new drug is
developed that may be helpful in reducing blood pressure. A sample of N = 100 people
(who can be considered representative of the general population) are given the drug, and
their systolic blood pressure is measured. This results in 100 blood pressure measurements
{x1, x2, ..., xN}, which will be our data. As a shorthand, I’ll sometimes write x (a bold
vector) to denote the data collectively, instead of {x1, x2, ..., xN}.
We are interested in whether the drug works. Let µ be the mean systolic blood pressure
that would apply in the general population if everyone was taking the drug. Our goal is



CHAPTER 7. HYPOTHESIS TESTING AND MODEL SELECTION 47

to infer the value of µ from the data. In classical statistics, this is sometimes phrased as a
hypothesis test between the two competing hypotheses. We will not be concerned with
the possibility that the drug has the opposite effect to what is intended.

H0 : µ = 120 (the drug does nothing)
H1 : µ < 120 (the drug reduces blood pressure)

(7.9)

Suppose the mean of all the data values was

x̄ =
1

N

100∑
i=1

xi (7.10)

= 115.9. (7.11)

Does this data provide evidence against H0 and in favour of H1? In classical statistics
this question would be addressed using a p-value. The p-value would be the probability of
getting a result this extreme or a result more extreme than what is observed, assuming
that the “null hypothesis” is true. That is,

p-value = P (x̄ ≤ 115.9|H0). (7.12)

In case you’re curious, the p-value in this case is 0.0031, which is usually taken to mean
that there is fairly strong evidence against H0 and in favour of H1. To calculate the
p-value, I assumed that the probability distribution for the data values {x1, x2, ..., x100}
was a normal distribution with a known standard deviation of σ = 15, and that they were
independent:

xi ∼ N (µ, σ2). (7.13)

In Bayesian statistics, p-values are not used. Instead, we should think of this as a parameter
estimation problem. We can state a set of hypotheses about the value of µ, and then
choose a prior distribution, update to a posterior distribution, etc. Then our result will be
the posterior probability of the null hypothesis, P (H0|x) = P (µ = 120|x). This is helpful
because the posterior probability of the null hypothesis is exactly what we want. It is a
description of how plausible the null hypothesis is given the data. It is not some other
probability that isn’t really relevant. We can also get the posterior probability of H1 by
summing the posterior probabilities for all other values of µ apart from 120, or by using
P (H1|x) = 1− P (H0|x).

There is only one minor tweak we need to make to make Bayesian inference an appropriate
framework for solving this problem. When the null and alternative hypotheses are written
like we wrote them above, it implies that the value of µ that we are calling the “null
hypothesis” is a special value that is especially plausible. To take this into account in our
Bayesian analysis we need to make sure the prior distribution recognises there is a special
value of the parameter that we think is extra plausible. When we do this, we will call it a
testing prior. An example of a testing prior and the resulting Bayes’ Box for the blood
pressure problem is given in Table 7.1. The R code for calculating these results is given
below.

# Parameter values

mu = seq(110, 120)
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# Make the testing prior

prior = rep(0.5/10, 11)

prior[11] = 0.5

# Compute the likelihood for the 100 data points.

# The numbers get close to 0, so let's use logs

log_lik = rep(0, 11)

# Use a for loop to loop over all data values

# and multiply the likelihoods

for(i in 1:100)

{

log_lik = log_lik + dnorm(x[i], mean=mu, sd=15, log=TRUE)

}

# Rescale the likelihood for readability

lik = exp(log_lik - max(log_lik))*1000

#lik = lik/max(lik)*1000

# Calculate the posterior

h = prior*lik

post = h/sum(h)

# The null hypothesis

post[11]

possible values prior likelihood prior × likelihood posterior

µ p(µ) p(x|µ) p(µ)p(x|µ) p(µ|x)
110 0.05 0.44 0.02 0.0001
111 0.05 4.83 0.24 0.0012
112 0.05 34.12 1.71 0.0086
113 0.05 154.64 7.73 0.0389
114 0.05 449.33 22.47 0.1129
115 0.05 837.13 41.86 0.2103
116 0.05 1000.00 50.00 0.2512
117 0.05 756.93 38.30 0.1924
118 0.05 376.15 18.81 0.0945
119 0.05 118.44 5.92 0.0298
120 0.5 23.91 11.96 0.0601

Totals 1 199.01 1

Table 7.1: An example of a testing prior for the blood pressure problem. We give more
prior probability to the special value µ = 120 because it is particularly plausible. For
readability I have rescaled the likelihoods so that the maximum is 1000. Note that the
posterior probability of H0 can simply be read off the table.

The conclusion of our Bayesian hypothesis test is that the posterior probability of H0 is
0.0601. Recall that the classical p-value was 0.0031. These numbers are very different, and
there is no reason why they should be similar. The p-value might imply that the evidence
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is overwhelming (if you are not experienced at interpreting p-values), but the posterior
probability still says there’s a 6% chance the drug does nothing.

Note that the calculation of the posterior distribution uses all of the data values, rather
than reducing the whole data set down to a single number (the sample mean x̄). In this
particular example, reducing the whole dataset to a single number is harmless2. But in
different situations (e.g. if your sampling distribution or likelihood was based on the
heavy-tailed Cauchy distribution instead of a normal distribution), reducing an entire data
set to a single “test statistic” can be extremely wasteful!

Note also that there were some fairly arbitrary decisions made in choosing our testing
prior. We decided not to allow µ > 120, but the analysis could also have allowed for
that. The discrete approximation was fairly coarse. Finally, we assumed µ couldn’t be
lower than 110, and had a uniform prior for all µ values apart from 120. Some of these
assumptions can and should be questioned when applying Bayesian hypothesis testing in
practice. In Figure 7.1, there are three possible ideas for what the prior should be in the
blood pressure question. They may all seem somewhat reasonable in this situation, but
could lead to different conclusions.

Prior 1 is basically the same as the prior in our Bayes’ Box, although it goes down to
µ = 100 and divides the possible µ values more finely. This prior says the null has a 50%
probability, and if µ is not equal to 120, then it could be anything. Prior 2 is similar,
but has only 30% of the prior probability on the null hypothesis, instead of 50%, and the
shape of the prior is non-uniform for the lower values of µ. This is like saying “µ could be
precisely 120, and if it’s not precisely 120, then it is probably at least close to 120”. In a
lot of hypothesis testing situations this would be a more accurate description of our prior
beliefs than Prior 1. Prior 3 isn’t really a testing prior at all (it doesn’t have a spike), but
is just a bell-shaped prior. This is like saying “Alright, I would never believe µ is exactly
120, but I think there’s a reasonable chance it’s close to 120. Often, it would be nonsense
to think the null hypothesis is perfectly true, to an arbitrary level of accuracy. Something
like Prior 3 would be more appropriate. These three priors would all give different results,
and the appropriate choice depends on the individual problem you are solving.

Remember, if the conclusions depend sensitively on the choice of the prior
distribution, that is an important finding. You either need to be really
careful about choosing your prior, or you need more data.

7.3 Some Terminology

There is some alternative terminology that is widely used and is particularly popular
in Bayesian hypothesis testing (aka model selection) problems. Suppose there were two
hypotheses H1 and H2, and some data x. Now, H1 and H2 might be a null and alternative
hypothesis, or they might be two particular values of the parameter, or something else.

2In this problem, the sample mean is a “sufficient statistic”: deleting all of the data and using just the
mean has no consequences!
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Figure 7.1: Three possible priors we could use for the blood pressure question. All may
seem “reasonable”, and the choice can affect the results (quite significantly in some cases).
Care should be taken when choosing the prior in hypothesis testing problems.

Two repetitions of Bayes’ rule for these two hypotheses are:

P (H1|x) =
P (H1)p(x|H1)

p(x)
(7.14)

P (H2|x) =
P (H2)p(x|H2)

p(x)
(7.15)

These could also be written in words:

posterior =
prior× likelihood

marginal likelihood
(7.16)

Dividing these two equations gives the odds form of Bayes’ rule, which deals with ratios of
probabilities instead of probabilities themselves.

P (H1|x)

P (H2|x)
=

P (H1)

P (H2)
× p(x|H1)

p(x|H2)
(7.17)

In words, this can be written as:

posterior odds = prior odds× bayes factor (7.18)

Sometimes people talk about odds (or odds ratios, which are the same thing) and Bayes
Factors instead of about prior and posterior probabilities. The odds tell us how plausible
H1 is compared to H2. For example, a posterior odds ratio of 5 means H1 is 5 times as
plausible as H2. Of course, odds can be greater than 1 even though probabilities cannot
be. The Bayes Factor is the ratio of the likelihoods. Results are often quoted as Bayes
Factors because that’s the part of the equation where the data is important. If you say
“The Bayes Factor for H1 over H2 was 10”, then whoever you’re talking to is free to apply
whatever prior odds they like, whereas if you state the posterior odds then people may
wonder what your prior odds were.
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7.4 Hypothesis Testing and the Marginal Likelihood

The Bayes’ factor in Equation 7.17 is the ratio of likelihoods for two hypotheses H1 and H2.
If we wanted to calculate the Bayes Factor for H0 and H1 in the blood pressure example,
we could easily get the likelihood for H0 (it’s right there in the Bayes’ Box). But how
would we get p(x|H1), which needs to be a single number? H1 is the statement µ = 100
or µ = 111 or µ = 112 and so on up to µ = 119.

Imagine we had left µ = 120 out of our Bayes’ Box and just done parameter estimation
within the context of H1 (i.e. assuming, for argument’s sake, that H1 is true). This would
involve a reduced Bayes’ Box with one less row in it. We would end up getting some
marginal likelihood p(x) =

∑
p(θ)p(x|θ). The key is to realise that since we are assuming

H1 throughout, the marginal likelihood is really p(x|H1) =
∑
p(θ|H1)p(x|θ,H1), which is

exactly the thing we need to calculate the Bayes Factor!

All of this implies there are two mathematically equivalent ways of doing Bayesian
hypothesis testing, or model selection. One is to make a big model that includes both the
null and the alternative hypothesis. The Bayes’ Box with a testing prior accomplishes this.
In most cases this is the most convenient way to do the calculations.

