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1. INTRODUCTION

Trellis displays are plots which contain one or more panels, arranged in a regular grid-like
structure (atrellis). Each panel graphs a subset of the data. All panelsin aTrellis display contain
the same type of graph but these graphs are general enough to encompass a wide variety of 2-D
and 3-D displays: histogram, scatter plot, dot plot, contour plot, wireframe, 3-D point cloud and
more. The data subsets are chosen in a regular manner, conditioning on continuous or discrete
variables in the data, thus providing a coordinated series of views of high-dimensional data.

This document leads you through Trellis graphics: it shows the functions in the Trellis
library, it describes the common arguments that the functions share, and shows how Trellis dis-
plays are customized for various graphical devices. Other information is available about Trellis,
including a user’s manual and a journal article with data analysis examples. To find these and
more, refer to the Trellis web page:

http://netlib.att.comprojects/trellis/

1.1 New Capabilitiesfor Sand S-PLUS Graphics

Graphics have always been a strong feature of S and S-PLUS (the commercial version of S,
distributed by MathSoft). Its graphics provide device independence, high-level plotting functions
that produce an entire display, low-level functions to augment existing displays or build new
ones, and a collection of graphical parameters that provide awide range of control over the details
of plotting.

Graphical parameters in S provide the ability to produce several plots on a single page.
However, producing a coordinated set of plots on a page, with control over aspect ratios and axes,
has always taken more knowledge of the graphical functions than even a proficient user is likely
to possess. In addition, graphics devices may vary in their capabilities, thus requiring adaptations
in order to produce the best plot on each device.

The Trellislibrary is designed to remedy this situation. Besides providing a straightforward
way to produce multiple panels on a single page, it also sets up a unifying framework for doing
this. Trellis displays extend S graphics to handle multivariate data situations by using a powerful
and general technique, conditioning. In addition, the Trellis software does an excellent job with
single panel displays, making it a suitable vehicle for doing most high-level graphicsin S.

While improving user control of graphics, the Trellis software also makes graphics func-
tions behave just like any other Sfunctions. The result of executing a Trellis expressionisa Trel-
lisobject. Unlessit is assigned a name or used in afurther computation, the Trellis object is dis-
played.

The Trellis library is now distributed as a standard part of S-PLUS. (Hold onto your hats,
jargon to follow!) S-PLUS prior to version 3.3 does not come with the Trellis library. In the PC
environment, S-PLUS for Windows, Version 3.3 (and presumably anything later) comes with
Trellis Version 2.0, as described in this document. Under the Unix operating system, S-PLUS
Version 3.3 contains a dlightly older version of Trellis. The next release, due in 1996, is sched-
uled to contain Trellis Version 2.0.

1.2 A Simple Scatterplot: Ethanol Data

Perhaps the easiest way to introduce Trellis displays is by examples. They illustrate the
variety of Trellis displays that can be produced and also introduce the way that Trellis displays
are controlled. This document gives an entry point to use of the software and explains common
features. It does not have the space to explain, except in the most cursory way, the meaning or
use of the graphical techniques. To find out much more about how to use Trellis displays to
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understand data, read Visualizing Data by William S. Cleveland (1993).

Although Trellis graphics functions are capable of producing multiple panel displays, they
are also excellent at doing basic single-panel graphs. For this example, we will use data from an
experiment involving 88 trials of an engine running an ethanol mixture, contained in the data
frame et hanol . There are three variables. emissions of oxides of nitrogen, NOx, equivaence
ratio (a measure of the richness of the fuel/air mixture), E, and five values of compression ratio, C.

We can use the scatterplot function xypl ot on the et hanol datato produce a simple scat-
terplot:

xypl ot (NOx © E, data = ethanol) # Figure 1

NOXx

0.6 0.8 1.0 12
E

Figure 1. A simple scatterplot of the engine data, showing NOx emissions as a function of equiv-
alenceratio.

The first argument to xypl ot and to most Trellis functions is a formula and the second tells
where the data in the formula can be found. Both of these kinds of arguments were introduced in
the book Statistical Models in S by Chambers & Hastie (1992). We have used this same para-
digm for Trellis graphics.

1.3 Conditioning on Numeric Variables. Ethanol Data
A simple modification of the previous call to xypl ot produces amulti-panel display:
xyplot(NOx © E| C, data = ethanol) # Figure 2
This produces Figure 2, which shows NOx emissions plotted against equivalence ratio, each panel
showing data for one of the five values of compression ratio.
The Trellis display consists of 5 panels, each showing NOx on the vertical axis and E on the
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Figure2. A Trellisdisplay of engine emissions data.

horizontal axis. The value of Cis shown by the strip label at the top of each panel; in this case, C
takes on 5 discrete values as shown by the darkly-shaded region of the strip label atop each panel.

Theformula,
Nx ~ E| C

isread aloud as “NOx is plotted against E given C'. Note that the variable that goes on the vertical
axis is mentioned first in the formula — conventionally the dependent variable is plotted on the
vertical axis; the variable for the horizontal axis is given after the “~” operator, and given or
conditioning variables are mentioned | ast.

Thedata = et hanol tellsxypl ot tolook first in the dataframe et hanol for the objects
NOx, E, and Cin the formula. A data frame contains a set of related vectors and can be operated
upon as if it were a matrix; however, data frames can hold data of various types, including
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character and numeric vectors, factors, and shingles. Data mentioned in aformula can come from
anywhere on the S search list. However, data frames are often a convenient way to keep related
vectorstogether.

Suppose that we would like to control the layout of the five panelsin Figure 2. We can do
that with the | ayout = argument:

xyplot(NOx © E| C, data = ethanol, layout = ¢(3,2,1)) # Figure 3

This produces a layout with 3 columns and 2 rows on 1 page. Notice that layout specifies
columns and then rows, unlike matrix (row, column) notation. We do this because we are dealing
with graphs, and the convention with graphsisto have an origin in the lower left corner. We start
there and proceed left to right, bottom to top, page to page. The number of panelsto be produced
inaTrellis display is determined by the number of levelsin the given variables. However, if the
layout argument allows less room than required for all of the panels, only the panels that will fit
are produced. For example, using | ayout =c( 2, 2, 1) with this example would produce just one
page with 4 panels.

NOXx

0.6 0.8 1.0 12 0.6 0.8 1.0 12

E

Figure 3. Theenginedatawith| ayout =c(3, 2, 1).

We have conditioned on compression ratio, avariable that has only 5 levels.

> sort (uni que(et hanol $C))
[1] 7.5 9.0 12.0 15.0 18.0

Suppose we want to see how NOx concentrations depend on C for various values of E. It won't
work to condition on E, since there are 83 unique values of E for the 88 observations. However,
we can do something similar by conditioning on intervals of E. The function equal . count con-
structs a data structure called a shingle from our data, with a specified number of intervals and a
specified amount of overlap from oneinterval to another. For example,

EE <- equal . count (et hanol $E, nunber = 9, overlap = 1/4)

constructs a shingle with 9 intervals spanning the range of E, each containing approximately the



-7-

same number of observations, and each having about 25% of its points in common with the each
of itstwo adjacent intervals.

> EE

Dat a:
[1]
[13]
[ 25]
[37]
[ 49]
[61]
[ 73]
[85]

Coooorkro

. 584

907
138
175
868
765
749
694

Interval s:

mn
535
655
733
808
892
990
042
115
175

PRPPOOOOCOO

max
. 686
761
811
899
002
045
125
189
232

PRPPPPOOOO

cocoooo00

761
601
568
762
878
892
816

. 562

108
696
977
144
811
002
037
. 535

eRrPoOorOoOR
eRrooroor

Overl ap between adj acent
[1] 43334334

016
686
767
045
676
812
181

. 655

int

189
072
006
797
045
230
. 899

eRrroRrPER

erval s:

PoorRrORRE

. 227

001
074
893
115
968
804

PooRrPOR

231
934
152
070
846
813

. 180

eroroor

. 795

123
808
693
219
684
002

CoocorkE

042
071
232
637
729
696

. 990

We can see theintervals graphically by using the pl ot function on a shingle:

pl ot ( EE,

Figure4. A plot of the shingle with 9 equal-count intervals constructed from the engine data.

Interval

x|l ab="Range of E"', ylab="Interval") # Figure 4
|:| L

l:| L

1 -

|:| L

] -

[ -

] -

7 -

] -

1.0

Range of E

12

PROoOPRPER

215
009
036
733
911
199

.201

eroorkro

930
142
125
715
808
030

. 629

cororRrkER

152
229
081
872
168
602

. 608

Now that we have a set of intervals, we can use them to produce conditional scatterplots of
NOx vs. Cfor the various ranges of E:

xypl ot (NOx ~ C |

EE, data

et hanol ,

aspect

2)

# Figure 5

We made the panels tall by specifying aspect =2 in the call. (The reason for this will be made

clear later.)
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Figure 5. Scatterplots show NOx emissions as a function of compression ratio for various values
of equivalenceratio.

