
MySQL
David J. Scott

d.scott@auckland.ac.nz

Department of Statistics, University of Auckland

MySQL – p. 1/67

Outline

Introduction

Tutorial

Practicalities

Data types

Creating, selecting and dropping databases

Creating, altering, and dropping tables

Retrieving data

MySQL and R: the RODBC package

MySQL – p. 2/67

Resources

The MySQL website is the major resource:
http://www.mysql.com/

There is a tutorial available on the MySQL website:
http://dev.mysql.com/doc/refman/5.0/en/tutorial.html/

The tutorial is part of the MySQL manual, which for version
5.0 is:
http://dev.mysql.com/doc/refman/5.0/en/index.html

To install and run MySQL on a windows machine, there are
some instructions put together by James Curran:
www.stat.auckland.ac.nz/~dscott/782/workingwithdatabases.pdf

MySQL – p. 3/67

http://www.mysql.com/
http://dev.mysql.com/doc/refman/5.0/en/tutorial.html/
http://dev.mysql.com/doc/refman/5.0/en/index.html
www.stat.auckland.ac.nz/~dscott/782/workingwithdatabases.pdf

Introduction

MySQL – p. 4/67

What is MySQL?

It is a relational database management system
A database is a structured collection of data
A database management system is used to add, access
and process data in a database
A relational database stores data in tables

It uses SQL, Structured Query Language, to access data in a
database

It is Open Source: you can download and modify the software
There are restrictions on use of the Open Source software
A commercial version is available
MySQL is owned by for-profit company

Contributed software is available

Commonly used in web applications in conjunction with PHP

MySQL – p. 5/67

MySQL Basics

Written in C and C++

Works on many platforms, including Windows and Linux

Scalable, used on large databases: 60,000 tables, 5,000
million rows

MySQL – p. 6/67

Relational Databases

A database consists of one or more tables

Each tables is organized into rows and columns

Each row of a table is a record

Records may contain several pieces of information: each
column in a table corresponds to one of those pieces

Relational databases strengths are:
Information need only be stored one time
Data can retrieved by joining information from different
tables

MySQL – p. 7/67

Relational Databases

Suppose you have a problem with customer orders: some
goods have not arrived

You wish to contact all customers who have ordered the item

Your customer database contains two tables:
A table of customer details giving contact information,
indexed by a customer ID
A table of orders, which includes the customer ID as one
column

If the item ordered is given in the orders table, you need both
tables to prepare the information to email all customers who
have ordered that item

It would be inefficient and cause errors if the customer
addresses were stored with the orders

MySQL – p. 8/67

Client/Server Architecture

You use two programs when using MySQL:
The database server which is on the machine where the
data is stored
Client programs which connect to the database server to
modify and retrieve data

The server controls concurrency: two users cannot modify the
same record at the same time

You don’t have to be logged into the machine where the
database is located

Secure access to the database is controlled by passwords and
permissions

Besides mysql which allows access to databases, there are
programs mysqldump for backup, mysqlimport, and
msyqladmin

MySQL – p. 9/67

Tutorial

MySQL – p. 10/67

Getting Started

Need access to MySQL Server on some machine

Need the MySQL Client running on a machine you can log on
to

If you are going to create a database and its tables you need
permission to do so—it will be created on the server

If you are the MySQL administrator, you are able to do that
using a create database command

Otherwise permission is granted by the MySQL administrator
using a grant command

MySQL – p. 11/67

Getting Started

Assume that the database has already been created

To access it with the user name dscott, assuming it is located
on the machine stat71.stat.auckland.ac.nz, the command
is

mysql -u dscott -h stat71.stat.auckland.ac.nz -p

The -p means mysql prompts for your mysql password

The other options specify the user and the host

MySQL – p. 12/67

Queries

A query is typed in and ended with a semicolon (;)

mysql> select now();

+---------------------+

| now() |

+---------------------+

| 2007-10-07 22:38:28 |

+---------------------+

1 row in set (0.00 sec)

now() is a useful function, for example to find the time
between the current time and another time

Case doesn’t matter in command and function names. The
following are equivalent:

select now();

SELECT NOW();

SeLecT nOw();
MySQL – p. 13/67

Queries

mysql is an interpreted language and waits for the semi-colon
before sending the query to the server

mysql> select now(),

-> user(),

-> version()

-> ;