The other way is to do the two analyses separately. First, do parameter estimation within
the context of H1. Then, do parameter estimation within the context of H2. Then, use
the marginal likelihoods as if they were likelihoods, to compare H1 vs. H2. This second
way of calculating Bayes Factors is most useful when the two analyses were actually done
separately by different people.
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Markov Chain Monte Carlo

8.1 Monte Carlo

Monte Carlo is a general term for computational techniques that use random numbers.
Monte Carlo can be used in classical and Bayesian statistics. A special kind of Monte Carlo
called Markov Chain Monte Carlo (MCMC) was one of the main reasons for the revival of
Bayesian statistics in the second half of the 20th century. Before MCMC became popular,
one of the major drawbacks of the Bayesian approach was that some of the calculations
were too hard to do. MCMC enables us to solve a wide range of Bayesian problems which
cannot be solved using analytical methods.

8.1.1 Summaries

So far, we have represented our probability distributions (prior and posterior) in a computer
by using a vector of possible parameter values and a corresponding vector of probabilities.
For example, suppose we have a single parameter θ and we have worked out the posterior
distribution by using a Bayes’ Box. This will give us a vector theta of possible θ values
and a corresponding vector post containing the posterior probabilities. Well, one thing
we could do is plot the posterior distribution, resulting in a plot like the one in Figure 8.1.

plot(theta, post, xlab="Theta", ylab="Posterior Probability")

If we want to obtain some summaries, we could do it like so:

post_mean = sum(theta*post)

post_sd = sqrt(sum(theta^2*post) - post_mean^2)

However, there is an alternative way of representing this posterior distribution in a
computer. It may not be immediately obvious why this is a good idea, because there
is nothing wrong with the tried and true method we have used so far. But this second
method has the advantage that it continues to work well on much bigger problems, such
as when we have more than one parameter. With more than one parameter, the ‘vector of
possible solutions” approach can fail very dramatically.

Our new way of representing a probability distribution in a computer will be via Monte
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Figure 8.1: A posterior distribution can be represented in a computer by a discrete set of
possible parameter values, and the corresponding probabilities.

Carlo samples. Instead of having two vectors (one of θ values and one of the corresponding
probabilities), imagine we had some method to compute a random sample of θ values,
drawn from the posterior distribution in Figure 8.1. There would only be one vector
theta. So how would we know there is greater probability around θ = 1? Well, more
elements of the theta vector would be near 1. Instead of carrying around a second vector
of probabilities, we understand that more probable regions will simply contain more points.
Say our vector of random samples is called theta. Then we can look at the posterior
distribution by plotting a histogram of samples:

hist(theta, breaks=100)

The histogram looks something like the one in Figure 8.2. We can also get our summaries,
but the code looks different (it’s actually easier than before!):

post_mean = mean(theta)

post_sd = sd(theta)

Because of the randomness involved in generating the theta values, the summaries aren’t
exact. For example, I know the actual posterior mean and standard deviation in this
example were both 1, but the values obtained from the Monte Carlo samples were 0.9604
and 1.0008, respectively. However, this doesn’t matter much because the results indicate θ
is probably somewhere around 1, with an uncertainty of about 1. The error introduced by
using random samples is much smaller than the amount of uncertainty inherent in the
posterior distribution itself. For example, if I summarised the posterior distribution by
saying θ = 0.9604± 1.0008, for almost all practical purposes the conclusion is exactly the
same as the true version of the summaries θ = 1± 1.

In this discussion, we haven’t answered the question of how to actually generate random
samples of θ from the posterior distribution. This is the job of Markov Chain Monte Carlo.

The purpose of Markov Chain Monte Carlo is to generate random samples
of parameter values drawn from the posterior distribution. This makes it
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Figure 8.2: The posterior distribution for a parameter θ can also be represented by a
random sample of θ values drawn from the posterior distribution. Some θ values are more
probable than others, which is encoded by certain values appearing more frequently in the
sample.

very easy to compute summaries even if you have more than one unknown
parameter.

8.2 Multiple Parameters

MCMC becomes extremely useful when we begin to look at Bayesian models involving
more than one unknown parameter. Having posterior samples makes the process of
marginalisation much easier. Imagine we wanted to infer two parameters, called a and
b, from data x. Bayes’ rule (parameter estimation version) would give us the posterior
distribution:

p(a, b|x) ∝ p(a, b)p(x|a, b) (8.1)

However, what if you didn’t really care about the value of b but only really wanted to
measure a? The terminology for this is that b is a nuisance parameter: you need it to
define the model, but ultimately you are not really interested in knowing its value. What
you need in this case is the marginal posterior distribution for a (that is, the posterior
distribution for a on its own, not the joint distribution with b). This can be obtained
using the sum rule. The result is:

p(a|x) =

∫
b

p(a, b|x) db (8.2)

or

p(a|x) =
∑
b

p(a, b|x) (8.3)
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depending on whether the set of possible b values is continuous or discrete. Before MCMC,
these integrals or sums usually couldn’t be done without making certain choices purely
for mathematical convenience (e.g. choosing the prior to be a certain kind of distribution
only because it will make the maths work out, rather than it being a good description of
your prior beliefs).

Samples of parameter values drawn from the posterior distribution (achieved using MCMC)
make this hard problem much easier. We no longer need to worry about mathematical
convenience. See Figure 8.3 for an example showing how Monte Carlo sampling makes
marginalisation trivial.
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Figure 8.3: An example of a posterior distribution for two parameters, a and b. The left
panels show the joint posterior distribution (which has a correlation) and the marginal
posterior distribution for a, obtained by integrating over all the possible b values. The top
right panel contains random samples (points) drawn from the posterior distribution for a
and b. The only step needed to get the marginal distribution for a (lower right panel) is to
ignore the b-values of the points!
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8.3 The Metropolis Algorithm

The Metropolis algorithm is the most basic MCMC method. The ideas behind it are
fairly simple, yet Metropolis forms the basis of a large number of more advanced MCMC
methods. In STATS 331 we will study the basic ideas behind how the Metropolis algorithm
works, which will involve a small amount of Markov chain theory. We will also look at
a small amount of R code which implements the Metropolis algorithm, but for solving
practical problems it is more convenient to use the JAGS program1.

The Metropolis algorithm was invented in the 1950s by physicists (including Nicholas
Metropolis, for whom the algorithm is named), who used it to do calculations in the field
of statistical mechanics. This intriguing field focuses on calculating the macroscopic (large
scale) properties of matter from knowledge of the small-scale properties. For example, if
you know water is composed of H2O molecules, you can use statistical mechanics to figure
out what will happen if you have a lot of water molecules. For example, it will freeze at 0
degrees Celsius and boil at 100 degrees Celsius.

It took many decades before people started to realise the Metropolis algorithm was useful
in Bayesian statistics as well as statistical mechanics. The Bayesian approach seemed very
elegant and useful to many people, but it could always be criticised as unworkable, because
you usually had to do difficult or impossible integrals when solving practical problems
(to summarise the posterior, or to get rid of nuisance parameters). MCMC changed all
that, and is one of the reasons for the explosion in the popularity of Bayesian statistics
beginning in the 1990s.

The basic idea of MCMC is that we want a method which will travel between different
possible states (such as the possible hypotheses/parameter values in a Bayesian analysis).
We want the amount of time spent in any particular state to be proportional to the
posterior probability of the state. The computer “explores” the set of possible parameter
values, spending a lot of time in the regions with high posterior probability, and only
rarely visiting regions of low posterior probability. Figure 8.4 shows an example of MCMC
applied to a problem with only two possible hypotheses or parameter values. Nobody
would actually use MCMC on such a small problem, but it is helpful for explaining how
MCMC works.

8.3.1 Metropolis, Stated

The Metropolis algorithm is given below. The first thing to do is start somewhere in the
“parameter space” (set of possible parameter values). You then propose to move somewhere
else. There is an acceptance probability α that determines whether to accept the proposal.
If the proposal is better (h, the prior times likelihood value is higher), then you accept
it, and the proposed state becomes the new state of the algorithm. If the proposal is
worse, you can also accept it, but the probability of accepting is given by the ratio of the
unnormalised posterior probabilities, i.e. h′/h. For example, if the proposed point is 1/3
as good as the current point, the acceptance probability is 1/3. If the proposed point is
rejected, the original point remains the state of the algorithm, and gets counted again in

1JAGS uses a number of MCMC methods internally, including Metropolis, “Gibbs Sampling”, and
“Slice Sampling”, which we will not study in this course.
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Figure 8.4: An illustration of the basic idea behind MCMC. Imagine we had a Bayes’
Box with two possible hypotheses, and we knew the prior × likelihood values. The
amount of time the MCMC program will spend in each state is proportional to the posterior
probability of the state. In this example, the MCMC algorithm was in State 1 three times
and in State 2 seven times. Using this, we could estimate the posterior probability of State
2 as being 0.7. This estimate would become more accurate if we ran the MCMC for more
iterations.

the results.

The Metropolis algorithm works because it makes transitions towards low probability
states rare, while transitions towards high probability states are common, because of the
acceptance probability. It is hard to move into an improbable state, so not much time will
be spent there. Over time, the fraction of time spent in any given state is equal to the
posterior probability of the corresponding hypothesis.

• Start in some state θ

• Generate a “proposal” state θ′ from a proposal distribution q (assumed symmetric
so that q(θ′|θ) = q(θ|θ′))
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• With probability α = min(1, h′/h), replace the current state with the proposed
state

• Repeat

8.4 A Two State Problem

We will now study how the Metropolis algorithm works on a very simple example, namely
the two-ball problem from the beginning of the notes. There are two hypotheses and the
posterior probabilities are 1/3 and 2/3. It is important to note that MCMC is not actually
needed for a problem this simple, but it is a good test case to see precisely how an MCMC
algorithm works. When we solve real data analysis problems with JAGS, we won’t have to
think too much about how the MCMC works, but can concentrate instead on the Bayesian
statistics problem at hand.