Suppose that for some reason we wanted to recreate Figure 2, but to show it only for com-
pression ratios greater than 8. One way to do thiswould be

ii <- ethanol $C > 8

xypl ot (NOx[ii] ~ E[ii] | C[ii], data = ethanol)
another possibility would be:

xyplot (NOx © E | C, data = ethanol[ethanol $C8, 1)

but an easier version can be accomplished using the subset = argument:
xyplot(NOx © E | C, data = ethanol, subset = C > 8) # Figure 6

In complicated expressions, subset = can save you from lots of subscripting and also alows you
to refer to components of a data frame by name. In addition, using subset = causes an automatic
operation on all factors used in the formula, to drop any levels that have no data associated with
them. The next section describes how factors are handled in Trellis displays.

1.4 Conditioning on Factors: Barley Data

Let’'s leave the engine example and go on to something else, this time involving more than
one conditioning variable and a dotplot rather than a scatterplot. The data frame barl ey
describes the yield in bushels per acre of 10 varieties of barley, harvested at 6 sitesin 2 different
years. The expression

dotplot(variety ™ yield | year * site, # Figure 7

data = barl ey,
xlab = "Barley Yield (bushels/acre)")
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Figure 6. Engine emissions datafor compression ratios larger than 8.

produces Figure 7. See Cleveland (1993) for athorough analysis of the barley data.

1.5 Other Examples

We have reached the end of this introductory section and you should now have some famil-
iarity with Trellis displays and how they are produced. However, there is no way in a document
as short as this that we can do more than hint at the variety of displays you can produce with Trel-
lis expressions. One way for you to get more experience is to explore the functions whose names
start with exanpl e inthe Trellislibrary. Execute

hel p(exanpl e. bwpl ot)

to get afull list. For example, you can execute
exanpl e. bwpl ot ()

to produce a Trellis box-and-whisker display (boxplot) and execute
exanpl e. bwpl ot

to print the function so you can understand how the display is created.

2.HOW TO USE TRELLIS SOFTWARE

The previous section showed a few examples of Trellis displays and how they are specified
and controlled in S. The purpose of this section is to give a broader look at the Trellis graphics
software.

In general, Trellis displays consist of one or more panels, arranged in a regular grid-like
structure of columns, rows, and pages. Simple displays are usually easy to create; multi-panel
displays take little more effort. A wide range of graphs can be drawn inside each panel, although
all panelsin a particular Trellis display must be alike. Each panel displays a subset of the data,
determined by the values of the given variables.

The Trellis software is structured so that there is one piece of software, the Trellis print
method, that takes Trellis objects and produces all types of displays. It advances from panel to
panel, sets up axes, computes appropriate aspect ratios, and generates overall labels. The print
method calls a panel function once per panel to draw the graph inside the panel. This decoupling
of the overall setup and panel drawing provides much of the power to the Trellis software. We
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Figure 7. A dotplot shows how the yield of 10 varieties of barley varied over 6 sites and 2 years.
Notice that the 1931 yields were generally higher than 1932 except at the Morris site (alikely data
transcription error).
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supply panel functions for doing many kinds of Trellis displays, but you always have the option
to write a custom panel function to draw just the right thing in each panel.

2.1 Display Functions

The Trellis graphics software comes with many display functions that produce various types
of complete graphs. One way of classifying the display functions is according to the dimension-
aity of theincoming data. Here' salist:

B Table 1: Trellis Display Functions B
[DataType Function Type of Plot O
LUnivariate bar char t bar plots U
E bwpl ot box and whisker plots E
0 densi t ypl ot kernel density plot 0
0 dot pl ot dot plots 0
0 hi st ogr am histograms 0
O pi echart pie charts (yuck!) O
B gqmat h guantile plots against mathematical distribution B
8 strippl ot 1-dimensional scatter plot S
[Bivariate qq gg-plot for comparing two distributions 0
O ti mepl ot time series plot O
O xypl ot scatter plot O
Crrivariate cont our pl ot contour plot 0
D | evel pl ot level plots B
a-lypervariate spl om scatterplot matrix 0
O paral | el parallel coordinate plots O
[B-D Displays wi refrane function asawire frame O

cl oud 3-dimensional point cloud H

2.2 Customization for Devices

Trellis displays are adapted to different graphical devices by thetrel i s. devi ce func-
tion. When you are using Trellis graphics on your personal computer or workstation, you nor-
mally use trellis.device implicitly: when the first Trellis object is printed,
trellis.device iscalled automatically to produce a window in which to display the graph. If
you are running Windows, the wi n. gr aph function is invoked, and if you are on a workstation
running the Unix operating system, the not i f device function is executed.

However, there may be times when you will wanttoruntrel i s. devi ce explicitly. For
example, executing

trellis.device(postscript, file = "output.ps”, color = TRUE)

will direct any further Trellis graphics to the post scri pt device function, leaving the file
out put . ps filled with PostScript[] language commands. This file can then be sent to a printer
or included in documents. The col or =TRUE argument says that your output should be done in
color. For ablack and white printer, use col or =FALSE.

Another reason why you may want to executetrel | i s. devi ce explicitly is that you can
use it in S-Plus to display multiple windows on one screen or you can Set up an on-screen device
in addition to a hardcopy device.

Not only doestrel | i s. devi ce set up the device, but it aso initializes a list that controls
graph characteristics such as plotting characters, line types, and colors. Gray scales and different
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line styles and symbol types are used in the black and white version to distinguish aresas, lines,
and points. If color is available, the Trellis color scheme is used. It is designed to provide good
discrimination amongst a fairly large group of colors. Thisis necessary because Trellis displays
are often concerned with multivariate situations. The colors are also chosen to be relatively
robust across various graphics devices, screens and hardcopy—they are simple mixtures of the
cyan, magenta, and yellow printing primaries. The background and basic annotations are done
monochromatically to contrast with the color assigned to data-based graphics. Black text is used
because it is available on all devices and stands out well on white, gray, and color.

For hardcopy devices (e.g. those that support PostScript[1), the background color will be the
white of the paper; on a computer screen, the background color is light gray because white is too
harsh and tends to hide light colors. The colors used are those that empirically offer good dis-
crimination and are not difficult for the device. In particular, text isdrawn in black and the colors
cyan, magenta, green, orange, blue, yellow, and red are employed for various groups. The func-
tion show. setti ngs givesagraphica display of the Trellis color (and other) parameter settings.
See section 3.3 for an example plot and more details about device settings.

2.3 Panel Functions

Panel functionslie at the heart of Trellis displays. When any Trellis display function is exe-
cuted, common code parses the formula, gets the data, and returns a Trellis object. If the object is
“printed”, the print method, print.trel | i s, setsup the coordinate system, constructs appropri-
ate axes, and then produces the panels, one by one. When the panel function is called, it is pro-
vided with two arguments, x and y, giving the horizontal and vertical coordinates of what should
be plotted. The data passed to the panel function consists of subsets of the independent and
dependent variables, the subsets determined by appropriate values of the given variables.

There is a default panel function for each of the high-level Trellis functions; the name is
constructed by gluing " panel . " onto the name of the Trellis function. Thus panel . xypl ot
corresponds to the xypl ot function. Many of these functions are simple, basically a call to a
plotting routine like poi nt's or | i nes with a few graphical parameters specified to mesh with
the Trellis graphics customization rules (see section 3.3, “Device Settings’).

When a panel function is called, the Trellis code has already set up a coordinate system
(based upon data values, and arguments xI i n=, yl i m=, and scal es=). It has aso extracted,
from the entire collection of data, the data to be displayed upon the panel, the extraction based on
the levels of the given variables. The panel function is passed arguments x and y, the coordinates
for the points on the current panel. (If no points belong on the panel, the panel function is not
caled.)

The pand function is passed in as an argument to a high-level Trellis function, perhaps as
an object (panel . xypl ot ), as a character string (" panel . xypl ot "), or constructed on the fly
intheargument list (f unction(x,y) { ... }).

Any arguments given to the top-level Trellis function but not recognized by it are passed,
unchanged, down to the panel function. This can be a useful way of communicating extra infor-
mation to the panel function, and is often used in conjunction with simple graphical parameters,
likecol = or cex=.

Because Trellis displays may take up many pages, the paradigm of producing a plot and
then adding to it, will not work. (Thiswas often the way things were done prior to Trellis graph-
ics). However, the panel function can do something similar. Thisisrelatively easy because panel
functions have a nice synergy with the ability to define functions. For example, suppose you
want panels with points and a smooth line. You can do this easily by combining two existing
panel functions into one:
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xyplot (NOx © E| C, data = ethanol, # Figure 8
panel = function(x,y)({
panel . xyplot(x,y) # plot points
panel . | oess(x,y) # add smooth |ine

}

0.6 0.8 1.0 12

NOx

Figure 8. A Trellisdisplay of engine emissions data. The smooth line was put on by the in-line
panel function.

The previous example used two panel functions that come with the Trellis software:
panel . xypl ot and panel . | oess. As described earlier, panel . xypl ot is the default panel
function for xypl ot . The panel . | oess function is one of a group of functions that are useful
in constructing panel functions. This group includes. panel . abline, panel.fill,
panel . grid, panel .|l nline,panel .| oess, andpanel . ggmat hli ne.