+---------------------+----------------+---------------------+

| now() | user() | version() |

+---------------------+----------------+---------------------+

| 2007-10-07 22:40:36 | root@localhost | 5.0.41-community-nt |

+---------------------+----------------+---------------------+

1 row in set (0.00 sec)

You can ask for more than one item by separating with a
comma

Abort a query by entering \c
MySQL – p. 14/67

Creating the Database

Example from Paul DuBois, MySQL

Database is called sampdb

Steps to create a usable database
Create or initialize the database
Create tables which comprise the database
Insert data into tables

Using the database involves querying the database, modifying
entries, inserting new data, deleting data etc

MySQL – p. 15/67

Creating the Database

Create a new database from within mysql:

mysql> create database sampdb;

Or from the command line

[dscott@stat12 dscott]> mysql sampdb

Select and show the current database with the commands

mysql> use sampdb;

Database changed

mysql> select database();

+------------+

| database() |

+------------+

| sampdb |

+------------+

1 row in set (0.00 sec)

MySQL – p. 16/67

US Historical League

Example from Paul DuBois, MySQL

An historical society
Information on US presidents: a president table
Information on society member: a member table

MySQL – p. 17/67

The president Table

Contains the data
Name given by first_name (including middle name if
available), last_name and suffix (such as Jr.)
Birthplace given by city and state

Birth and death dates given by birth and death, with
death taking the value null if still alive

MySQL – p. 18/67

The member Table

Name as for the president table

Member ID as member_id

Date membership expires as expiration

Email address as email

Postal address with columns street, city, stat, and zip

Phone number as phone

Special interest keyword as interest

MySQL – p. 19/67

Creating Tables

The template for this command is

create table tablename (columnspecs)

To create the president table:

create table president

(

last_name varchar(15) not null,

first_name varcar(15) not null,

suffix varchar(5) null,

city varchar(20) not null,

state varchar(2) not null,

birth date not null,

death date null

);

Column specifications are the name, the type of data, and
possibly some column attributes

MySQL – p. 20/67

The president Table

Two data types used, varchar and date

varchar(n) means the column contains variable-length
character values with a maximum length of n characters

date columns must be dates in yyyy-mm-dd format

The attributes null and not null mean respectively that
values can be missing or may not be missing

The column descriptions of a table can be displayed using
describe tablename as in

mysql> describe president;

mysql> describe member;

MySQL – p. 21/67

Inserting Data

A small number of records may be inserted using the
command

insert into tablename values(value1,value2, ...)

For example:

insert into president values

(

'Bush','George', null,'New Haven','CT', '1946-07-06',null

)

Single or double quotes can be used

More than one record can be added at a time:

insert into tablename

values(value1,value2, ...),

(value1,value2, ...)

MySQL – p. 22/67

Inserting Data

Alternatively data can be read in from a file

load data local infile 'member.txt' into table member;

The default is that column values are separated by tabs, and
lines end with newlines

Values must also be in the order that the columns are stored
in the table

This can be changed:

load data local infile "~/OriginalData/FixDM_Extract.csv"

into table extract

fields terminated by ','

ignore 1 lines

(CallID, AgentName, Queue,MajorTag, TagText,

. . .

VarTariff, Consumption);

MySQL – p. 23/67

Backing Up

Creating a backup of your database or individual tables is a
very good idea

[dscott@stat12 dscott]> mysqldump sampdb > sampdb7Oct2007

[dscott@stat12 dscott]> mysqldump sampdb | gzip > sampdb7Oct2007

[dscott@stat12 dscott]> mysqldump sampdb member president > histleague.sql

Then restore tables with

[dscott@stat12 dscott]> mysql < histleague.sql

MySQL – p. 24/67

Retrieving Information

Select statement with modifications

select * from president

select birth from president where last_name = 'Eisenhower'

General form is

select what to select

from table or tables

where conditions the data must satisfy

MySQL – p. 25/67

The select Statement

select can do calculations, display text, access functions

mysql> select 2+2, 'Hello, world', version();

+-----+--------------+-----------+

| 2+2 | Hello, world | version() |

+-----+--------------+-----------+

| 4 | Hello, world | 5.0.27 |

+-----+--------------+-----------+

1 row in set (0.03 sec)

MySQL – p. 26/67

The select Statement

A standard use of select is to select from a table subject to
the record satisfying a where clause

Multiple columns being selected are separated by commas

mysql> select last_name, first_name from president

-> where last_name = 'Bush';