Let’s call the less probable hypothesis “State 1” and the more probable hypothesis “State
2” for the purposes of this section. What we need is a Markov process that will spend 1/3
of the time in State 1 and 2/3 of the time in State 2. The Metropolis algorithm described
above will do what we need. The main thing we need to compute is the acceptance
probability αij for a proposed transition from state i to state j where i, j ∈ {1, 2}. The
acceptance probability α for a proposed move from state i to state j is given by

αij = min

(
1,
hj
hi

)
(8.4)

where hi and hj are proportional to the posterior probabilities of states i and j respectively.
If the proposal is to move to an equal or better (higher posterior probability) state (hj ≥ hi)
then the acceptance probability is 1. If the proposal is to move to a less probable state
then the acceptance probability is hj/hi, the ratio of the two posterior probabilities2.

The transition probability is the probability of being in state j at the next iteration given
that you are in state i at the current iteration. The transition probability is given by the
product rule:

pij = qjαij (8.5)

for i 6= j. The transition matrix of the Markov chain is a matrix with all the different pij
values in it:

P =

[
p11 p12
p21 p22

]
(8.6)

In our particular case, we can work out the off-diagonal elements of P using Equation 8.5:

P =

[
1
2
× 1

1
2
× 1

2

]
(8.7)

2Note that this algorithm can be used even if the marginal likelihood is unknown, because only ratios
of posterior probabilities are needed. This is useful because the marginal likelihood is sometimes very
hard to calculate in multi-parameter problems.
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The diagonal elements can be found by knowing the rows of P must sum to 1. We must
be in some state at the next iteration. Therefore the transition matrix of our Markov
chain in this two-state problem is:

P =

[
1
2

1
2

1
4

3
4

]
(8.8)

A Markov chain with a small number of possible states can be represented graphically
using a transition diagram, as in Figure 8.5.

Figure 8.5: A transition diagram for a Markov Chain with two possible states. The states
(which correspond to hypotheses in Bayesian inference) are drawn as circles labelled “1”
and “2”. When the algorithm is in a particular state (e.g. State 1), and we apply one step
of the Metropolis algorithm, the probability it will be in State 1 is p11 and the probability it
will be in State 2 is p12. MCMC works by making it easy to move into states with high
posterior probability, and hard to move out of them.

8.5 The Steady-State Distribution of a Markov Chain

Once we have the transition matrix, we can work out the steady state distribution of the
Markov chain. Imagine, instead of starting the MCMC from an arbitrary initial state, you
have a probability distribution for the initial state. After applying one iteration of the
Metropolis algorithm, the probability distribution for the updated state will usually be
different from the probability distribution for the initial state.

However, one special probability distribution, called the steady state distribution, does
not change after you apply an MCMC update. If your initial point was drawn from the
steady state distribution, then subsequent points will also be drawn from the steady state
distribution. In MCMC the steady state distribution should be the same as the posterior
distribution.

Imagine we are using MCMC on our two-state problem, and our initial position is State
1 with probability v1 and State 2 with probability v2. What is the probability of being
in State 1 at the next iteration? There are two ways for that to happen: by starting in
State 1 and then making a transition from 1→ 1, or by starting in State 2 and making a
transition from 2→ 1. The total probability is then:

P (State 1 after iteration) = v1p11 + v2p21. (8.9)
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Similarly for State 2:

P (State 2 after iteration) = v1p12 + v2p22. (8.10)

If v1 and v2 happened to be the steady state distribution, then these probabilities would
also be v1 and v2. This gives us two simultaneous equations

v1 = v1p11 + v2p21 (8.11)

v2 = v1p12 + v2p22 (8.12)

which can also be written in matrix form as vP = v where v = (v1, v2) and P is the
transition matrix3. These two simultaneous equations can be solved for v1 and v2. However
there is a third constraint, that is v1 + v2 = 1. Since there are three equations but two
unknowns, it seems like the problem might be “over-determined”, but that is not actually
the case because the transition matrix rows are not all linearly independent. It is left
as an exercise for the reader to show the steady state distribution for our Markov chain
(Equation 8.8) is in fact equal to the posterior distribution, so v =

(
1
3
, 2
3

)
.

8.6 Tactile MCMC

In class we will do “Tactile MCMC”, which is an implementation of the Metropolis
algorithm using coins and dice instead of the random number generators provided in
computer software such as R. This is a good way to get a feel for the flow of MCMC
algorithms.

In STATS 331, when we want to use MCMC in practice, we will use the JAGS program
rather than using Metropolis directly. JAGS is a general purpose MCMC program which
allows you to solve fairly complex problems without a large amount of programming.

3Mathematics students might recognise this equation, which says v is the left-eigenvector of P, with
eigenvalue 1. An alternative is to write the stationary distribution as a column vector and use PTv = v.
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Using JAGS

JAGS stands for “Just Another Gibbs Sampler”. JAGS is a computer program that
allows the user to implement Markov Chain Monte Carlo (MCMC) on fairly complicated
problems very quickly. The “Gibbs Sampling” mentioned in the name of JAGS is a
particular MCMC technique that is beyond the scope of this course: however, it is not so
different from the Metropolis-Hastings method that we do study in this course. If you are
faced with a statistics problem which you would like to solve in a Bayesian way, JAGS
makes it very straightforward to implement a Bayesian model. Essentially, you just need
to tell JAGS the following things:

• The names of your unknown parameter(s), and their prior distributions

• The likelihood

Then we simply load in the data and let it go! JAGS will run MCMC, automatically
choosing an appropriate starting point based on your prior, and moving the parameter
values around so the posterior distribution is well sampled. In this chapter we will see
how to use JAGS with a simple example, and we will see some more features of JAGS
when we come to study more complex examples. There are some more advanced features
of JAGS that we will not use in this course.

JAGS is not the first program of its kind, and it is related to many other available
programs. Starting in the late 1980s, a program called BUGS (Bayesian inference Using
Gibbs Sampling) was developed, and this evolved into the program WinBUGS. These
programs had a huge effect on the uptake of Bayesian statistics, by dramatically reducing
the amount of work it takes to get an MCMC simulation to run. Instead of having to
code up your own implementation of the Metropolis algorithm or an alternative MCMC
method, all you had to do was tell WinBUGS what your prior and likelihood were, and it
would automatically use appropriate and sophisticated MCMC methods.

Up until 2012, STATS 331 was taught using WinBUGS. However, there are a number
of disadvantages to WinBUGS, so I decided to switch over to JAGS in 2013. The main
advantages of JAGS over WinBUGS are: i) it is open source software and works on all
operating systems, ii) it allows a more concise version of notation that can save a lot
of space and make the code easier to read and write, and iii) WinBUGS is not actively
developed or maintained any more. In addition, a lot of time in previous iterations of 331
was spent teaching different ways of using WinBUGS (i.e. calling it from R, vs. using the
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graphical interface, vs. writing a script). In 2013 we will use JAGS in just one way (by
calling it from R), which frees up time for us to concentrate on the stats! There is another
up to date BUGS program called OpenBUGS, but it too is only a Windows program.
Most of what you learn about JAGS can be transferred to WinBUGS or OpenBUGS quite
easily, if necessary, with only minor changes.

9.1 Basic JAGS Example

Since we have used it a lot already, it makes sense to look at how the bus problem looks
in JAGS. Recall we had a single unknown parameter θ, with a uniform prior between 0
and 1. We also had a binomial likelihood, which we could write as x ∼ Binomial(N, θ).
To implement this model in JAGS, the code looks like this:

model

{

# Parameters and the priors

theta ~ dunif(0, 1)

# Likelihood

x ~ dbin(theta, N)

}

As in R, comments (statements that have no effect but help to annotate the code) can be
written with a # symbol. The names of the distributions in JAGS are very similar to (but
not always exactly the same as) the names of the R functions for evaluating the probability
densities or mass functions. In this example, dunif is the uniform distribution and dbin

is the binomial distribution. One final thing to note is the order of the parameters in the
binomial distribution. In JAGS the success probability comes first and the number of
trials comes second. There are some quirks with the other distributions as well, such as
the normal distribution, which we will see in later chapters.

The code for implementing a Bayesian model in JAGS belongs inside a model{ } block. In
our example, the first statement inside the model is theta ~ dunif(0, 1). As you can
probably guess, theta is simply the name of our parameter. We are free to name it as we
wish, and in different situations we will give the parameters different names. The tilde sign
is like the “∼” notation for probability distributions. We are about to specify a probability
distribution that applies to theta. Finally, the actual distribution is given, which is a
uniform distribution between 0 and 1. Note the command used for a uniform distribution
is dunif and not uniform. Our line of code theta ~ dunif(0, 1) tells JAGS there is a
parameter called theta and we want to use a uniform prior between 0 and 1.

The notation for the likelihood is very similar. We write the name of the data followed by
“~” and then the distribution, in this case the binomial distribution. One annoying this
about the binomial distribution is the ordering of the parameters. Usually people write
the number of trials first and the success probability second, but in JAGS it’s the other
way around.

Interestingly, the likelihood part of the code looks exactly like the prior part. So how does
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JAGS know that x is data and not just another parameter? Well, when we call JAGS
from R, we will pass to it an R list containing the data. There will be a value for x in this
list, which tells JAGS that it is a fixed and known quantity, and not another unknown
parameter like theta.

Above, we specified the JAGS model, but this isn’t the only thing we need. We also need
a way to actually run JAGS! The most convenient way to use JAGS is to call it from R,
using the R library rjags. This way, the output (samples from the posterior distribution
for the parameters) is available in R for postprocessing such as plots and smmaries. The
rjags library has many features and options, and it can be a bit overwhelming to figure
out all of them using the documentation. Therefore, I have written a template R script
called use jags.R where you can specify the data, the JAGS model, and some options at
the top of the file, and you do not have to worry about all the functions for calling JAGS
from R.

The first part of use jags.R is given below. This is the part you can modify to load
different data, change the model assumptions, and decide how long (for how many iterations
or steps) you would like the MCMC to run for.