The panel . abl i ne function plots one or more lines on the panel. The lines can be
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horizontal, vertical, or the result of alinear fit expressedintheformy = a + b * x. Thefunc-
tion uses Trellis line style conventions and will not generate warning messages if any of the lines
fail to intersect the plot.

The function panel . fil |l isused to fill in the entire panel with a suitable color or gray
level. Aside from making pretty colored panels, it also alows further plotting on the panel in the
background color, col =0. For example, if you are on a device with a white background, you can
fill each panel with gray and later use panel . gri d(col =0) to draw areference grid on top in
white. The panel . gri d function is designed to put a reference grid on each panel, to enhance
the visual comparisons from one panel to another. It should generally be the first thing drawn on
a pand (after panel . fill, though), so that the reference grid will not obscure any important
information. Arguments control how many grid lines are used:

panel . grid(h=-1, v=4)

draws a horizontal grid aligned with the vertical axis ticks and places 4 vertical reference lines on
the panel. Although conventional plots often have grids aligned with axes, there is no need for
this. In many cases the grid is not there to help the viewer read-off numeric values — it provides
reference lines against which patterns can be compared.

Functions panel . I m i ne and panel . ggnat hl i ne are designed to put fitted lines on the
panel. The former draws a line fit with least-squares; the latter does a robust fit to a theoretical
guantile plot.

As illustrated in Figure 7, the panel . | oess function adds a smooth curve using the non-
parametric| oess procedure; various argumentsto | oess can be supplied.

The panel . super pose function is often used as a replacement for panel . xypl ot when
each panel is intended to contain multiple lines or points based upon the values of a grouping
variable. The high-level function is given an argument, gr oups=, that specifies the grouping
variable (as afactor or something that will be coerced to afactor). Thisgr oups argument will be
passed down to panel . super pose to control the plotting symbols and colors used to display
the specified groups. Examples using panel . super pose appear later in Figures 20 and 21.

One important thing to remember about the Trellis software — everything is written in the
S/S-PLUS language. This means that you can read it and modify it. The panel functions are
intended as the place for users to customize their plots, so they are generally short and easy to
understand and modify. However, all of the Trellis functions are accessible and can often be
understood with alittle bit of work. Inany case, the point isthat you should not be deterred if the
Trellis software doesn't do exactly what you want — you can change it yourself.

2.4 Formulas
Thef or mul a argument for Trellis functions often comes in the form:
y " x| g1 * g2 ...
Here, x, y, and the g variables are S objects or S function calls. They variable describes the vari-
able plotted on the vertical axis. In many cases, both the x and y variables are numeric, asin the
examples of the xypl ot function that produced Figure 1. However, for the univariate display

functions such as bwpl ot , the y variable is treated as a factor (and is made into one if itisn't a
factor aready). For example, Figure 9 is produced from:

bwpl ot (voi ce. part ~ height, data = singer,
x| ab="Hei ght (inches)") # Figure 9

Notice that in producing Figure 9, we have not used any given variables, hence the Trellis display
consists of only one panel.

When given variables are used in a formula, they are handled as factors or shingles. If a
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Figure 9. A box and whisker plot showing heights of members of a chora group, arranged ac-
cording to the part they sing.

given variable is a character vector, it is automatically turned into a factor (with the sorted, unique
values of the vector as the factor’s levels); if it is numeric, it is turned into a shingle (with zero-
width intervals at the unique values of the numeric variable; in this case, it may be better to create
ashingle yourself, perhaps by using the equal . count function, so that you can control the inter-
vals chosen.)

Certain Trellis functions take dslightly different kinds of formulas. Univariate functions that
produce awhole panel from one set of data omit they variable and have aformulalike

x| gl * g2
A rationale for this is that, for example, a histogram plots the data values along the x-axis and

internally computes the y values that determine the heights of the bars. So, Figure 10 is produced
from:
hi st ogram(™ hei ght| voi ce. part, data = singer,
x| ab="Hei ght (inches)") # Figure 10

In Figure 10, each value of the given variable has produced a separate panel. This is a genera
principle: the x and y variables to the |eft of the vertical bar in aformula make up each pand and
the given variables cause multiple panels to be produced.

The function qq takes asimple formula
y " x| gl* g2* ...
where the numeric response x is split into exactly two groups by the y variable. The resulting

panels each show a quantile-quantile plot of the data from one group against the data from the

other group.
The function ggnat h produces quantile plots. Itsformulais:

x| gl * g2

It also takes an argument, di st ri buti on, that specifies a quantile function — a function of a
vector of probabilities that produces a set of quantiles. The quantile function is often a standard
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Figure 10. Histograms of singer heights by voice part.

reference distribution, gnor m (to compare the y data to the normal distribution) or quni f (to
compare to a uniform distribution). As an example, we can see how the heights of singers within
voice part compare to anormal distribution:
ggmat h(~™ hei ght | voice.part, distribution = gnorm
data = singer) # Figure 11
The plot of Figure 11 could be improved, perhaps by adding a reference line and grid to make it
easier to assess the quality of the fit and by adding a nicer x-label. The plots might also look bet-
ter if they were made square (later, we can see if there is an even better aspect ratio). This is
accomplished in Figure 12, produced by:
ggmat h(~ height | voice.part, distribution = gnorm # Figure 12
data = singer,
aspect = 1,
prepanel = prepanel . qqmat hline,
panel = function(x, vy, ...) {
panel . grid()

panel . ggmat hl i ne(y, distribution=gnorm ...)
panel . qqmat h(x, vy, ...)

},
xlab = "Unit Norrmal Quantile"
)

Thepr epanel function will be described later, in the “ADVANCED CONCEPTS” section.

Suppose we thought that the square roots of the singer heights, rather than the raw values,
were more appropriate to compare to a normal distribution. We could have used the sqrt func-
tion inside the formula:

ggmat h(~ sqrt(height) | voice.part, distribution = gnorm data = singer,

Functions and other S expressions can be used inside the formula. However, one disadvantage of
using complicated expressions inside the formula is that the default labels are also more compli-
cated and can therefore be more difficult to read. Thisis especially true for strip labels. An alter-
native, especialy if you are using equal . count to generate shingles for given variables, is to
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Figure 11. Singer heights within voice part compared to theoretical quantiles from anormal dis-
tribution.

create a new object with a nice-looking name (the variable's name is used in labeling shingles)
prior to calling the S function.

The cont our pl ot and wi r ef r ame functions also take a different sort of formula. Since
these plots are constructed from 3-D data, the formulais

z X *y | gl*g2...

Here, x, y, and z are numeric vectors and x and y are evaluated on aregular grid. For example,
the z values may represent a surface evaluated at 60 points, made up from 6 unique x values and
10 unique y values. If given variables are present, there should be a regular surface of data for
each unique combination of values of the given variables, although the x and y values need not be
the same for each surface. (For an example, see section 4.1, “3-D PLOTTING”.)

25 TrellisObjects

All of the high-level Trellis functions (those listed in Table 1) return an object of class
trellis asther value. These objects are ordinarily plotted straight away, because the print
method for this class, print.trellis actually plots the objects. However, the fact that Trellis
functions return objects means that those objects can be stored and replotted later, perhaps when a
different deviceisactive. For example, in S

NOxpl ot <- xyplot(NOx ™ E| C, data = ethanol) # save result (no plotting)
trellis.device(iris4d) # graphics on the workstation
NOxpl ot # now plot it

trellis.device(postscript) # change devices
NOxpl ot # plot it again for new device
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Figure 12. Animproved version of the singer heights data with a comparison to the normal dis-
tribution.

S-Plus users have dightly different device functions and can have severa functions active at
once. Refer to the Trellis Graphics User’s Manual MathSoft (1995), for more details.

It is sometimes useful to cal print.trellis directly, because it has several arguments
that can be used to position Trellis plots on a page. Suppose, for example, that you have two
Trellis objects, obj 1 and obj 2 and would like to position them one above the other on a single
page of output. If the two objects were identical in type, both scatterplots, for example, it might
have been easier to use xypl ot with a made-up given variable to do this. However, suppose
obj 1 isamulti-panel Trellisdisplay and obj 2 isasingle display of adifferent type.

Let’sbe more concrete. Let

obj1l <- gqqmath(~ sqgrt(height) | voice.part, distribution = gnorm
data = singer, ...
obj 2 <- histogram(™ height, data = singer)

and now combinethemusingprint.trellis:
print.trellis(objl, split=c(1,2,1,2), nore=TRUE) # Figure 13
print.trellis(obj2, split=c(1,1,1,2), nore=FALSE)

Thesplit argumenttoprint.trellis isavector of length 4, c(x, y, nx, ny) saying to use
the x, y position of an nx by ny rectangular layout. The nor e= argument tells whether more
plotting is to be done on the same page.

As some of our examples have shown, the description of some Trellis displays (through
arguments to the high-level Trellis function) may take several lines. Suppose you are producing
Trellis displays and are trying to adjust things to come up with just the right look. One way to do
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Figure 13. Two different Trellis displays on asingle “page’, positioned by print . trel | is.

this is to store the expression in a file, use your favorite editor to change the file, and then use
sour ce to execute the expression in the file. One thing to note about this plan: automatic print-
ing of results is not done within a source file, so you should surround your expression with
print (), for example, put the expression

print( xyplot(NOx ™ E| C, data = ethanol) )
infilef oo and execute
source("foo")
An alternative isto create a Trellis object and then modify and redisplay it with the updat e
function.