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Bush | George H.W. |

| Bush | George W. |

+-----------+-------------+

2 rows in set (0.00 sec)

MySQL – p. 27/67

The select Statement

Use Boolean logic to create complex conditions

Use brackets to ensure conditions are combined correctly

mysql> select last_name, first_name, birth, state from president

-> where birth <'1750-1-1' and (state='VA' or state='MA');

+------------+------------+------------+-------+

| last_name | first_name | birth | state |

+------------+------------+------------+-------+

| Washington | George | 1732-02-22 | VA |

| Adams | John | 1735-10-30 | MA |

| Jefferson | Thomas | 1743-04-13 | VA |

+------------+------------+------------+-------+

3 rows in set (0.00 sec)

MySQL – p. 28/67

The select Statement

The syntax for selecting when the value is null is different

death = null will not work

mysql> select last_name, first_name from president

-> where death is null;

+-----------+-------------+

| last_name | first_name |

+-----------+-------------+

| Ford | Gerald R |

| Carter | James E. |

| Bush | George H.W. |

| Clinton | William J. |

| Bush | George W. |

+-----------+-------------+

5 rows in set (0.00 sec)

MySQL – p. 29/67

The select Statement

Output can be sorted as ascending or descending

Default is ascending

Ordering can be done on multiple columns

mysql> select last_name, first_name, state from president

-> order by state desc, last_name asc;

+------------+---------------+-------+

| last_name | first_name | state |

+------------+---------------+-------+

| Arthur | Chester A. | VT |

| Coolidge | Calvin | VT |

.

.

.

| Clinton | William J. | AR |

+------------+---------------+-------+

42 rows in set (0.00 sec)
MySQL – p. 30/67

The select Statement

It is useful to be able to limit the number of rows selected

mysql> select last_name, first_name, birth from president

-> order by birth limit 5;

+------------+------------+------------+

| last_name | first_name | birth |

+------------+------------+------------+

| Washington | George | 1732-02-22 |

| Adams | John | 1735-10-30 |

| Jefferson | Thomas | 1743-04-13 |

| Madison | James | 1751-03-16 |

| Monroe | James | 1758-04-28 |

+------------+------------+------------+

5 rows in set (0.00 sec)

MySQL – p. 31/67

The select Statement

The concat function concatenates text items

The expression is used for the column heading

The column may be very wide

mysql> select concat(first_name,' ',last_name),

-> concat(city,' ',state)

-> from president limit 5;

+----------------------------------+------------------------+

| concat(first_name,' ',last_name) | concat(city,' ',state) |

+----------------------------------+------------------------+

| George Washington | Wakefield VA |

| John Adams | Braintree MA |

| Thomas Jefferson | Albemarle County VA |

| James Madison | Port Conway VA |

| James Monroe | Westmoreland County VA |

+----------------------------------+------------------------+

5 rows in set (0.00 sec)
MySQL – p. 32/67

The select Statement

A new column can be given a shorter and more informative
heading

mysql> select concat(first_name,' ',last_name) as name,

-> concat(city,' ',state) as birthplace

-> from president limit 5;

+-------------------+------------------------+

| name | birthplace |

+-------------------+------------------------+

| George Washington | Wakefield VA |

| John Adams | Braintree MA |

| Thomas Jefferson | Albemarle County VA |

| James Madison | Port Conway VA |

| James Monroe | Westmoreland County VA |

+-------------------+------------------------+

MySQL – p. 33/67

Dealing with Dates

It is possible to operate on dates in many ways
A table can be sorted in date order
A selection can be made of particular dates or a range of
dates
Parts of a date can be extracted, such as the year, month
or day
The difference between two dates can be calculated
A date may be computed by adding or subtracting an
interval to or from a date

MySQL – p. 34/67

Dealing with Dates

Find all presidents who died in the 1970’s

mysql> select last_name, first_name, death

-> from president

-> where death >= '1970-01-01' and death < '1980-01-01';

+-----------+------------+------------+

| last_name | first_name | death |

+-----------+------------+------------+

| Truman | Harry S | 1972-12-26 |

| Johnson | Lyndon B. | 1973-01-22 |

+-----------+------------+------------+

MySQL – p. 35/67

Dealing with Dates

You can select on the name of the month or day of the week

Alternatively month number or day of the month number can
be used

mysql> select last_name, first_name, birth

-> from president

-> where monthname(birth)='March' and dayofmonth(birth) = 29;