The burn-in is an initial part of the MCMC run where results are not saved. This is
beneficial because sometimes it can take a while for the MCMC to locate the regions of
high posterior probability, and if you include the initial parts of the run in you results,
you can get incorrect answers. For most of our models in STATS 331, we do not need a
long burn-in period.

model = "model

{

theta ~ dunif(0, 1)

x ~ dbin(theta, N)

}

"

# The data (use NA for no data)

data = list(x=2, N=5)

# Variables to monitor

variable_names = c('theta')

# How many burn-in steps?

burn_in = 1000

# How many proper steps?

steps = 10000

# Thinning?

thin = 1

The second part of use jags.R actually runs JAGS. You won’t need to edit this or know
much about it, but for completeness, here it is:

# NO NEED TO EDIT PAST HERE!!!
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# Just run it all and use the results list.

library('rjags')

# Write model out to file

fileConn=file("model.temp")

writeLines(model, fileConn)

close(fileConn)

if(all(is.na(data)))

{

m = jags.model(file="model.temp")

} else

{

m = jags.model(file="model.temp", data=data)

}

update(m, burn_in)

draw = jags.samples(m, steps, thin=thin, variable.names = variable_names)

# Convert to a list

make_list <- function(draw)

{

results = list()

for(name in names(draw))

{

# Extract "chain 1"

results[[name]] = as.array(draw[[name]][,,1])

# Transpose 2D arrays

if(length(dim(results[[name]])) == 2)

results[[name]] = t(results[[name]])

}

return(results)

}

results = make_list(draw)

When this code is executed, it creates an R list called results. Inside results, there
is a vector for each variable that you chose to “monitor” by listing its name in the
variable names vector. In this example there is only one parameter, so it seems obvious
we would like to monitor it. In more complex situations there may be many parameters,
and only some of them are actually interesting, the others are “nuisance parameters”. The
variable names vector allows you to choose just the parameters you really care about.
Notice also the various options such as the number of steps, and the thin option. If thin
is set to 10, for example, only every 10th iteration of the MCMC will appear in the results.
This is useful for keeping the size of the results list manageable, even if you run the
MCMC for a very long time.

One of the most important things to check after running JAGS is a trace plot of the
parameters. A trace plot is a plot of the value of the parameter over time, as the MCMC
was running. To plot a trace plot of the MCMC run, we can simply use the following code,
for a parameter called theta. If the parameter has a different name, replace theta with
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the actual name of the parameter.

plot(results$theta, type='l')

You could look at the posterior distribution using a histogram, and you can compute
summaries using the methods discussed in Chapter 6. The code for the histogram for a
parameter theta is given below.

hist(results$theta, breaks=100)

Examples of a trace plot and a histogram are given in Figure 9.1. Trace plots are the best
diagnostic tool for seeing whether MCMC is working properly. Ideally, trace plots should
look like “noise”, without strong correlations between one point and the next. If there are
strong correlations in the trace plot, the MCMC will need to be run for a longer period of
time to obtain effectively independent samples from the posterior distribution.
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Figure 9.1: The trace plot and histogram of the MCMC samples returned by JAGS. The
trace plot (top) is zoomed in on the first 500 samples, and shows the theta value moving
around as the MCMC proceeds. The histogram of theta values, sampled from the posterior
distribution, is given in the lower panel. You can compare this with Figure 5.1.

9.2 Checklist for Using JAGS

When running JAGS using the use jags.R script provided, there are several things you
need to ensure. These are listed below.

• The data you want to analyse must be contained in an R list called data. Inside
this list you should also include variables such as the size of the data set (which I
usually call N), or any other known constants that are referred to in the model.
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• The JAGS model must be correctly written inside the R string called model. In the
likelihood part of the JAGS model, you must ensure that the names of the data
variables match the names in your data list. In the example of this chapter, the
number of successes is called x in both the data list and in the JAGS model.

• The variable names vector, which lists the parameters you are interested in, can
only list parameters that actually exist in the JAGS model. If you try to monitor a
variable that isn’t in your model, you will get an error message.
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Regression

Regression is a very important topic in statistics that is applied extremely frequently.
There are many different kinds of regression, but in STATS 331 we will mostly focus
on linear regression. This gives us a nice familiar example example to demonstrate how
Bayesian statistics works and how it is different from classical or frequentist statistics.
Here we will study an example of a simple linear regression problem taken from STATS
20X.

10.1 A Simple Linear Regression Problem

Data were collected from a sample of 30 drivers. The age of the driver and the maximum
distance at which they could read a newly designed road sign were recorded. It is of
interest to build a simple model that can be used to predict the maximum distance at
which the sign is legible, using the age of the driver. Figure 10.1 shows the data. The
purpose of simple linear regression is to find a straight line that goes throught the data
points. The slope and intercept of the straight line are then helpful for understanding the
relationship between the variables. Also, the straight line can be used to predict future
data, such as the maximum distance at which a 90-year-old person could read the sign.
The most common method used to obtain the straight line is to find the line (i.e. the
slope and intercept values) which fits best by the criterion of “least squares”.

10.2 Interpretation as a Bayesian Question

From what you now know about Bayesian statistics, you might be able to come up with
some reasons why the standard least squares solution is unsatisfactory. One glaring issue
is that the data are hardly ever going to be good enough to tell us with certainty that a
particular slope and intercept are correct (the exception would be if three or more points
lie perfectly on a straight line, with no scatter). In principle, we will almost always have
uncertainty about the slope and the intercept. From a Bayesian perspective, our goal is
not to find a point estimate for the slope and the intercept. Instead we should calculate
the posterior distribution for the slope and the intercept, given the data. The posterior
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Figure 10.1: The maximum distance at which a person can read a road sign vs. the age of
the person. There are N = 30 data points. You can clearly see that older people have, on
average, worse eyesight. Simple linear regression can be thought of as “fitting a straight
line” to the data.

distribution will tell us exactly how much uncertainty we have. If we do want summaries
for convenience, we can use the posterior distribution to create the summaries, as discussed
in Chapter 6.

The equation for a straight line is usually written as y = mx + b where m is the gra-
dient/slope and b is the intercept. However, for consistency with later, more complex
regression models, we will write the equation as:

y = β0 + β1x. (10.1)

Here, β0 is the y-intercept and β1 is the slope. Our goal is to calculate the posterior
distribution for β0 and β1 given the data.

10.3 Analytical Solution With Known Variance

Bayes’ rule (parameter estimation version) tells us how to calculate the posterior distribu-
tion:

p(θ|x) ∝ p(θ)p(x|θ) (10.2)

This is the generic form for parameters θ and data x. In our particular case, the unknown
parameters are β0 and β1, and the data are the y values of the data points. The data also
consist of a number N of points and the x-values, but we shall assume that these on their
own provide no information about the slope and intercept (it would be a bit strange if they
did). So the x-values and the number of points N act like prior information that lurks “in
the background” of this entire analysis. The y-values are our data in the sense that we
will obtain our likelihood by writing down a probability distribution for the y-values given
the parameters.
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Therefore, Bayes’ rule for this problem (i.e. with the actual names of our parameters and
data, rather than generic names) reads:

p(β0, β1|y1, y2, ..., yN) ∝ p(β0, β1)p(y1, y2, ..., yN |β0, β1) (10.3)

We can now say some things about Bayesian linear regression by working analytically. For
starters, let’s assume uniform priors for both β0 and β1, and that the prior for these two
parameters are independent. The probability density for a uniform prior distribution can
be written simply as:

p(β0, β1) ∝ 1. (10.4)

Note that we have written proportional instead of equals. If we decided to place the limits
at -500 and 500 (say) then the actual value of the density would be 10−6. But this is just
a number and in the end, when we normalise the posterior distribution, it won’t matter.
We can even imagine making our prior “infinitely wide”, which is called an improper prior.
In many cases simply writing p(β0, β1) ∝ 1 will not cause any problems. We are assuming
the prior probability density is uniform over a very wide range which we will not specify.

Now, on to the likelihood. There are N data points and so there are N y-values in the
dataset, called {y1, y2, ..., yN}. We can obtain the likelihood by writing down a probability
distribution for the data given the parameters, sometimes called a “sampling distribution”.
This describes our beliefs about the connection between the data and the parameters,
without which it would be impossible to learn anything from data. If we knew the true
values of β0 and β1, then we would predict the y-values to be scattered around the straight
line. Specifically we will assume that each point departs from the straight line by an
amount εi which has a N (0, σ2) probability distribution. For now, we will assume σ, the
standard deviation of the scatter, is known. In “∼” notation, this can be written as:

yi ∼ N (β0 + β1xi, σ
2). (10.5)

It is implied that all of the data values are independent (given the parameters). Therefore
the likelihood can be written as a product of N normal densities, one for each data point:

p({y1, y2, ..., yN}|β0, β1) =
N∏
i=1

1

σ
√

2π
exp

[
− 1

2σ2
(yi − (β0 + β1xi))

2

]
. (10.6)

Remember, when we combine the likelihood with the prior using Bayes’ rule, we can
usually ignore any constant factors which do not depend on the parameters. This allows
us to ignore the first part of the product, outside the exponential (since we are assuming
σ is known).

p(β0, β1|y1, y2, ..., yN) ∝ p(β0, β1)p(y1, y2, ..., yN |β0, β1) (10.7)

∝ 1×
N∏
i=1

exp

[
− 1

2σ2
(yi − (β0 + β1xi))

2

]
(10.8)

∝ exp

[
− 1

2σ2

N∑
i=1

(yi − (β0 + β1xi))
2

]
. (10.9)

We have just found the expression for the posterior distribution for β0 and β1. This is
a distribution for two parameters (i.e. it is bivariate). It is not easy to interpret this
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equation just by looking at it, but we could use it to work out the value of the posterior
probability density for any possible values of β0 and β1

There are a few things you may notice about the posterior distribution in Equation 10.9.
Firstly, the way it depends on the parameters is an exponential of something involving β0
and β1 in linear and second-order ways (if you were to expand the square, you would get
terms like β0β1 and β2

0). Mathematicians would call the expression inside the exponential
a quadratic form. When a probability density can be written as the exponential of a
quadratic form, it is a normal density. Therefore, the posterior distribution for β0 and β1
is a (bivariate) normal distribution.

We can obtain some more insight about this problem by inspecting the sum term inside
the exponential in the posterior distribution (Equation 10.9). The sum is over all the data
points, and what is being summed is the difference between the data value yi and the
straight line prediction β0 + β1xi, all squared. The sum term is just the sum of squared
residuals that is minimised when solving this problem by “least squares”. In classical
least squares linear regression, β0 and β1 are estimated by minimising this sum of squared
residuals. Because of the exp and the minus sign, the posterior distribution is telling us
that the choice of β0 and β1 that minimises the sum of squared residuals, maximises the
posterior probability density. Other values of the parameters that don’t quite minimise
the sum of squared residuals are somewhat plausible, and the form of the posterior density
tells us exactly how much less plausible they are. The take home message is summarised
below.