NOxpl ot <- xyplot(NOx ™ E| C, data = ethanol)
NOxpl ot # display it
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updat e(NOxpl ot, layout=c(3,2)) # display with new | ayout
NOxpl ot 2 <- updat e( NOxpl ot, pch="X"') # change plotting character
NOxplot2 # display it

Y ou can also save the result of updat e and update that.

2.6 Layout

The formula given to a Trellis display determines the order in which subsets of the data are
produced. The first packet of Trellis data corresponds to the first level of each of the given vari-
ables (or thefirst interval of ashingle). The second packet is at the second level of the first given
variable and the first level of each of the other given variables. This goes on until the last level of
the first given variable. Next, the second level of the second given variable is reached and all
other variables go to their first level. All of the data packets are produced in thisway. This deter-
mines the packet order. If thereare N1, N2, and N3 levelsfor 3 given variables, then there will be
atotal of N1* N2* N3 packets.

How does this relate to the layout of panels on the page? The page is divided into columns
and rows as specified by the | ayout = argument. The panel order is defined so that the first
panel begins at the lower left corner and successive panels fill the bottom row. Next, panels fill
the second row from left to right. The total number of panelsin the panel order is determined by
thel ayout specification. Remember that Trellis displays are filled as graphs, from the originin
the lower left, not top-down as in a table. That is aso why the number of horizontal panels
(columns) precedes the number of vertical panels (rows) in the layout specification.

When it comes time to display a Trellis graph, the packets and panels are associated with
one another: the first packet (in the packet order) goes into the first panel (in panel order), and so
on.

The important concept is that the packets are produced in packet order, and the panels, in
panel order, arefilled by those packets.

If you do not specify the | ayout = argument yourself, it has defaults that depend on how
many given variables are in the formula. For one given variable, the default layout is chosen by a
layout optimization algorithm. It chooses the number of rows and columns to maximize the page
area devoted to the panels, taking into account the aspect ratio of the panels, the size of the device
and the size of the strip labels. For two or more given variables, the default number of columnsis
determined by the number of levels of the first given variable, the rows by the second given vari-
able, and the rest of the given variables vary across pages.

There is aso a way to have the layout optimization algorithm assist you with 2 or more
given variables. If you specify alayout argument of the form | ayout =c( 0, n) , the optimization
iscarried out for n plots per page.

Occasionaly, the layout of a Trellis display may be problematic. For example, suppose you
have two factors, one with 14 levels and another with 10 and would like to have 3 columns and 5
rows on each page for 10 pages. If you use | ayout =c( 3, 5) the result will not be satisfactory,
because there will be 15 panels on a page, so the arrangement of factor levels will not be consis-
tent from page to page. Things would be better if you could have 14 panels on the page, but 7 by
2 or 2 by 7 layouts cause the panels to be too tall or fat. You can solve the problem by using the
3 by 5 layout along with the ski p= argument to skip the center panel or perhaps the upper right
panel, when panels are traversed in panel order. The ski p= argument is a logical vector that
tells, for each panel on a page, whether it should be skipped. The ski p vector is replicated as
necessary and can even be longer than the number of panels on a page, so that complicated
multi-page skip patterns can be expressed. For example, the combination of

| ayout =c( 3, 5), ski p=c(rep(F, 14),T)
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would skip the upper right hand panel and
| ayout =c( 3, 5), ski p=c(rep(F,7),T,rep(F, 7))
would skip the middle panel.

Another similar situation might involve two given factors, A and B, with 5 and 2 levels
respectively. Asan exercise, consider how you could use ski p to get 3 columns and 4 rowson a
page filled out reasonably.

Sometimes, the interaction of the page size and the number of factor levels can make a nice
layout difficult. Consider a plot of afit to the ozone data where ozone is plotted as a function of
radiation for 6 levels each of temperature and wind speed.

xyplot(env.fit ~ radiation | tenperature * wi nd, # Figure 14
data = tw.grid,
panel = function(x,y) {
panel .grid(h = 2)
panel . xyplot(x, y, type ="I")
I
aspect = "xy"
xlab = "Radi ati on (Ilangleys)",
ylab = "Cube Root Ozone (cube root ppb)")

The plot has an aspect ratio chosen by the slope of the lines in the panels and these banking com-
putations (described in section 2.7, “Axes’) make it tall and thin.

Suppose we needed to show this data on a landscape-oriented piece of paper or on a display
screen that was wider than high. How could we do this, preserve aspect ratios, and still make
good use of the display area? Rather than a display with 6 rows and 6 columns, we display the
panels in a layout with 12 columns and 3 rows, something that will fit the page quite well. The
trick to doing thisisto reorder the levels of the second given variable, wi nd.

Why does this work? Think of how the | ayout argument interacts with the levels of the
given variable; in other words, think of the interaction between panel order and packet order.
Trellis cycles through levels of the first given variable, t enper at ur e for the first level of the
second given variable, wi nd. This uses 6 panels, starting from the lower left of the display and
going horizontally. There are till 6 panels | eft in the bottom row, and those are taken up by 6 the
t enper at ur e values and the second level of wi nd. We have reordered the levels of wi nd so
that the resulting plot appears to be organized into aleft half and aright half.

w evel s <- seq(4, 16, length = 6)[c(1,4,2,5,3,6)] # Figure 15
strip.shingle <- trellis.par.get("strip.background")
xyplot(env.fit ~ radiation | tenperature * shingle(w nd, W evel s),
data = tw.grid,
layout = c(12,3),

between = |ist(x=c(0,0,0,0,0,1)),
strip = function(...)strip.default(...,strip.names=FALSE)
key = list(

text = list(c("wi nd","tenperature")),

rect angl e=Rows(strip.shingle, 2:1),
space="Top"

panel = fhnction(x,y) {
panel .grid(h = 2)
panel . xyplot(x, y, type ="I")
b
aspect = "xy"

xlab = "Radi ation (langleys)",
ylab = "Cube Root Ozone (cube root ppb)")

You may find the panel order in Trellis displays somewhat peculiar, particularly the part
about the rows of panels being filled from bottom to top. The reason for this is that the vertical
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Figure 14. Loessfit to the ozone data with aspect ratio chosen by banking computations.

axis of a graph generally increases from bottom to top, and if given variables have their levelsin
increasing order, the standard Trellis panel order will make the given variables increase from bot-
tom to top. That said, there are occasions when a top-to-bottom order might be convenient. This
is called table order, left-to-right top-to-bottom, and is specified by using as. t abl e=TRUE asan
argument to ahigh-level Trellisfunction. For an example, see the function exanpl e. cal endar .

Notice that the plot of Figure 17 contains a key that allows the reader to see how the shingle
colors correspond to the given variables. (Also, for those of you who are looking carefully, the
rectangle parameters given to key are donein reverse order, since key draws things top to bottom
while strip labels are constructed bottom to top!) The in-line st ri p= function was used to sup-
press the strip names. Also, the bet ween= argument allows us to insert space (in units of charac-
ters) between panelsin the x- or y- direction; we used it to distinguish between the two major lev-
els of wind speed.
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Figure 15. Loessfit to the ozone data. The key appearsin color on acolor device. The leftmost
6 columns show temperature for the lowest 3 levels of wind speed; the rightmost 6 columns are for
the highest wind speeds.

Now that we have used the panel = and st ri p= functions, it should come as little surprise
that there is another function accepted by high-level Trellisfunctions. A page= function is called
a the end of each page of output and can be used to put on page numbers or other identifying
information. For example

xyplot( ...
page = function(x) if(x>1)
nt ext (paste("page", x), side =1, line = par("oma")[1]-1,
outer = TRUE, adj = 1)
)

would number each page but the first of a multi-page display, placing the page number at the bot-
tom right of the page.

2.7 Axes

Alignment of axes is one characteristic that makes the layout of Trellis displays so power-
ful. Unlike arbitrary sized and positioned windows, such as those produced by many software
packages, Trellis displays ensure that axes are aligned and can be readily compared to one
another. In support of this capability, Trellis functions take several arguments that give control
over the axes. Most basic arethe xI i m= and yl i m= arguments, that allow specification of lower
and upper limits for axes. For example, specifying, xI i m=c( 0, 100) ensures that the x-axis will
accommodate val ues between 0 and 100.