+-----------+------------+------------+

| last_name | first_name | birth |

+-----------+------------+------------+

| Tyler | John | 1790-03-29 |

+-----------+------------+------------+

MySQL – p. 36/67

Dates and Calculations

There are functions to deal with numerical data

Normal arithmetic operations are possible

mysql> select last_name, first_name, birth, death,

-> floor((to_days(death) - to_days(birth)/365)) as age

-> from president where death is not null

-> order by age desc limit 5;

+------------+------------+------------+------------+--------+

| last_name | first_name | birth | death | age |

+------------+------------+------------+------------+--------+

| Reagan | Ronald W. | 1911-02-06 | 2004-06-05 | 730189 |

| Nixon | Richard M | 1913-01-09 | 1994-04-22 | 726490 |

| Johnson | Lyndon B. | 1908-08-27 | 1973-01-22 | 718735 |

| Truman | Harry S | 1884-05-08 | 1972-12-26 | 718732 |

| Eisenhower | Dwight D. | 1890-10-14 | 1969-03-28 | 717356 |

+------------+------------+------------+------------+--------+

MySQL – p. 37/67

Wild Cards

% matches any sequence of characters

_ matches any single character

Selecting using wildcards uses like rather than =

mysql> select last_name, first_name from president

-> where last_name like 'W%';

+------------+------------+

| last_name | first_name |

+------------+------------+

| Washington | George |

| Wilson | Woodrow |

+------------+------------+

MySQL – p. 38/67

Summaries

Summaries including statistical summaries can be obtained
directly from MySQL

count(*) gives the number of rows selected by your query

mysql> select count(*) from president;

+----------+

| count(*) |

+----------+

| 42 |

+----------+

MySQL – p. 39/67

Summaries

count(*) counts every row

count(columnname) only counts non-null values

mysql> select count(*), count(suffix), count(death)

-> from president;

+----------+---------------+--------------+

| count(*) | count(suffix) | count(death) |

+----------+---------------+--------------+

| 42 | 1 | 37 |

+----------+---------------+--------------+

MySQL – p. 40/67

Summaries

count can be combined with distinct to count only the
number of distinct values

mysql> select count(distinct state) as 'State Count'

-> from president;

+-------------+

| State Count |

+-------------+

| 20 |

+-------------+

MySQL – p. 41/67

Summaries

count combined with group can be used to create tabulations

mysql> select state, count(*) as count from president

-> group by state order by count desc limit 5;

+-------+-------+

| state | count |

+-------+-------+

| VA | 8 |

| OH | 7 |

| NY | 4 |

| MA | 4 |

| NC | 2 |

+-------+-------+

MySQL – p. 42/67

Summaries

The obvious statistical functions are available

mysql> select state as State,

-> round(avg((to_days(death) - to_days(birth))/365.25),2)

-> as Age

-> from president where death is not null

-> group by state order by age limit 4;

+-------+-------+

| State | Age |

+-------+-------+

| KY | 56.17 |

| VT | 58.81 |

| NC | 60.10 |

| OH | 62.82 |

+-------+-------+

MySQL – p. 43/67

Summaries

Combining information from tables is very important

This example combines a table with itself

It also illustrates how to identify the correct column where the
same name appears in more than one table

mysql> select p1.last_name, p1.first_name, p1.city, p1.state

-> from president as p1, president as p2

-> where p1.city = p2.city and p1.state = p2.state

-> and (p1.last_name != p2.last_name or

-> p1.first_name != p2.first_name)

-> order by state, city, last_name;

+-----------+-------------+-----------+-------+

| last_name | first_name | city | state |

+-----------+-------------+-----------+-------+

| Adams | John | Braintree | MA |

| Adams | John Quincy | Braintree | MA |

+-----------+-------------+-----------+-------+
MySQL – p. 44/67

Practicalities

MySQL – p. 45/67

Connecting to mysql

An option file can be used to store parameters

On Unix, the file is ~/.my.cnf

The syntax of the file is:

[client]
host=serverhost
user=yourusername
password=yourmysqlpassword

This will set parameters for all client programs, such as mysql,
and mysqldump

The paragraph above could be followed by a similar paragraph
headed by[mysql] if you wanted different connection
parameters for that program