Doing a linear regression by least squares is equivalent to having a uniform
prior and a normal likelihood, and finding the posterior mode. If you think
this is appropriate in a particular application, and you are happy with just
a point estimate, then classical least squares fitting will be fine. Otherwise,
you’d better do a Bayesian analysis.

While classical regression results may come with “standard errors”, these are not the same
as a posterior distribution. A posterior distribution describes the uncertainty about the
parameters given the specific data set you actually have. Standard errors describe how
different your point estimate would be if your data set was different.

10.4 Solution With JAGS

The above analytical results made the unrealistic assumption that the standard deviation
σ, of the scatter, was known. In practice, σ usually needs to be estimated from the data
as well. Therefore, in the Bayesian framework, we should include it as an extra unknown
parameter. Now we have three unknown parameters instead of two. Our parameters are
now β0, β1, and σ. One major advantage of MCMC is that we can increase the number of
unknown parameters without having to worry about the fact that the posterior distribution
might be hard to interpret or plot.

The data is the same as before, {y1, y2, ..., yN}. The likelihood is also the same as before:

yi ∼ N (β0 + β1xi, σ
2). (10.10)
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Our three parameters will need priors. JAGS requires proper priors (i.e. we can’t have a
uniform prior over an infinite range), but we can still make our priors very wide. Instead
of using uniform distributions this time, we will use normal distributions with a mean of 0
and a large standard deviation of 1000.

For the standard deviation parameter σ, we know firstly that this cannot be negative. We
will use a “log-uniform” prior with generous lower and upper limits, to express uncertainty
about the order of magnitude of σ. This prior implies things like P (1 < σ < 10) =
P (10 < σ < 100) = P (100 < σ < 1000), which is sometimes a good description of a large
amount of uncertainty about a positive parameter. The easiest way to implement this in
JAGS is to actually use log(σ) as the parameter, with a uniform prior, and then define
σ = exp (log(σ)). Notice that “deterministic nodes” (quantities that are defined in terms
of other variables) in JAGS are defined using “<-” instead of “~”.

In JAGS, the model looks like this:

model

{

# Prior for all the parameters

beta0 ~ dnorm(0, 1/1000^2)

beta1 ~ dnorm(0, 1/1000^2)

log_sigma ~ dunif(-10, 10)

sigma <- exp(log_sigma)

# Likelihood

for(i in 1:N)

{

y[i] ~ dnorm(beta0 + beta1*x[i], 1/sigma^2)

}

}

The first part defines the priors for the parameters. For β0 and β1, we have just chosen very
broad priors that describe vague prior knowledge. Note that the standard deviations of
the priors are 1000, so we should be careful to only apply this code in situtations where we
don’t expect the intercept or slope to have an extreme value (either positive or negative).

For the standard deviation parameter σ, which describes how much we expect the data
points to be scattered around the straight line, we have assigned a log-uniform prior.
The limits of −10 and 10 for log sigma imply limits of 4.5× 10−5 to 22,000 for sigma, a
generous range. If we thought σ might actually be outside this range, we should change
the prior to something else or risk getting strange answers.

The likelihood part of the code involves a for loop, because our data is more than just
a single number. The code inside the loop is effectively duplicated N times (with i = 1,
then with i = 2, etc), once for each data point. Since the loop refers to a quantity N, this
must be specified in the data list if you are using my use jags.r template code.

Another new feature of this JAGS model is the normal distribution, which is called dnorm

in JAGS. Usually a normal distribution is written N (µ, σ2) where µ is the mean and σ is
the standard deviation (and σ2 is the variance). Unfortunately, in JAGS there is a quirk:
the first argument to dnorm is indeed the mean, but the second argument must be one
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over the variance, or one over the standard deviation squared.

10.5 Results for “Road” Data

Our JAGS output will contain samples from the posterior distribution for β0, β1 and σ.
The first thing we should do is make trace plots and check that everything converged
properly. Then we can make histograms of each parameter to visually inspect the (marginal)
posterior distribution for each parameter. We can also plot one parameter vs. another to
look at the joint posterior distribution for the parameters. R code for all of these is given
below.

# Plot trace plots

plot(results$beta0, type='l', xlab='Iteration', ylab='beta0')

plot(results$beta1, type='l', xlab='Iteration', ylab='beta1')

plot(results$sigma, type='l', xlab='Iteration', ylab='sigma')

# Plot histograms

hist(results$beta0, breaks=20, xlab='beta0')

hist(results$beta1, breaks=20, xlab='beta1')

hist(results$sigma, breaks=20, xlab='sigma')

# Plot joint posterior distribution of beta0 and beta1

plot(results$beta0, results$beta1, cex=0.1, xlab='beta0', ylab='beta1')

All of the plots for the road data are shown in Figure 10.2.

With classical linear regression it is usually helpful to plot the best fitting line through
the data. In Bayesian linear regression our output is posterior samples for what the
parameters might be (and therefore what the line might be). A common way of displaying
the posterior is to plot many lines through the data, with the lines produced using the
posterior samples. Some R code for doing this is given below. The plot produced looks
like the one in Figure 10.3.

# Plot the data

plot(data$x, data$y)

# Make some x-values for plotting lines

x = c(0, 100)

# Plot the first 30 lines from the posterior distribution

for(i in 1:30)

{

lines(x, results$beta0[i] + results$beta1[i]*x)

}
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Figure 10.2: Results (posterior samples) from the simple linear regression model applied to
the road data. Top Left: Trace plots showing the parameters moving around over time
(as the MCMC progressed). Top Right: Histograms of the posterior samples, showing
the marginal posterior distributions for the parameters. Bottom: A plot of β1 vs. β0,
showing samples from the joint posterior for these two parameters. These parameters had
independent priors, but the posterior shows a correlation. All this means is that if β0 is a
high value then β1 must be low, and vice versa.

10.6 Predicting New Data

One of the most important uses of regression models is for prediction. Given this data,
what can we say about the value of the output variable y at some new value of the input
variable, xnew? It’s unknown, but let’s call it ynew. With our road example, we will try to
predict the maximum reading distance of a person who is xnew = 90 years old. If we knew
the parameters of the straight line (or had a good point estimate), we could extend it out
to x = 90, and compute our predicted value:
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Figure 10.3: The road data with credible regression lines (sampled from the posterior
distribution) overplotted.

ynew = β0 + β1xnew (10.11)

= β0 + β1 × 90 (10.12)

but that’s not quite in the Bayesian spirit. Firstly, we don’t know the value of the
parameters, we only have the posterior distribution. Secondly, we would like not just a
point estimate for ynew but a whole probability distribution, describing all of the uncertainty
in the prediction. One simple improvement would be to state that our uncertainty about
ynew should be described by a normal distribution around the straight line, with standard
deviation σ. This still isn’t quite right though, because we’d need to know the true values
of the parameters to actually do it.

In general, Bayesian prediction works like so. With parameters θ and data x, we can
predict “new data” x′ by calculating the “posterior predictive distribution” which is just
the probability distribution for x′ given x:

p(x′|x) =

∫
p(θ, x′|x) dθ (10.13)

=

∫
p(θ|x)p(x′|x, θ) dθ (10.14)

We first saw this in Section 4.2. The first term inside the integral is the posterior,
and therefore the whole integral is an expectation value, with respect to the posterior
distribution. The second term is the probability distribution for x′ given the parameters,
i.e. imagining that we knew the parameters.

This equation is telling us to imagine that we know the true parameter values, make a
prediction (in terms of a probability distribution), repeat this for all possible parameter
values and then average together all the probability distributions into one “final” distribu-
tion. In the averaging process we should give more weight to the probability distributions
that were based on plausible values of θ.
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Thankfully, actually doing this is much easier than it sounds, thanks to MCMC. Remarkably,
we can accomplish all this, and obtain our probability distribution for ynew, by adding just
a single line to the JAGS model:

y_new ~ dnorm(beta0 + beta1*90, 1/sigma^2)

Of course, to look at the posterior samples for y new, you’ll need to monitor it. The
samples of y new will be drawn from the posterior predictive distribution for the new data.
Internally, JAGS will simulate a new value of y new at every iteration, from the specified
distribution, and using its current estimates of the parameters. Since the parameters are
not fixed, but explore the posterior distribution, the distribution of y new values will take
into account all of the uncertainty we have about the parameter values.

As a general rule for predicting new data in JAGS, the extra line(s) you’ll add to the
JAGS model will usually resemble the likelihood, but the variable will have a different
name. The results for the road data prediction are shown in Figure 10.4.
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Mean = 308.30, SD = 58.40

Figure 10.4: Samples from the posterior predictive distribution, answering the question
“what do we know about y at x = 90?”. Summaries are shown in the title. If we simply
assumed the best fit line was true and applied a point estimate of σ to get our uncertainty,
we would have obtained a prediction of 306.07± 49.76.

10.7 Simple Linear Regression With Outliers

One complication that is common in linear regression (or other model-fitting) problems is
the existence of outliers. These are points that do not fit in with the general trend assumed
by the model. Many methods exist for deciding how to “detect” and “remove” outliers.
From a Bayesian point of view, there is not a one-size-fits-all approach to outliers. If you
really believe in your model assumptions, an “outlier” might be your most important data
point. If you aren’t really sure of your model assumptions and are just using a convenient
default model, then your results may be misleading. In lectures and labs we will study
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an extension to the simple linear regression model that allows for outliers by using a
heavier-tailed sampling distribution, the Student-t distribution.

10.8 Multiple Linear Regression and Logistic Regres-

sion

We will study an example of multiple linear regression, and nonlinear regression (involving
an “interaction term”) in lectures. We will not study a logistic regression explicitly, but
the special lecture on predicting sports matches is very closely related to logistic regression.
The main difference between linear regression is that the output variable can only be 0 or 1,
so the likelihood will usually involve the “Bernoulli” distribution (a Binomial distribution
with one trial).