Although x!I i m= and yl i m= are convenient, they are only a quick way of specifying one
detail of the scales on a Trellis plot. Full axis control is available through the scal es=
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argument. It not only gives precise control over tick marks, labels, etc., but it also controls how
the horizontal and vertical axes relate from panel to panel. In genera, scal es= is a list with
components named x= and y=. Each of these components, in turn, is a list with components in
name=val ue form, giving information about the x or y axis. If the scal es= list contains other
components, they are taken to apply to both the x- and y-axes. What kinds of things can you
specify inthe scal es=list? Here' san example:
scales = list(
x = list(col =2, tck=.5, at=c(.7, .9, .11),
| abel =c("good", "better", "best"),
al t er nati ng=FALSE) ,
y = list("sliced", nticks=17, tick=FALSE, | o0g=2),
cex=.75

)

This would place 3 tick marks on the x-axis at coordinates .7, .9 and .11, labeled with the words
“good”, “better”, and “best”, would make the tick marks half their normal length, and would draw
the axis line, tick marks and tick labelsin color 2. In addition, the x-axis labels would not alter-
nate from the bottom to the top of the page — they would all be on the bottom side. Each panel’s
y-axis would be logarithmic (base 2), would have approximately 17 tick labels (although no tick
marks), and the y-axes would all have the same range (the " sl i ced" specification). On both
axes, the character size would be .75 of standard for that device.

Of course, most of the time you will not need to specify so much about axes, but the point is
that the scal es= argument gives you lots of control. In fact, it also lets you suppress the draw-
ing of one or both axes:

scal es=l i st (dr aw=FALSE)

suppresses both the x- and y-axes. This might be appropriate if, for example, the plot were a map
or other recognizable entity that did not require a numeric scale.

One of the most common uses of the scal es= argument is to specify axis relationships.
By default, the scale argument takes the value r el ati on="sane", which means that the hori-
zontal axes will be identical on all panels and the vertical axes will be identical on al panels (the
horizontal and vertical axes are not necessarily the same as one ancther, though). The value
rel ati on="sliced" means that the axes are set up to have the same units per inch — as if
each axis was a dice from one consistent larger axis. This means that the maximum minus mini-
mum value for each axisisidentical. Finaly, thevaluerel ati on="free" can be used to alow
each panel to have freedom in constructing an axis that just accommodates the data to be plotted
there. Because it is used so often, ther el at i on= component is the only one of the scale compo-
nents that need not be named explicitly. For both “sliced” and “free” scaling, axes are drawn for
each panel, taking up extra space on the display.

Suppose we had wanted to modify Figure 14 by allowing the y-axes to vary from plot to
plot. If weinclude

scal es=list(y="free"),

and remove aspect =" xy" from the call, we generate Figure 16, which now makes most compar-
isons extremely difficult, since the vertical axes are now scaled differently.

When a Trellis display is finished, the coordinate system is left in a state that in general has
no relation to the scales that were plotted on the page. The margins and outer margins are
returned to their previous values and the multiple figure parameters are set for one plot per page.
Because these parameters are reset, it is seldom reasonable to add to Trellis displays after they are
produced. If you want to augment a Trellis display, do so by means of the panel or page func-
tions.
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Figure 16. Loess fit to the ozone data, no aspect ratio control, vertical scales alowed to vary
from panel to panel.

2.8 Aspect Ratio

One of the important capabilities of Trellis displays is the ability to control the panel aspect
ratio in order to produce more understandable plots. The aspect ratio is the physical height of a
panel divided by its physical width. (Physical measurements are in inches or centimeters, not in
data units)) The aspect ratio can be specified numerically, or it can be computed by banking cal-
culations. In particular, Cleveland has experimental evidence that angles near 45° are the easiest
for the viewer to discriminate. Banking computes an appropriate aspect ratio to make the impor-
tant characteristics of the display appear close to +45°. The aspect = argument controls the
aspect ratio of Trellisdisplays. If anumeric valueis given, that aspect ratio is used for al panels.
For example, aspect =1 says that each panel should be square. Another common use for
numeric valuesisto ensure a physical relationship between the x- and y-coordinates:

aspect = diff(range(y))/diff(range(x))

would set up an aspect ratio that just matched the ratio of they and x coordinates. Thisiswhat is
required for making circles appear circular, for preserving physical shapes, etc. Finally, using
aspect ="xy" performs the banking to 45° computations on the x- and y-datafor all panels. The
sorted x-values and corresponding y-values are converted to fractions of the range, are differ-
enced, scaled by their length and al thrown together into one computation that finds the aspect
ratio that brings the segments closest to 45°.

Because control over the aspect ratio is best done with at least a hint from the user, the
default isto use aspect ="fi | | " which makes the aspect ratio appropriate so that the collection
of panelsfillsthe display area.
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Thereis alot of wasted space in Figure 14 because of the chosen aspect ratio. Suppose we
had not tried to control the aspect ratio, but instead alowed the panels to fill the space (using the
default aspect="fill"). Now we have a plot where the lines are too flat to compare easily
(Figure 17).
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Figure 17. Loessfit to the ozone data, no aspect ratio control.

2.9 Data Structures

There are two data structures that are of particular importance to Trellis displays. These are
factors and shingles. Factors were described in detail in Chambers & Hastie (1992). They are
used to hold categorical values, for example, colors (red, green, blue), states (Alaska, Alabama,
...), €tc. Factors are created by the f act or function. The other data structure, a shingle, isavec-
tor of numeric data and a set of intervals. Shingles get their name because, like shingles on a
roof, the intervals can overlap one another. For each interval, some subset of the numeric values
fall into that interval.

Two functions are available for dealing with shingles. The first is shi ngl e, which creates
a shingle by specifying the data and intervals. By default, the intervals are zero-width at the
unique values of the data. This sort of shingle is aimost like a factor, athough the precise
numeric value of each interval is preserved. Consider, for example, the engine data and the val-
ues of compression ratio. Treated as a factor, there would be 5 values. Treated as a shingle, there
would also be 5 values, but the numerical spacing of the compression ratios would be preserved.

The second function for creating shingles is equal . count, where a numeric vector is
divided up as equally as possible into a specified number of overlapping intervals, the amount of
overlap between adjacent intervals can also be specified.

Why are we spending time discussing these data structures? One reason is that shingles are
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new to Trellisdisplays. The other isthat the ordered level names of factors are used to label Trel-
lis plots, thus it is important to describe how these labels are created and manipulated. We chose
this strategy to avoid having complicated labeling arguments for Trellis functions. Thus, to
change the label's, you change the factor.

| evel s(nmont h. observed) <- nonth.nane  # full nanes

Ievélls.(rmnth. observed) <- nonth. abb # abbrevi at ed nanes

Thisis apowerful notion and will come up in later examples.
Two other functions are useful for ordering the levels of afactor. Thefirstisor der ed:
ordered(grades) <- c("Poor","Fair", "Good", "Excellent")
The second function useful for modifying factors is reor der. f act or. It alows you to rear-
range the levels of a factor based upon a computed value. For example, you could reorder a

hypothetical factor st at e from its original alphabetical order to an order based upon the median
income of the observationsin that state:

state <- reorder.factor(state, income, median)

The function make. gr oups is often useful with Trellis displays. It constructs a data frame
from several vectors and the data frame can be passed in to a Trellis function. Suppose that we
have several vectors and want to see box and whisker plots or histograms of each. For example,
we want to compare payoffs of the New Jersey Pick-It lottery from three time periods:

nake. groups(l ottery. payoff, lottery2. payoff, |ottery3.payoff)
creates a data frame with two components: dat a and whi ch. The dat a component is simply the

combined numbers from all the make. gr oups arguments. The whi ch component is a factor
with 3 levels, giving the names of the original data vectors. So, we could use

bwpl ot (which ~ data, data = nake.groups(lottery. payoff,
lottery2. payoff,lottery3. payoff))

to produce box and whisker plots or

hi stogram(™ data | which, data = make. groups(lottery. payoff,
lottery2. payoff,lottery3. payoff))

to produce histograms of the three sets of data.

Just as nake. gr oups converts vectors to data frames for use with Trellis functions, there
are adso functions to facilitate graphics with arrays and time series. The functions
as. data.frame. array andas. dat a. f ranme. t s convert arrays or time seriesinto data frames
(sorry about the long names, for those of you who don’t like to type).

Consider the objecti ri s, a3-way array with adi mvector like this:
>din(iris)
[1] 50 4 3
We can turn irisinto a data frame in preparation for plotting by using:
iris.df <- as.data.frane.array(iris, col.dinms = 2)
The resulting data frame has what used to be its second dimension turned into 4 columns, so that
it looks like this:

> iris.df[1:5,]
Sepal L. Sepal W Petal L. Petal W flower species

1 51 3.5 1.4 0.2 1 Setosa
2 4.9 3.0 1.4 0.2 2 Setosa
3 4.7 3.2 1.3 0.2 3 Setosa
4 4.6 3.1 1.5 0.2 4 Setosa
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5 5.0 3.6 1.4 0.2 5 Setosa

So, given a data frame like this, we can now use it with Trellis functions. Let's try a parallel
coordinate plot. Thefunction par al | el takesaformulaintheform

" x| g1 * g2 ...
where x isamatrix. The expression
parallel ("iris.df[,1:4] | iris.df[,6], layout = ¢(3,1), nain = "Iris Data")
produces Figure 18.
Iris Data
Setosa T Versicolor ‘ Virginica

Petal W.

Petal L.

Sepal W.

Sepal L.

T T T T
Min Max Min Max

Figure 18. Paralel coordinate plot showing three groups of theiris data.