This setup allows your password to be hidden
MySQL – p. 46/67

Connecting to mysql

You could create an alias also such as

alias sampdb 'mysql -h stat71.stat.auckland.ac.nz
-u root -p *****'

where ***** is the password for MySQL

MySQL – p. 47/67

Using Scripts

You can run scripts in batch mode:

stat71/dscott1> mysql sampdb < create_presidents.sql
stat71/dscott1> mysql -t sampdb < query.sql >
outputfile

The second command outputs results in the tabular format
used when running mysql interactively

The option -t also allows the redirection of output

MySQL – p. 48/67

Using XEmacs

XEmacs will recognise a file of mysql commands if the
extension .sql is used, provided sql.el is available

Then it is possible to start mysql in a split window using
M-x sql-mysql

I can’t get submission of commands to work on Unix

I get a split window but nothing else when using Windows

MySQL – p. 49/67

Data Types

MySQL – p. 50/67

Numeric Types

Integers can be SIGNED or UNSIGNED

Various sizes, TINYINT, SMALLINT, MEDIUMINT, INT, BIGINT

Range from TINYINT with range -127 to 127 signed, or 0 to
255 unsigned, to BIGINT with range −2

63 to 2
63
− 1 signed, or

0 to 2
64
− 1 unsigned

Floating point can be FLOAT or DOUBLE

MySQL – p. 51/67

Character Types

CHAR, a fixed length character string

VARCHAR, a variable length character string

BLOB, a binary large object, different sizes possible

TEXT, a text string, different sizes possible

ENUM, an enumeration; columns may be assigned one
enumeration member

SET, a set; columns may be assigned multiple set members

MySQL – p. 52/67

Date and Time Types

DATE, a date in 'YYY-MM-DD' format

TIME, a time value in 'hh:mm:ss' format

DATETIME, a date and time value in 'YYYY-MM-DD hh:mm:ss'
format

YEAR, a year value in 'YYYY' format

MySQL – p. 53/67

Creating, Altering, Dropping

MySQL – p. 54/67

Databases

CREATE DATABASE

DROP DATABASE

USE

MySQL – p. 55/67

Tables

CREATE TABLE

DROP TABLE

CREATE INDEX

DROP INDEX

ALTER TABLE

DELETE

INSERT

LOAD DATA

UPDATE

MySQL – p. 56/67

Wine Cellar Example

MySQL – p. 57/67

Create the Table

drop table if exists cellar;

create table cellar (

WineID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

Location VARCHAR(10) NOT NULL,

Row TINYINT UNSIGNED NOT NULL,

Tile TINYINT UNSIGNED NOT NULL,

Year VARCHAR(4) NULL,

Winery VARCHAR(50) NOT NULL,

Name VARCHAR(50) NOT NULL,

Grape VARCHAR(50) NOT NULL,

Country VARCHAR(20) NOT NULL,

Type VARCHAR(20) NOT NULL,

Price VARCHAR(10) NOT NULL,

Closure VARCHAR(10) NULL,

Drink VARCHAR(50) NULL,

Composition VARCHAR(50) NULL

); MySQL – p. 58/67

Read the Data In

load data infile "c:/dscott/Teaching/782/Lectures/mySQLExamples/cellar.cs

into table cellar

fields terminated by ','

optionally enclosed by '"'

lines terminated by '\r\n'

ignore 1 lines

(Location, Row, Tile, @Year, Winery, Name, Grape,

Country, Type, @Price, Closure, Drink, Composition)

set Year = if(@Year="NV",NULL,@Year),

Price = substring(@Price,2)

;

MySQL – p. 59/67

Check the Table

Code to test this

select * from cellar order by WineID limit 10;

alter table cellar

modify Year Year;

describe cellar;

MySQL – p. 60/67

MySQL and R

MySQL – p. 61/67

Setting Up

On Windows, the software required for setting up the
connection between R and MySQL is well-described in James
Curran’s document:
www.stat.auckland.ac.nz/~dscott/782/workingwithdatabases.pdf

Note that there are a number of parts to the jigsaw
Access to MySQL Server on some machine, not
necessarily the same machine as you are using
MySQL Client, mysql on the machine you are using
MySQL Connector/ODBC
R and the package RODBC

It is also necessary to set up MySQL Connector/ODBC after it
has been installed

MySQL – p. 62/67

www.stat.auckland.ac.nz/~dscott/782/workingwithdatabases.pdf

Setting Up on Unix

On Unix MySQL Server, MySQL Client, R and the package
RODBC are required again

ODBC is primarily Windows software, but there are Unix
versions

An ODBC driver manager needs to be installed

This is a specialized task, an experienced administrator is
probably required

A description of how to do this is given by Brian Ripley in the
README file which comes as part of the package RODBC