Chapter 11

Replacements for t-tests and
ANOVA

ANOVA is a common procedure in classical statistics, and is related to the simpler idea of
a t-test. These classical tests were designed for particular kinds of problems, and in this
chapter we will study similar problems but solve them from a Bayesian point of view. We
will also use these examples to discuss some issues about the choice of prior distributions
when there are more than a few parameters. When there are only a few parameters it is
usually safe to assign a vague, wide prior to describe your initial uncertainty (unless, of
course, you have more information than that). In higher dimensions, problems can arise if
you do this. One way of getting around these problems is to use a hierarchical model.

11.1 A T-Test Example

This example is based on one given in a 1976 article by physicist E. T. Jaynes, called
“Confidence Intervals vs. Bayesian Intervals”. This is a very strongly worded paper and
might be an interesting read for those who are interested in the battle between frequentist
and Bayesian statistics when the latter was making its comeback in the second half of the
20th century. It’s also where I got the crazy confidence interval example from.

Two manufacturers, 1 and 2, both make “widgets”, and we are interested in figuring out
which manufacturer makes the best widgets (on average), as measured by their lifetime. To
determine this, we obtain 9 widgets from manufacturer 1 and 4 widgets from manufacturer
2, and measure their lifetimes, in days. The results are given below:

x1 = {41.26, 35.81, 36.01, 43.59, 37.50, 52.70, 42.43, 32.52, 56.20} (11.1)

x2 = {54.97, 47.07, 57.12, 40.84} (11.2)

These measurements can be summarised by the means and standard deviations, which are
42± 7.48 for group 1 and 50± 6.48 for group 2. The question is: given this data, is there
evidence that one of the manufacturers is better than the other, and if so, by how much?
In classical statistics the standard procedure for this situation would be a two sample
t0-test. However, before we do anything I’d like you to consider the numbers and use your
intuition: what do you think about what the evidence says?

77
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An underlying assumption of a classical t-test is that the data are normally distributed
around the mean values for each group1. We may as well adopt this assumption for our
Bayesian model. If we call the group 1 data points {x11, x12, ..., x1N1

} and the group 2 data
points {x21, x22, ..., x2N1

}, then the likelihood is:

x1i ∼ N
(
µ1, σ

2
)

x2i ∼ N
(
µ2, σ

2
)

(11.3)

Where all the data points are independent given the parameters. Note the assumption
that the two groups have the same underlying (“population”) standard deviation σ. This
is a popular assumption in this kind of analysis but it is not necessarily well justified! We
will build our Bayesian models using this assumption, but it is not that difficult to relax it
if you want to. You could just include multiple σ parameters in the model, just like how
we will include the multiple µ parameters.

Instead of just one model for this situation, we will study three different versions. Each
model will have the same likelihood as given above in Equation 11.3, and the same prior
for σ. However, the models will all have different priors for µ1 and µ2. We will be able to
see that the choice of prior does influence the results (of course), but in ways that make
sense. Which of these models is more appropriate in a practical situation would depend
on the exact situation. There is no “one size fits all” model.

11.1.1 Likelihood

To implement our model in JAGS, we can begin by specifying the likelihood part like so:

# Sampling distribution/likelihood

for(i in 1:N1)

{

x1[i] ~ dnorm(mu1, 1/sigma^2)

}

for(i in 1:N2)

{

x2[i] ~ dnorm(mu2, 1/sigma^2)

}

We have called our data arrays x1 and x2, and we have also assumed that the sample sizes
N1 and N2 are defined, so our data list will need to be consistent with these choices. The
parameters we will be estimating are mu1, mu2, and sigma, so we will need to specify prior
distributions for them. In the following sections, we’ll use the same prior for sigma, so we
may as well specify that now. Let’s use a log-uniform prior where σ is between e−10 and
e10.

# Prior for sigma

log_sigma ~ dunif(-10, 10)

sigma <- exp(log_sigma)

1Strictly speaking, it’s the probability distribution for the data given the parameters that is normal,
the data may or may not look normally distributed.
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11.1.2 Prior 1: Very Vague

The last missing ingredients to finish the JAGS model are the priors for mu1 and mu2. For
our first model, let’s be really naive and assign super-wide uniform priors.

# Prior 1: Very Vague

mu1 ~ dnorm(0, 1/1000^2)

mu2 ~ dnorm(0, 1/1000^2)

At first glance, this might seem like a fairly reasonable thing to do. In many problems, it
doesn’t make much difference if we just use vague priors and get on with the calculation
(as opposed to thinking really hard about the prior, and what is actually known about the
parameters).

However, this prior has a number of properties that suggest it might not be quite right:
firstly, what is the probability that µ1 = µ2? In classical t-tests, the whole point is to test
the hypothesis that the two “population means” (parameters) are equal. However, our
prior actually implies that the probability they are equal is 0! Therefore, no matter what
data we get, the posterior probability of µ1 = µ2 will always be zero.

11.1.3 Prior 2: They might be equal!

The problem with Prior 1 is that we may think µ1 might exactly equal µ2, and Prior 1
doesn’t allow for this. So here’s another way we might set up the prior. We’ll start by
defining the prior for µ1 as we did before. Then, when we consider µ2, we need a way of
giving it a 50% probability of equalling µ1, and if not, then it should have a “bi-exponential”
distribution centered around µ1. Here is our solution. Read it carefully and make sure
you understand what this prior does.

# First mean

mu1 ~ dnorm(0, 1/1000^2)

# Prior for difference, mu2 - mu1

u ~ dunif(-1, 1)

# Length of exponential prior given difference != 0

L <- 5

size_of_difference <- step(u)*(-L*log(1 - u))

# To make the difference positive or negative

C ~ dbin(0.5, 1)

difference <- (2*C - 1)*size_of_difference

# Second mean

mu2 <- mu1 + difference
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11.1.4 Prior 3: Alright, they’re not equal, but they might be
close

Prior 2 is also a little bit strange, if you think about it. If we’re comparing these two
manufacturers of widgets, why would we think it is possible that the two manufacturers are
exactly equal? Maybe we just think the parameters µ1 and µ2 are likely to be similar in
value. In other words, we shouldn’t worry so much about the prior probablity of µ1 = µ2,
but we should at least make sure there’s a moderate prior probability that µ1 ≈ µ2.

One way we could do this is by applying a normal prior to both µ1 and µ2 with some mean
(let’s call it the “grand mean”) and some standard deviation (let’s call it the “diversity”).
That way, µ1 and µ2 would both be likely to be somewhere around the grand mean, and
they would likely be different by roughly the size of the diversity. The challenge now seems
to be the choice of appropriate values for the grand mean and the diversity. Fortunately,
we don’t actually have to! What we can do instead is apply priors for them instead.

This is our first example of a hierarchical model. In a hierarchical model, instead of directly
assigning priors to our parameters, we imagine that we knew the values of some other
parameters (called “hyperparameters”), and assign our prior for the parameters given the
hyperparameters. Then we assign a prior for they hyperparameters as well, to complete
the model.

# Hierarchical prior for the means

# Hyperparameters

grand_mean ~ dnorm(0, 1/1000^2)

log_diversity ~ dunif(-10, 10)

diversity <- exp(log_diversity)

# Prior for the parameters given the hyperparameters

mu1 ~ dnorm(grand_mean, 1/diversity^2)

mu2 ~ dnorm(grand_mean, 1/diversity^2)

Samples (obtained using JAGS) of the three priors are shown in Figure 11.1.

The posteriors are shown in Figure 11.2. The inferences are different, as you would expect,
and that’s entirely down to the choice of the prior. Any summaries we make will therefore
depend on which prior we want to use.

The original question was whether manufacturer two was better, equal, or worse than
manufacturer one. We can answer that question by calculating the posterior probabilities
of µ1 = µ2, µ1 < µ2, and µ1 > µ2. The results are shown in Table 11.1.

Remember that Prior 1 did not assign any probability to the possibility of the two
parameters being equal. Therefore, no possible evidence can increase make the posterior
probability nonzero. However, according to this model, there is quite strong evidence that
µ1 < µ2, as the probability changed from 0.5 to 0.946.

Prior 2 did allow the two parameters to be equal, and if we use Prior 2, we seem to have
found very weak evidence that they are not in fact equal. The probability decreased from
0.5 to 0.424. According to Prior 2, if µ1 6= µ2, then µ1 < µ2 is the next most likely scenario.
However, Prior 2 has an issue associated with it. Our prior says that if µ2 is not equal to
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Figure 11.1: The three different priors we are trying for our Bayesian equivalent of a
t-test. The first prior simply asserts a large amount of prior ignorance about the value of
the two parameters µ1 and µ2. The second is similar but applies 50% probability to the
proposition µ1 = µ2. The third prior does not allow the two parameters to be exactly equal,
but enhances the probability that they are quite similar in value.
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Figure 11.2: The posterior distributions, given the widget data, based on the three different
priors for µ1 and µ2.

µ1, then it is likely to be close to µ1. Exactly how close we expect it to be is set by the
variable L in the model. If we were to make L very large, then the data would go from
weak evidence against µ1 = µ2 to strong evidence for it! Why does this happen? Well, if
we increased L, the prior probability that µ2 and µ1 are close given that they’re different
is decreased. Then, the hypothesis that the µs are different does not predict our data as
well, since our data looks like the µs are close together. Since it doesn’t predict the data
as well as before, its posterior probability will be lower. Some people think this sensitivity
to the prior is a danger of Bayesian inference (if you want, you can do a web search for
the “Jeffreys-Lindley paradox”), but it is behaving logically: the wider we make the prior,
the lower we make the prior probability that µ1 and µ2 are close but not equal, giving the
model no choice but to believe that they’re equal. If the results are sensitive to the prior,
that’s important, and you should think about the logic of the problem to understand why.

Prior 3 seems like it’s what we might want in general. It’s often silly to think two
parameters might be exactly equal. What we really think is that there is a difference, and
it might be very small, or moderate or large.
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Prior Probabilities:

Prior µ1 < µ2 µ1 = µ2 µ1 > µ2

1 0.5 0 0.5
2 0.25 0.5 0.25
3 0.5 0 0.5

Posterior Probabilities:

Prior µ1 < µ2 µ1 = µ2 µ1 > µ2

1 0.945 0 0.055
2 0.491 0.430 0.079
3 0.629 0 0.372

Table 11.1: Prior and posterior probabilities for three different hypotheses about the two
manufacturers, based on the models with the three different priors. As you can see, the
conclusions are quite sensitive to the choice of prior in this case.