The function as. dat a. frane. t s takes one or more time series as arguments and pro-
duces a data frame with components named seri es, whi ch, ti me, and cycl e. The seri es
component is just the data from all of the time series combined into one long vector. Theti me
component gives the time associated with each of the points (measured in the same units as the
original series, e.g. years), and cycl e gives the periodic component of the time (e.g. 1=Jan,
2=Feb, ...). Finaly, the whi ch component is a factor that tells which of the time series the mea-
surement came from. (In this case there was only one series, hstart, but in genera
as. dat a. frane. t s can take many arguments). For example:

> as.data.frane.ts(hstart)
series which time cycle
81.9 hstart 1966. 000 Jan
79.0 hstart 1966.083  Feb
122.4 hstart 1966.167  Mar

143.0 hstart 1966. 250 Apr
133.9 hstart 1966. 333 May

abhwNPE
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Using as. dat a. f rane. t s, we can produce a plot that shows housing starts from 1966 to
1974, broken down by their monthly levels.

ti nmepl ot (series tine|cycle, data = as.data.franme.ts(hstart), # Figure 19
type = "h", xlab="Year", ylab="Housing Starts by Mnth")

1966 1968 1970 1972 1974 1966 1968 1970 1972 1974

1 1 1 1 1 1 1 1 1 1 1 1
Sep Oct Nov Dec

200 -

100 -

Housing Starts by Month

Jan Feb Mar Apr

200 -

150 o -

50 = T T T T T T T T T -

1966 1968 1970 1972 1974 1966 1968 1970 1972 1974

Year

Figure 19. Each panel shows the housing starts for a particular month during the years from
1966 to 1974.

Notice that Figure 19 would change if ti me in the formula were replaced with t runc(ti nme) ;
the vertical lines for each month would line up exactly at the year marks.

2.10 Labeling (Titles, Strip Labels, Keys)

Labeling is an important part of Trellis displays. The Trellis functions take arguments,
x|l ab=and yl ab= to control the x- and y-axis labels. By default, these |abels are made up from
the names of the variables (or the expressions) plotted there. Of course, you can often make the
labels more meaningful by giving explicit values, for example:

x| ab="Equi val ence Ratio", ylab="NOx (m crogranms/J)"
would do anicer job of labeling Figure 1. Also, the arguments mai n= and sub= may be given to
any high-level Trellis function to put amain title (at the top) and a subtitle (at the bottom) on each
page. Any of these label arguments can be given as a list, so that the label comes along with
associated graphical parameters, e.g.:

x| ab=l'i st ("Equi val ence Ratio", cex=1.5, col =2)

Strip labels are an important part of a Trellis display. By looking at the panel and its
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associated strip labels, you can see the given variables and which levels are used for the particular
panel. By default, strip labels for shingles give the name of the shingle variable and show by
shading the fraction of the entire data range taken up by the current shingle interval. Strip labels
for factors give the label corresponding to the factor level and are shaded to show the order of this
level within the factor. By now you probably can guess that there are many ways to customize
strip labels. At the most extreme level, you can pass an entire strip label drawing routine as the
strip= argument to high-level Trellis plots (the default strip label routine is called
strip. def aul t). However, most of the time there is no need to do this much. The argument,
par.strip.text alowsyoutopassinalist of graphical parameters that controls the rendering
of the text strings in the strip labels. The most common use of this is to control the size of the
text in the strip labels; the size of the strip label box changes to accommodate the characters. You
canalsousepar. strip.text tocontrol the color and font of the text:

par.strip.text=list(cex=.75)

By default, the text size varies with the layout; the more rows or columns on the display, the
smaller the default strip label text size. 1f you want more control, you may want to construct your
own strip label function or at least change the style given in the default strip function. It helps to
know that stri p. def aul t takes two arguments you may want to change: stri p. nanes and
style. Thestrip.names argument to stri p. default isalogica vector of length 2, for
factors and shingles, respectively, that controls whether or not the variable names are included on
strip labels. By default, names are present for shingles but not for factors. Similarly, there is a
styl e argumenttostri p. def aul t. So, for example,

strip=function(...)strip.default(..., strip.nanes=TRUE)

would put the variable name on both factors and shinglesin the strip labels, and
strip=function(...)strip.default(..., style=4)

would use style 4 for strip labels (style 4 is described in the online documentation for
strip.defaul t). In some circumstances you may want to suppress the strip labels atogether.
Inthis case, you can use st ri p=FALSE.

Trellis graphics provides a key function that allows great flexibility in labeling plots. The
key argument to Trellis functions is a list that is passed down, almost unchanged, to the key
function. Why, then, isit an argument to Trellis functions? Why not just call key directly? The
reason is that the key argument is processed by Trellis functions so that they can leave sufficient
space around the plots to hold both key and titles and they can aso produce alegend on each page

of amulti-page display.

One of the most common uses for a key is when you are using panel . super pose to dis-
tinguish between various groups of points on scatterplot panels. For example we can display a
scatterplot matrix of the Anderson Iris data, using colors to encode the three different species.

new.iris <- iris.df[, 1:4]
for(i in 1:4)

new.iris[,i] < jitter(newiris[,i])
iris.variety <- iris.df[, 6]
super pose. synbol <- trellis.par.get("superpose.synbol")
splom("new.iris,

panel = panel . superpose,
groups = iris.variety,
key = |ist(space="top", colums = 3,
transparent = TRUE, text = list(levels(iris.variety)),

poi nts = Rows(super pose. synbol, 1: 3)))

The result is shown in Figure 20. The position of the key is controlled here by the space= com-
ponent of the key= argument.
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Figure 20. Scatterplot matrix of thejittered iris data with symbols coding the three species. Out-
put from older versions of the Trellis library may not show the cute axes in the diagonal panels.

Precise control of key positioning could also have been done by using the x=, y=, and cen-
t er = components to the key= argument. The coordinate system for x and y is a unit square sur-
rounding the entire set of panels. If x= and y= are specified and space= is not specified, ho
additional space is left for the legend. This may be useful if the legend actually is superimposed
on the panels (presumably in some unused space.)

Another thing to notice about the example is the use of the super pose. synbol cus
tomization list. The panel . super pose function uses super pose. synbol to encode the
groups, so it is important to use the same parameters to build the key. Function
trellis.par.get retuns alist giving graphical parameters used to plot superposed symbols
(see the online documentation); Rows chops it down to the first three values for each component
of thelist; and finally, those parameters are used by key to encode a column of points symbols.

The panel . super pose function can help us improve the Barley data plot of Figure 7. If
we show the 1931 and 1932 values superimposed on a single panel, it will make the comparisons
easier. We can use:

super pose. synbol <- trellis.par.get("superpose.synbol")
dot.line <- trellis.par.get("dot.line")

dotplot(variety ™ yield | site, # Figure 21
data = barl ey,
groups = year

panel = function(x, y, subscripts, ...){
abline(h =y, Iwd = dot.line$lwd, Ity = dot.line$lty,
col = dot.!line$col)

panel . super pose(x, Yy, subscripts, ...)
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}

aspect = 0.5, layout = c(1,6),

xlab = "Barley Yield (bushel s/acre)",

key = list(points = Rows(superpose.synbol, 1:2),
text = list(level s(barley$year)),

space = "Right", colums = 2))
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Figure 21. Barley Data: comparison of 1931 and 1932 on asingle panel.

This figure makes the anomaly in Morris stand out boldly — it is the only panel where the 1932
symbols are furthest to the right. Notice how the panel function draws the horizontal dotted lines
and then uses panel . super pose to draw the symbols.

It is important that you realize that the row, column, and strip labels are ordered according
to how the data was initialy read. For example, the data frame bar | ey that we used earlier was
created by reading a data file and making an intermediate data frame named bar | ey2. The data
filebar| ey. dat a, looked like this:



-33-

yield variety year site

27.00000 Manchuri a 1931 Uni versity Farm
48. 86667 Manchuri a 1931 Waseca

27.43334 Manchuri a 1931 Morris

39. 93333 Manchuri a 1931 Cr ookst on

32. 96667 Manchuri a 1931 Grand Rapi ds

28. 96667 Manchuri a 1931 Dul ut h

43.06666 4 abron 1931 Uni versity Farm

The columns were separated by tab characters (important because sites like “University Farm”
have embedded blanks), so we could, for example, user ead. t abl e to create the bar | ey2 data
frame.

barl ey2 <- read.tabl e("barley.data", sep="\t", header=TRUE)

When such atable is made, the default is to a phabetize the various factors. So, the expression:

dotplot(variety ™ yield | year * site, # Figure 22
data = barl ey2
xl ab="Barl ey Yield (bushel s/acre)")

produces the difficult-to-understand Figure 22. The problem is that this ordering obscures the
underlying pattern; the main-effects ordering that makes the Morris year anomaly stand out in
Figure 7 is not present here. Notice, too, that r ead. t abl e has produced a numeric vector for
year and henceit is plotted as a shingle, rather than afactor.