Note that there are other connection possibilities—there is a
package RMySQL for example

MySQL – p. 63/67

Setting Up in R

Connection should then be easy

library(RODBC)

channel <- odbcConnect("stats782", uid = "root", pwd = "secret")

Retrieve the first record of the table and check it

query <- "SELECT *

FROM cellar

LIMIT 1"

queryResult <- sqlQuery(channel, query)

str(queryResult)

The query returns a data frame

Note that character strings are treated as factors, just as in
using read.table

MySQL – p. 64/67

Queries Using R

> str(queryResult)

'data.frame': 1 obs. of 14 variables:

$ WineID : int 1

$ Location : Factor w/ 1 level "Box": 1

$ Row : int 1

$ Tile : int 1

$ Year : int 2004

$ Winery : Factor w/ 1 level "Te Mata": 1

$ Name : Factor w/ 1 level "Awatea": 1

$ Grape : Factor w/ 1 level "CS/Merlot/CF/PV": 1

$ Country : Factor w/ 1 level "NZ": 1

$ Type : Factor w/ 1 level "Red": 1

$ Price : num 29.9

$ Closure : Factor w/ 1 level "Cork": 1

$ Drink : logi NA

$ Composition: Factor w/ 1 level "34%,33%,20%,13%": 1
MySQL – p. 65/67

More Sophisticated Queries

Create a table using MySQL

> query <- "SELECT Name, Type, AVG(Price) AS AveragePrice

+ FROM cellar

+ WHERE Winery ='Te Mata'

+ GROUP BY Name ORDER BY AveragePrice DESC"

> queryResult <- sqlQuery(channel, query)

> queryResult

Name Type AveragePrice

1 Coleraine Red 55.01944

2 Bullnose Red 35.92500

3 Elston White 31.16714

4 Awatea Red 29.55809

5 Cape Crest White 24.29400

6 Woodthorpe Red 17.70000

MySQL – p. 66/67

More Sophisticated Queries

Read the data into R, create the table in R

> query <- "SELECT Name, Type, Price

+ FROM cellar

+ WHERE Winery ='Te Mata'"

> TeMata <- queryResult[order(queryResult$Name,queryResult$Type),]

> AveragePrice <- tapply(TeMata$Price,TeMata$Name,mean)

> WineType <- unique(TeMata[,1:2])

> data.frame(WineType,AveragePrice=as.numeric(AveragePrice))

Name Type AveragePrice

1 Awatea Red 29.55809

51 Bullnose Red 35.92500

148 Cape Crest White 24.29400

13 Coleraine Red 55.01944

141 Elston White 31.16714

49 Woodthorpe Red 17.70000

MySQL – p. 67/67

	Outline
	Resources
	Introduction
	What is MySQL?
	MySQL Basics
	Relational Databases
	Relational Databases
	Client/Server Architecture
	Tutorial
	Getting Started
	Getting Started
	Queries
	Queries
	Creating the Database
	Creating the Database
	US Historical League
	The 	exttt {president} Table
	The 	exttt {member} Table
	Creating Tables
	The 	exttt {president} Table
	Inserting Data
	Inserting Data
	Backing Up
	Retrieving Information
	The 	exttt {select} Statement
	The 	exttt {select} Statement
	The 	exttt {select} Statement
	The 	exttt {select} Statement
	The 	exttt {select} Statement
	The 	exttt {select} Statement
	The 	exttt {select} Statement
	The 	exttt {select} Statement
	Dealing with Dates
	Dealing with Dates
	Dealing with Dates
	Dates and Calculations
	Wild Cards
	Summaries
	Summaries
	Summaries
	Summaries
	Summaries
	Summaries
	Practicalities
	Connecting to 	exttt {mysql}
	Connecting to 	exttt {mysql}
	Using Scripts
	Using XEmacs
	Data Types
	Numeric Types
	Character Types
	Date and Time Types
	Creating, Altering, Dropping
	Databases
	Tables
	Wine Cellar Example
	Create the Table
	Read the Data In
	Check the Table
	MySQL and RR {}
	Setting Up
	Setting Up on Unix
	Setting Up in RR {}
	Queries Using RR {}
	More Sophisticated Queries
	More Sophisticated Queries