11.2 One Way Anova

One-way ANOVA can be considered as a generalisation of a t-test to more than two groups.
The question is usually phrased as a test of the hypothesis that the group means are the
same, versus the alternative that there is some difference. As we saw in the Bayesian
“t-test”, it is possible (using clever tricks) to make a model that has some prior probability
that the group means are equal. However, this gets more tricky with multiple groups.
Therefore we will build our one-way ANOVA model in a similar way to the “hierarchical
model” version of the t-test model. There will be one other major difference, but it is a
difference in the way the model is coded, not a conceptual difference.

In the t-test section our data set was composed of measurements in two groups and
our data list contained two vectors of measurements, called x1 and x2. The sampling
distribution/likelihood part of our JAGS model also needed two for loops, one for each
group. If we have many groups (in the following example we will have four), it can
get awkward having to write all those loops. Therefore, when we develop our “one-way
ANOVA” model, we will format the data differently by putting all measurements into a
single vector x. To make this work, we’ll need an extra vector in the dataset, which tells
us which group each data point belongs to.

We’ll use an example dataset on the masses of starlings (a type of bird). The masses
of some starlings were measured at four locations. We are interested in the differences
between the locations. How similar are they in terms of the average weight of starlings?
Are they basically the same, radically different, or something in between? A boxplot of
the data is shown in Figure 11.3, which seems to show substantial differences between
the locations. However, only ten starlings were measured at each location, so we can’t be
absolutely sure of this, and our goal is to investigate how sure we should be.

To solve this problem in a Bayesian way, we will treat it as a parameter estimation problem
with four µ parameters, one for each of the locations. We will also need at least one
parameter describing the standard deviation of the starling masses at each location. For
convenience we’ll assume that’s the same across all locations, but it is straightforward to
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relax this assumption later.
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Figure 11.3: The masses of starlings as measured at four different locations. It seems as
though the mean mass varies somewhat according to the location, and our results will tell
us how plausible this is.

11.2.1 Hierarchical Model

Our “one-way ANOVA” model is very much the same as our final “t-test” model, except
for the format of the dataset. The main advantage of this model is that it generalises to
more than two groups in a very straightforward way; we no longer need to write separate
for loops for each group. As with the third “t-test” model, we are not seriously considering
the hypothesis that all of the group means (i.e. the µ parameters) are exactly equal, but
we are allowing them to be quite close together, or quite distinct in value, by using the
hierarchical model structure with the diversity parameter.

model

{

# Log-uniform prior for the scatter

log_sigma ~ dunif(-10, 10)

sigma <- exp(log_sigma)

# Hierarchical prior for the means

# Hyperparameters

grand_mean ~ dnorm(0, 1/1000^2)

log_diversity ~ dunif(-10, 10)

diversity <- exp(log_diversity)

# Parameters

for(i in 1:N)
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{

mu[i] ~ dnorm(grand_mean, 1/diversity^2)

}

# Sampling distribution/likelihood

for(i in 1:N)

{

x[i] ~ dnorm(mu[group[i]], 1/sigma^2)

}

}

After running this model on the starling data, we can plot any results we wish. In
Figure 11.4, I have plotted a trace plot of µ1, the parameter for the mean weight of
starlings at location 1. This is a healthy trace plot, although there is a strange feature near
iteration 1000 which we will discuss in the next section. Figure 11.5 shows the posterior
distribution for the log diversity hyperparameter, which quantifies how different the
groups really are. Our prior for this parameter was U(-10, 10), and the posterior peaks
at around 1.5, which corresponds to diversity ≈ 4.5, although there is a fair bit of
uncertainty. Notice also the long tail of the posterior on the left hand side. Although
we never allowed the µs to be exactly the same, we did allow them to be close (and this
corresponds to the diversity being low). The fact that some posterior samples landed
between -10 and 0 suggests there is a small probability that the differences between groups
are very small, despite the fact that the data doesn’t look that way.
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Figure 11.4: A trace plot of µ1 from a JAGS run on the starling data. Things appear to be
mixing well, except for an odd feature near iteration 1000.

As usual, we can use our posterior samples to calculate the posterior probability of any
hypothesis that we can think of based on the parameters. Here are a couple of interesting
examples:
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Figure 11.5: The posterior distribution for log diversity.

# Is mu2 really greater than mu3?

> mean(results$mu[,2] > results$mu[,3])

[1] 0.672

# Is the diversity really less than 1 (log diversity less than 0)?

> mean(results$diversity < 0)

[1] 0.0272

11.2.2 MCMC Efficiency

The hierarchical “one-way ANOVA” model given above works, but a quick look at the
trace plot suggests the mixing (how easily the MCMC algorithm is able to move around)
did have some difficulties (see Figure 11.4). In this particular example the problem wasn’t
fatal, but this problem could be more severe with a different data set. In some models, it
makes sense to consider the parameterisation of the model. There are actually different
ways to implement exactly the same model assumptions, but in a way that helps the
efficiency of the MCMC sampling. This is done by changing which parameters are defined
by “~” and which are defined by “<-”, in a way that keeps the meaning of the model
intact, but forces JAGS to do the exploration differently.

Let’s look at a small subset of the above model: just the hierarchical prior for the µs. Here
it is:

# Hierarchical prior for the means

# Hyperparameters

grand_mean ~ dnorm(0, 1/1000^2)

log_diversity ~ dunif(-10, 10)
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diversity <- exp(log_diversity)

# Parameters

for(i in 1:N)

{

mu[i] ~ dnorm(grand_mean, 1/diversity^2)

}

To understand why this causes problems, we need to understand a little about how JAGS
works internally. JAGS uses two main MCMC methods, known as Gibbs Sampling and
Slice Sampling. Both of these methods usually work by updating a single parameter or
hyperparameter at a time, while keeping all of the others fixed. Because JAGS is sampling
the posterior, each parameter will tend to move about as far as it can without the new
value becoming inconsistent with the data or the (joint) prior distribution. But the above
model doesn’t just have problems exploring the posterior efficiently, but would also have
problems exploring the prior!

For example, if the current values of grand mean and diversity are 50 and 5, and JAGS
is moving the parameter mu[3], it will probably move it to somewhere within the range 50
± 5, roughly speaking, since the prior for mu[3] given grand mean=50 and diversity=5
is Normal(50, 52). But another possibility that is (speaking loosely again) compatible with
the prior is to have grand mean=-1500, diversity=10000, and mu[3]=5600. How would
the sampler move from having mu[3]=5 to having mu[3]=5600? It certainly couldn’t do
this while diversity was still 5. Somehow, diversity would have to be much greater
than 5. Yet when the sampler tries to increase the value of diversity, it won’t be able to
move very far, because that would make it inconsistent with the values of the other mu

parameters!

Many MCMC methods (and importantly for us, the ones used by JAGS) are inefficient
when the posterior distribution has strong dependence between different parameters.
Unfortunately, in our one-way ANOVA model, it’s not just the posterior that has strong
dependence, but even the prior has strong dependence!

11.2.3 An Alternative Parameterisation

We will now look at an alternative way of implementing the hierarchical model, that entails
exactly the same assumptions (the same prior distributions and sampling distribution),
yet has computational advantages. The alternative parameterisation is given below.

# Hierarchical prior for the means

# Hyperparameters

grand_mean ~ dnorm(0, 1/1000^2)

log_diversity ~ dunif(-10, 10)

diversity <- exp(log_diversity)

# Parameters

for(i in 1:N)

{

n[i] ~ dnorm(0, 1)
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mu[i] <- grand_mean + diversity*n[i]

}

The only difference between this implementation and the original is the part within the
loop. Instead of defining the prior for the µs directly, we have defined different parameters
called n, with standard normal priors. We then compute the mus deterministically from
the ns. In this alternative parameterisation, the prior for the ns is completely independent
of grand mean and diversity, so sampling from the prior would be extremely efficient,
yet the implied prior for the mus is exactly the same as before. Of course, the posterior
(what we actually want to sample) will still probably have dependence, but hopefully less.

Running this new version of the model on the starling data gives the trace plot in
Figure 11.6, which doesn’t have any strange features.
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Figure 11.6: A trace plot of the parameter µ1 using the revised model.
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Appendix A

R Background

This chapter describes the R programming techniques that we will need in order to do
Bayesian statistics both within R and also by using JAGS.

A.1 Vectors

We will use vectors frequently throughout the course. A vector can be thought of as a
list of numbers. In R, you can create a vector using the function c, which stands for
“concatenate”.

my_vector = c(12.4, -6.2, 4.04)

You can then examine the contents of the vector by typing its name.

> my_vector

[1] 12.40 -6.20 4.04

There are various helpful things you can do with vectors. You can get the length of a
vector (the number of elements in it) like so:

> length(my_vector)

[1] 3

You can do arithmetic with vectors too, if they’re the same length. For example:

> c(1,2,3)*c(2,5,3)

[1] 2 10 9

If you wanted, you could assign the output to a new variable:

> x = c(1,2,3)

> y = c(2,5,3)

> z = x*y

> z

[1] 2 10 9

It is important to understand how to access subsets (or “slices”) of vectors based on which
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elements satisfy a certain condition. Here is an example:

> x = c(1, 2, 3, 0, 10)

> test = x > 3

> test

[1] FALSE FALSE FALSE FALSE TRUE

> y = x[x <= 2]

> y

[1] 1 2 0

> z = sum(x[x <= 2])

> z

[1] 3

This kind of thing will be used frequently in the computational parts of the course.

A.2 Lists

Lists are a bit like vectors, in that they can contain a lot of information in a single variable.
But instead of just being numbers, lists can contain all sorts of things. For example,
suppose I want a variable/object in an R program to represent a person. A person can
have a name and an age. Here is how to make a list:

a_person = list(name="Nicole", age=21)

If you needed to extract certain elements from a list, you can do it using the $ operator in
R. For example suppose I wanted to extract the name variable from within a person. I
could do this:

> a_person$name

[1] "Nicole"

and voila. When we use JAGS, a data set will be represented using a list. So will our
JAGS output.