In order to produce Figure 7, we changed the factors:

barl ey <- barley2

barl ey$vari ety <- reorder.factor(barley2%$variety, barley2$yield, nmedian)
bar| ey$year <- ordered(barl ey$year, c(1932,1931)) # make it a factor
barl ey$site <- reorder.factor(barley2$site, barley2%yield, median)

For example, the levels of the vari et y factor were rearranged by r eor der . f act or by increas-
ing order of barley yield.

3. ADVANCED CONCEPTS

3.1 Prepand Functions

One of the strengths of a Trellis display is the independence between a) the common code
that sets up the coordinate systems, labels, aspect ratios, and b) the panel function that takes care
of the drawing for each individual panel. Generaly, this decoupling allows you to customize the
drawing in the panel without having to work with or understand the common code. Unfortu-
nately, thisis not aways the case. The only thing that the common code can do in order to figure
out how to set up coordinate systems is to look at the variables in the formula to determine what
is going to be plotted on the horizontal and vertical axes.

Suppose, though, that your panel function draws more on the panel than just the x- and y-
data. For example, suppose it puts on a fitted line or curve. How, then, can the Trellis software
allocate enough space on the panel for the extra things plotted by the panel function, when the
common code has no idea what extra plotting is going to take place? Another problem involves
aspect ratio calculations. The Trellis code can bank to 45° based upon the x- and y-data, but sup-
pose that the important thing for the banking computations is a fitted line, not the raw data. How
can that be taken into account so that an appropriate aspect ratio can be computed? Remember,
by the time the panel function is called, the coordinate system and aspect ratio are already locked
in.

These problems are solved by the argument pr epanel , which provides a prepanel function.
The job of the prepanel function isto take the x- and y-data for a panel and return alist containing
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one or more of the following components: x| i m yl i m dx, and dy. The xl i mand yl i mvalues
are vectors that give the minimum and maximum value on each axis. The dx and dy vectors
describe (the run and rise of) line segments that should be banked to 45°.

Certain types of Trellis displays occur often enough that prepanel functions are already writ-
ten for them. They are prepanel . | i ne, prepanel . qgmat hl i ne, and pr epanel . | oess.
If you want a least-squares line fit via the | m function to the x-y data in each pand,
prepanel . I nl i ne will carry out the computations so that the panels will have enough room to
show the fitted line over the range of the x-data and so that the lines on the panels will be banked
as closely as possible to 45°. The pr epanel . ggmat hl i ne function does a similar thing, but the
lineisfit to a quantile plot and goes through the 25th and 75th percentiles. It is used in conjunc-
tion with qqmat h and the panel . ggmat hl i ne functions.
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Perhaps the most commonly used prepanel function is pr epanel . | oess. It does a loess
smoothing on the datain each panel and banks the segments of the smooths to 45°. Let’s give an
example of this, applied to the engine data.

EE <- equal . count (et hanol $E, nunber = 9, overlap = 0.25) # Figure 23
xypl ot (NOx © C | EE,
data = ethanol,
prepanel = function(x, y) prepanel.loess(x, y, span = 1),
panel = function(x, y) {
panel . grid(h = 2)
panel . xypl ot (X, V)
panel .l oess(x, y, span = 1)

aspect = 2.5,
xl ab = "Conpression Ratio", ylab = "NOx (mcrograns/J)")

8 10 12 14 16 18 8 10 12 14 16 18
L T Y B B B | L T I T R B
EE EE

NOXx (micrograms/J)

‘ T —r s — ——
8 10 12 14 16 18 8 10 12 14 16 18 8 10 12 14 16 18
Compression Ratio

Figure 23. Engine data showing how NOx emissions depend on compression ratio for various
intervals of equivalenceratio.

Studying Figure 23 and the xypl ot expression that produced it gives a concrete example of
many of the issues that we have been discussing. For example, notice how the span argument to
| oess ispassed to both panel . | oess and pr epanel . | oess.

As we mentioned earlier, the formulas given to Trellis functions are alowed to contain
expressions. That means we could have made the call to equal . count as part of the formula.
However, the problem with this is that there would then be no nice character string to use for the
strip labels and we have found that hames on strip labels are particularly important for shingles.
Otherwise, the information about what variable is represented by the shingle needs to be placed in
the caption or somewhere elsein the figure.

Asyou can see, calsto Trelis functions may get a bit large, even though no particular part
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is al that difficult. The way we structured the call, with a separate argument on each line and
multi-line, indented panel functions, is designed to make it easier to read and understand. You
may find this layout technique useful, too.

When we first produced Figure 23, we did not include the aspect =2. 5 argument. Because
we used a prepanel function that returned dx and dy values, the banking computation was done
automatically. Unfortunately, the resulting aspect ratio was far too big. To see how it looked, try
the expression without using the aspect = argument. The problem is that many of the panels
have basically horizontal fits, and only an extreme aspect ratio will make these panel fits non hor-
izontal. This shows the occasional need for user adjustments to the automatically chosen values.

3.2 Thesubscri pt s= Argument

Suppose that we would like to produce the plot of Figure 3, but instead of plotting points,
we would like to plot the observation number for each point. Since a panel function only gets the
x- and y-values that belong on a panel, how are we to accomplish this? We solve this problem in
a very general way by alowing the panel function to request one extra argument, named sub-
scripts. The subscri pts argument is a numeric vector that tells which observation in the
original data is associated with the x- and y-values. Thus, we can neatly solve our problem by
using

xyplot(NOx ©~ E | C
data = ethanol, # Figure 24

panel = function(x,y, subscripts)
text (x,y, subscripts)
)

This works because xypl ot sees that the panel function expects an argument named sub-
scri pt s and arranges to pass the appropriate information to the panel function.

We claimed that the subscri pt s argument was a very general solution to this and similar
problems. Why isthat so? Basically, once a panel function knows which of the original observa-
tions correspond to the x- and y-values, that information can be used to deal with any other data
that is parallel to the original data. In particular, if x and y come from a data frame, any other
variables in the data frame can be subscripted by the subscri pt s vector. To facilitate this even
more, another argument, gr oups, can be given to al high-level Trellis functions. This argument
will be passed down to the panel function, along with the subscri pts argument. Inside the
panel function, gr oups[ subscri pts] is a vector paralel to x and y that can be used for
attribute colors, identifiers, etc. to the observations. The panel function panel . super pose,
used earlier in several examples (Figures 18 and 20), uses exactly this mechanism to do its work.

When a high-level Trellis function can see that its panel function has asubscri pt s argu-
ment, it automatically arranges to call the panel function with arguments named x, y, and sub-
scripts. The subscri pts mechanism interacts properly with the subset argument: sub-
scripts are done relative to the original data.

3.3 Device Settings

Before we get deeply into the concepts of device customization, afew words of reassurance.
Don’'t worry — you normally do not need to write code like this yourself. Trellis graphics makes
use of customization to produce excellent plots on all devices without requiring any changes on
the part of the user to make it happen. If your device has color capabilities, Trellis functions will
use them; they may also use various fonts, character sizes, line styles, areafills, etc. However,
when you write your own panel functions, you may know for certain that you are producing the
plot for a particular device and you know just what values the parameters should have. If so, just
write the panel function with exactly the parameters you want.
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Figure 24. The ethanol data with each observation identified by observation number.

On the other hand, you may want to write your Trellis plot calls that adapt to device charac-
teristics, too. In this case, an explanation of how Trellis functions deal with graphical parameters
may help you to understand how device-specific customization works.

Basicaly, all Trellis functions are careful to specify graphical parameters in a symbolic

way, by referring to objects that give the actual values of the parameters. For example, let’s look
at (asimplified version of) the most commonly used panel function, panel . xypl ot :

o
trellis.par.get("plot.synbol")

panel . xypl ot <- function(x, vy,
pl ot . synmbol <-
poi nts(x, v,
cex = plot.synbol $cex, pch =
font = plot.synbol $font, col

pl ot . synbol $pch,
= plot.synbol $col, ...)
}

The object pl ot . synbol isalist with components pch, cex, f ont, and col to specify the plot-
ting symbol, its size, font, and color. When the S device is set up by an explicit or implicit call to
trellis.device,the. Devi ce object is given an attribute that stores a set of Trellis parameter
lists; pl ot . synbol isone such list. The functiontrel lis. par. get getsthe named list. As
illustrated above, it is often convenient to save the list and then extract components from it in var-
ious graphics routines inside the panel function.

To see how customization is set up for on any particular device, start the device and then
execute the function show. set ti ngs. Figure 25 shows an example.
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Figure 25. Sample output from the show. set ti ngs function. This shows the various cus-

tomization settings done for a PostScript printer.

3.4 Finding the Data

In many of the examples so far, we have used the dat a= argument to present a data frame
to be searched for objects named in a Trellis formula. There are a few subtleties of this that are
addressed here. (These same issues affect the functions described in the book Satistical Models
in S) When the dat a= argument is given, the data frame or list specified by that argument is the
first place searched for finding objects named in the formula or in the subset = or gr oups=
arguments. This search of the dat a= argument replaces the normal search of the caller’s frame.
In any case, if an object is not found in the * dat a=" argument or in the caller’s frame, the search

will continue through frames 1, 0, and the databases explicitly on the search list.