If you have ever learned C, C++, or Matlab, a list in R is basically the same thing as
a “struct” in these languages. If you have learned C++, Java, or Python, a list is like a
“class” but with just variables and no functions. In Python, “dictionaries” are also very
similar to R lists.

A.3 Functions

In this course you’ll need to be able to read and understand simple R functions, and
perhaps write a few. A function is like a machine that takes an input, does something, and
returns an output. You have probably used many built-in R functions already, like sum().

# Defining a function called my_function

my_function = function(x)

{
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# Do some stuff

result = 3*x + 0.5

return(result)

}

A.4 For Loops

For loops are mostly used to repeat an action many times. Here is an example.

N = 100

for(i in 1:N)

{

print(i)

}

A.5 Useful Probability Distributions

Since R is a statistics program, it knows about a lot of probability distributions already.
So, if I wanted to use the probability density function of a normal distribution, instead of
having to code something like this:

f = exp(-0.5*((x - mu)/sigma)**2)/(sigma*sqrt(2*pi))

I can just use the built-in function dnorm.

f = dnorm(x, mean=mu, sd=sigma)

Much easier! If, instead of wanting to evaluate the PDF, I wanted to generate random
samples from a normal distribution, I could use rnorm.

# Generate 1000 samples

samples = rnorm(1000, mean=50., sd=10.)
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Probability

This course will use probability theory quite a lot, but we will often use a fairly informal
notation. Bayesian statistics is really just probability theory used for a particular purpose,
to describe uncertainty. The two most important rules of probability are given below, for
reference.

A.1 The Product Rule

The first important rule of probability is the product rule. This tells us how to calculate
the probability that any two propositions or hypotheses, A and B, are both true. The
probability of A and B, will be denoted P (A,B). This can be calculated by first finding
the probability that A is true, and then multiplying by the probability that B is true given
that A is true.

P (A,B) = P (A)P (B|A) (A.1)

We could also have done this the other way around: first finding the probability that B is
true and then the probability that A is true given that B is true:

P (A,B) = P (B)P (A|B). (A.2)

When using the product rule (or any rule of probability, for that matter), you must ensure
that the statements to the right of the “given” sign (or the absence of any statements) are
consistent throughout. For example, P (A,B|C) = P (A|C)P (B|A,C) is a valid use of the
product rule, since “given C” is part of the background information in all of the terms.

You may be familiar with the idea of a tree diagram from earlier statistics courses or maybe
even high school. A tree diagram is a helpful way to work with the product rule. If you
find tree diagrams helpful, feel free to use them, although tree diagrams themselves will
not be examinable. An example tree diagram is given in Figure A.1.

The product rule can also be applied to more than two propositions, like so:

P (A,B,C) = P (A)P (B|A)P (C|B,A). (A.3)
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Figure A.1: A tree diagram.

You can also apply the product rule in a situation where there is a common statement in
the “given part” of all probabilities in the expression. For example, the following is also
valid:

P (A,B,C|D) = P (A|D)P (B|A,D)P (C|B,A,D). (A.4)

In fact, it’s best to regard even “unconditional” probabilities such as P (A) as being
conditional on some prior information I, which is just left out to keep the notation simple.

A.1.1 Bayes’ Rule

Looking at Equations A.1 and A.2, they are both equations for the same thing, P (A,B).
Therefore we can equate the right hand sides. Doing this gives a result known as Bayes’
rule:

P (A|B) =
P (A)P (B|A)

P (B)
. (A.5)

Bayes’ rule will be used extensively throughout this course. You will need to know it and
know how to use it!

A.2 The Sum Rule

The sum rule is the second important rule of probability. A general statement of the sum
rule is

P (A ∨B) = P (A) + P (B)− P (A,B). (A.6)

where ∨ means logical or.

The sum rule is often used to calculate the probability of some statement A when we only
know the probability of A conditional on some some other statement B. Then we can use
the sum rule like this:

P (A) = P (A,B) + P (A,¬B) (A.7)

= P (B)P (A|B) + P (¬B)P (A|¬B). (A.8)
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where the ¬ symbol means “not”, i.e. ¬B is the statement that B is false. To understand
this formula, imagine we want to know the probability of A. There are two mutually
exclusive ways that could happen: via B being true, or via B being false. The first way
has probability P (B)P (A|B), and the second way has probability P (¬B)P (A|¬B).

If, instead of just two mutually exclusive and exhaustive pathways B and ¬B, there are
many, such as B1, ..., Bn. Then the sum rule takes the form

P (A) =
n∑
i=1

P (Bi)P (A|Bi). (A.9)

As an exercise, you can try proving this version of the sum rule starting from the simpler
version of Equation A.6.

In Bayesian statistics the sum rule is most often used to calculate the marginal likelihood
P (D), and to marginalise out “nuisance parameters” from the posterior distribution. In
STATS 331 we will mostly use MCMC to do the latter.

A.3 Random Variables

Throughout this course I will use the term “probability distribution” to refer to both
the probability mass function for a discrete random variable, and the probability density
function for a continuous random variable. I will also use a common shorthand notation.

A.3.1 Discrete Random Variables

We will also see quite a lot of random variables in this course (although without using
that terminology very much, as I consider the word “random” to be worse than useless).
A discrete random variable is just a quantity X that has a countable number of possible
values. A discrete random variable has a probability mass function that tells you the
probability as a function of the possible values x. For example, the equation for the Poisson
distribution (a useful discrete distribution) is:

P (X = x) =
λxe−λ

x!
(A.10)

for x ∈ {0, 1, 2, 3, ...}. The actual random variable is named X, and x is just used so we
can write the probabilities (P (X = 0), P (X = 1), ...) as a formula.

A.3.2 Continuous Random Variables

Continuous random variables are those where the set of possibilities is continuous. For
example, with a normal distribution, technically any real value is possible. Therefore
it doesn’t make sense to ask, for example, the probability that X = 1.32. The answer
is zero because the total probability of 1 has to be spread among an infinite number of
possibilities. Instead, we can ask the probability that X is in some region that has a
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nonzero size. In general, if X has a probability density function f(x), then the probability
that X ∈ [a, b] is:

P (a ≤ X ≤ b) =

∫ b

a

f(x) dx. (A.11)

Note the lower case x in the probability density function. This is analogous to the lower
case x in the probability mass function of a discrete random variable. Note that I won’t
often get you to do an integral analytically. One of the major reasons why MCMC is so
awesome is that you can get away without having to do hard integrals!

A.3.3 Shorthand Notation

The notation of random variables can be cumbersome. For example, consider inferring a
(discrete) parameter Y from (discrete) data X. Bayes’ rule gives us:

P (Y = y|X = x) =
P (Y = y)P (X = x|Y = y)

P (X = x)
. (A.12)

That’s very verbose, so instead we use the shorthand:

p(y|x) =
p(y)p(x|y)

p(x)
. (A.13)

In this notation we don’t distinguish between the symbol for the random variable and
the dummy variables that allow us to write the probability distribution as a formula, we
just use the lower case for everything. Despite this simplification, everything still works.
Just read p(y|x) as “the probability distribution for y given x” and everything will be fine.
Astute readers may have noticed that when I gave the Poisson formula (Equation A.10),
“given λ” was implicit throughout.

To be clear when we are talking about a simple probability and when we are talking about
the probability distribution for a variable, I will use upper case P for the former and
lower-case p for the latter.

A.4 Useful Probability Distributions

In the course we will study Bayesian models which involve the following discrete proba-
bility distributions: general (all probabilities given explicitly, such as in a Bayes’ Box),
binomial, Poisson, discrete uniform, negative binomial, multinomial. We may also use the
following continuous distributions: uniform, normal, Cauchy, student-t, beta, log-uniform,
exponential, gamma, Dirichlet.

Wikipedia is an excellent resource for looking up all the properties of these distributions,
but I will also give various properties (e.g. the mean of a beta distribution) and describe
the distributions when we need them.
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Rosetta Stone

Bayesian statistics has a lot of terminology floating around, and sometimes different
communities use different terms for the same concept. This appendix lists various common
terms that are basically synonymous (they mean the same thing). I may even throw in
the different terms from time to time, intentionally or unintentionally!

Event, Hypothesis, Proposition, Statement

These are all basically the same thing. A proposition is something that can be either true
or false, such as “my age is greater than 35” or “the number of Aardvarks in my room
is either zero or one”. These are the things that go in our probability statements: If we
write P (A|B), A and B are both propositions, that is, statements that may be true or
false. Event is the preferred term in classical statistics.

Sampling Distribution, Probability Model for the Data, Genera-
tive Model, Likelihood Function, Likelihood

This is the thing that we write as p(x|θ). Sometimes it is called the sampling distribution
or a generative model because you can sometimes think of the data as having been “drawn
from” p(x|θ) but using the true value of θ, which you don’t actually know. There is a
subtlety here, and that is that the word likelihood can be used to mean either p(x|θ)
before x is known (in which case it is the thing you would use to predict possible data) or
after x is known. In the latter case p(x|θ) is only a function of θ because x is fixed at the
observed value. The term likelihood function is often used at this point.

Probability Distribution

The term probability distribution is used to refer to either a probability density function
(in the continuous case) or a probability mass function (in the discrete case). The latter
gives the probability of each particular value, whereas the former only gives a probability
if you integrate it within some region.
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Marginal Likelihood, Evidence, Prior Predictive Probability, Nor-
malising Constant

This is the p(x) or P (x) term in the denominator of Bayes’ rule, and it is also the total of
the prior × likelihood column of a Bayes’ Box. This is the probability of getting the
data that you actually got, before you observed it: hence the terminology “prior predictive
probability”. It is also the thing you use to normalise the posterior distribution (make it
sum or integrate to 1), hence the term normalising constant. Marginal likelihood makes
sense because it is a probability of data (like the regular likelihood) but “marginalised”
(i.e. not caring about) the value of the parameter(s). It is also called “evidence” because
it can be used to compare different models, or to “patch together” two Bayes’ Boxes after
the fact (see the hypothesis testing chapter).