Why does this matter? It matters when you write functions that call Trellis functions. For

example:

nyfunl <- function(){

hi st ogram(~hei ght | voice. part,

would work and

nyfun2 <- function(){
hi st ogram(~sqrt (hei ght)

}
would also work, but

nyfun3 <- function(){

sgrtht <- sqgrt(singer$hei ght)
hi stogram(“sqrtht | voice. part,

voi ce. part,

dat a=si nger)

dat a=si nger)

dat a=si nger)
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}
would fail with the error message

> nyfun3()

Error in nmyfun3(): Cbject "sqrtht" not found
This is because the presence of the dat a= argument prevents hi st ogr am from looking into
nyf un3’'sframetofindsqrt ht .

Here are several ways to fix the problem. a) put the transformed object back into the data
frame.
nyfun3a <- function(){
si nger $sqrtht <- sqrt(singer $hei ght)
hi stogram(“sqgrtht | voice.part, data=singer)

}
b) don’t use the dat a= arugment.
nyfun3b <- function(){
sqrtht <- sqrt(singer$hei ght)
hi stogran{“sqrtht | singer$voice.part)
}

¢) explicitly put the data frame on the search list.

nyfun3c <- function(){
attach("singer")
sqrtht <- sqgrt(height)
hi stogran(“sqrtht | voice. part)

4. HIGHER DIMENSIONS
This section describes plots for data of three or more dimensions.

4.1 3-D Plotting

Perspective Trellis displays are carried out by the function cl oud, which produces a 3-
dimensional point cloud, and the function wi r ef r ane, which draws a 3-D wireframe surface.
Unfortunately, static cloud displays are typically difficult to understand because even though
points in 3-space are displayed in perspective, there is too little structure for the viewer’'s eye to
put together an integrated view when a static panel is drawn.

The going is a bit rough here, so we will give an extended example. The non-Trellis func-
tions mentioned in this section are described in the book Satistical Modelsin S.

Suppose we are interested in learning about the environmental ozone data, where ozone
concentrations are to be related to wind speed, temperature and solar radiation. One way to learn
about the general pattern is to fit a smooth surface to the data, and we have previously determined
that the cube-root of ozone concentration is an appropriate response variable. We can use the
| oess function compute the smooth fit:

attach(environnental )

0zo. m <- | oess((ozone”(1/3)) ~ wind * tenperature * radiation,
paranetric = c("radiation", "wind"), span = 1, degree = 2)
Notice how the formula given to | oess looks just like the formulas given to Trellis functions.
To produce a wireframe or surface plot, we need to evaluate the surface at a regular grid of val-
ues. We will evaluate the grid for 50 values of wind speed, ranging from the minimum to maxi-
mum observed speeds, 50 values of temperature, and 4 levels of radiation. We first form vectors
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of the wind speed, temperature, and radiation marginal values, and then make a grid of al
50x50x4 combinations of those.
w. mar gi hal <- seq(m n(w nd), nmax(w nd), length = 50)
t.marginal <- seq(m n(tenperature), max(tenperature), length = 50)
r.marginal <- seq(mn(radiation), max(radiation), length = 4)
grid <- expand.grid( wind = w margi nal, tenperature = t.narginal,
radiation = r.marginal)

Thegri d object isjust what the pr edi ct function needsto produce the fitted values:;
fit <- predict(ozo.m grid)

Thefit objectisavector that matchesthe vectorsinthegri d dataframe: wi nd, t enper at ur e,
andr adi ati on. Now, to produce the wireframe plots, we execute:

wireframe(fit ~ wind * tenperature | radiation, # Figure 26
data = grid,
xlab = "Wnd Speed (nph)",
ylab = "Tenperature (F)",
zlab = "Cube Root Ozone \n(cube root ppb)")

The wi r ef ranme function also alows us to specify that color draping should be applied to the
wireframe; this means that each patch of the wireframe can be drawn in a solid color controlled
by the z value or by any other value given as the dr ape= argument (which must be the same
length as z). For more information on color draping, see the online documentation for wi r e-
frane.

There are a few arguments that are unique to the 3-D functions. These specify parameters
for the viewing transformation and provide for axis control. The default viewing perspective was
shown in the wireframe example. Suppose, however, that you wish to look at the surface from
other vantage points. Y ou can do this with the argument scr een, alist with named components,
each describing a rotation. The name of the element tells which axis the rotation should be
around; the value gives the degrees of rotation about the axis. For example, the default for
screenlis

screen=list(z = 40, x = -60)

which means that we rotate by 40° about the z-axis and then by —60° about the x-axis. To under-
stand these rotations, we need to understand the 3-D axis orientations: the x-axis extends horizon-
tally across the screen, the positive y-axis goes back into the screen, and the z-axisis vertical.

Another important viewing parameter is named per specti ve. Thisis alogical flag that
tells whether the projection should be orthogonal (per specti ve=FALSE) or perspective. If a
perspective projection is desired, the parameter di st ance controls the apparent distance from the
eye to the object. A value of 0 implies an infinite viewing distance (an orthogonal view) while 1
has the eye point right up to the data; the default is 0.2.

There are two ways that the axes can be drawn in 3-D Trellis plots: either with 3-D axis
lines with ticks and tick labels or by simple arrows that run paralel to the axes and point in the
direction of increasing values. Arrows are the default; conventional axes by turning off the arrow
axes via the scal e=l i st (arr ows=FALSE) argument. In either case, the axes or arrows are
labeled by variable names, either taken from the formula or passed in through the arguments
x| ab, yl ab, and z| ab.

Another quick comment related to 3-D plotting: the notion of a simple panel function breaks
down here. Unfortunately, the panel function does projections, axis drawing, etc., and thusit is
huge and unwieldy. Don't expect to produce your own 3-D panel function without studying and
modifying a copy of an existing one.
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Figure 26. A Trellis wireframe display showing the loess fit of ozone data to wind speed and
temperature, for four given levels of solar radiation. Notice the changes in height relative to the
surrounding box, especially in the far corner and at intersections with axes.

4.2 Contour Plots

Wireframe and contour displays share many characteristics; the input data is often identical
— only theway it is displayed changes. Once we have our data structures straight, a contour plot
corresponding to the previous wireframe is ssmple to produce:

contourplot(fit

dat a
x| ab
yl ab
mai n

“ wind * tenperature |
grid,

"Wnd Speed (nph)",
"Tenmperature (F)",
"Cube Root Ozone (cube root ppb)")

radi ati on, # Figure 27

If you compare the contour and wireframe figures you can probably see that the contour plot is
preferable for quantitative information but the wireframe gives agood gestalt of the surface.
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Figure 27. A Trellis contour display showing the loess fit of ozone data to wind speed and tem-
perature, for four given levels of solar radiation. Compare to the wireframe display in Figure 24.

Thefunction | evel pl ot produces acolor level plot, where color or gray levels are used to
encode the value of a third variable. It is closely related to a contour plot — the boundaries
between different regions of alevelplot are contours.

43 MoreThan ThreeVariables

Two functions are designed to work with more than three variables on each panel of a Trel-
lis display: spl omand paral | el . You saw the result of paral | el in Figure 18. The spl om
function produces a plot in which each column in an input matrix, x, is plotted against each other
column. Figure 20 was an example of this. What might not be obvious is that the formula may
also contain given variables,

splom( "x | gl * g2 * ... )
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Here, x is amatrix, and the given vectors cause the packets to contain sub-matrices consisting of
various rows of x. For each packet, a scatterplot matrix is plotted. The axes produced by spl om
are cleverly constructed to use minimal space; there is an argument, pscal es, that can control
these axes.

5. A GRAB BAG

This section contains descriptions of several Trellis functions that don’'t quite fit in with the
general formula and data framework that has been introduced earlier. However, don’t get the idea
that they are not important, just because they are hard to place. Each of these functions does
something non-trivial.

The function r fs produces a plot that shows the residual and fitted-values spreads (as
described in Cleveland, 1993). It is used to assess the magnitude of the fit to the magnitude of the
residuals. Youinitialy fit amodel, then give the model object torfs. It producesapair of plots
with identical y-axis scaling (in units per inch). By comparing the sizes of the y-variation two
plots, you can determine the importance of the fit.

Thet nd function computes a Tukey mean and difference plot. It is unusual since it takes as
an argument the output of one of the other plotting functions and it produces from that another
similar object (of classtrel | i s). However, for each plot it transforms the data so that the x-axis
holds the mean of the original x- and y-variables and the y-axis gives the difference. The purpose
of thisis to allow more effective comparisons. Instead of comparing how well data fits the y=x
line, you can look at how well the t md-modified data follows a horizontal line.

Finally, the function oneway is provided to do a one way analysis of variance. Suppose we
believe that the heights of singers can be modeled by atypical value for each voice part with vari-
ation about that typical value. We can fit this model with oneway and assess the quality of the fit
withrfs:

attach(si nger) # Figure 28

si nger.nodel <- oneway(height ~ voice.part, spread = 1)
rfs(singer.nodel, aspect = 1, ylab = "Height (inches)")

The results are shown in Figure 28.
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Figure 28. Residuals and fitted values from a one-way fit to the singer data.
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