
1 Requirements

Before we begin there are some requirements:

2 Software requirements

You will need the latest versions of� R� RODBC� MySQL� MyODBC

As of the time of writing the latest versions are:

Package Version
R 2.50
RODBC 1.20
MySQL 5.0.41
MyODBC 5.0.11-Beta

These files may be downloaded from

Package URL
R http://www.r-project.org
RODBC http://www.r-project.org
MySQL http://dev.mysql.com/downloads/mysql/5.0.html
MySQL Connector/ODBC MySQL Connector/ODBC

2.1 Example input data

To follow the example you’ll also need the input file I used. My input file consists
of 1 million simulated DNA records. each record consists of an ID, and two alleles
at each of ten loci, making a total of 21 pieces of information per individual.
You can download this input file from dna.gz. Be warned though that this file is
16MB compressed and 55MB uncompressed. You can uncompress it using the
unix gzip utility or using a zip file program like WinZip (www.winzip.com).

3 Flattening the data

One of the things that is difficult (for me at least) to get used to is that you’re
unlikely to end up storing the data in the database in the same way you would
keep it for statistical purposes. That is, as statisticians, we’re used to keeping
our data in a rectangular array with rows representing observations, and columns
representing variables. In the example dataset, you’ll find that the data is stored

1

http://www.r-project.org
http://www.r-project.org
http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/connector/odbc/5.0.html
http://www.stat.auckland.ac.nz/~curran/dna.gz
www.winzip.com

in exactly this way. There is a column for the ID of the individual, and then
two column for each pair of alleles at each locus. This format however, doesn’t
not lend itself well to the type of queries we’d like to make from a database.
For example, one thing I like to find out about with DNA is a list of all uniqye
alleles at a particular locus. It is very difficult to frame this request in the SQL
language with the data in the current format. Therefore, I am going to “flatten”
the data. That is I’m going to rearrange it in the format I want to initially read
it into the database with. In this example, I will have six columns. These are

Column Description
RecordID A unique indentified for every entry in the database
ID An identifier (from 0 to 999,999) that tells the user

who the alleles belong to
Subpop An identifier (from 1 to 10) that tells the user

which subpopulation this record belongs to
Locus The name of the locus that these alleles come from
Allele1 The first allele for the individual at the given locus
Allele2 The second allele for the individual at the given locus

This makes more sense when you see an example. The first line in my input file
looks like this

0,1,5,1,5,10,6,9,2,4,11,11,4,3,5,5,11,5,1,6,4,6

There are 10 loci in my database (D16,D18,D19,D2,D21,D3,D8,FGA,THO1,VWA).
Therefore individual 0 from subpopulation 1 has alleles 5 and 1 at locus D16,
alleles 5 and 10 at locus D18 and so on. When I flatten this it becomes:

RecordID ID Subpop Locus Allele1 Allele2

1 0 1 D16 5 1
2 0 1 D18 5 1
3 0 1 D19 6 1
4 0 1 D2 2 1
5 0 1 D21 11 1
6 0 1 D3 4 1
7 0 1 D8 5 1
8 0 1 FGA 11 1
9 0 1 THO1 1 1
10 0 1 VWA 4 1

How you do this is up to you. However, for those of you conversant in Perl, there
is a script that makes this conversion available from http://www.stat.auckland.ac.nz/ curran/flatten.pl.
Given that this is not a description of how to use Perl I won’t explain how it
works.

4 Creating the database

In this section I assume that you have run and installed MySQL in the default
location c:/mysql. To create the database we need to run the command line
interface to MySQL. Select Start > MySQL > MySQL Server 5.0 >

2

http://www.stat.auckland.ac.nz/~curran/flatten.pl

MySQL Command Line Client. Enter your password if you set one when
setting up MySQL. If everything is working correctly you should see

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 6

Server version: 5.0.41-community-nt MySQL Community Edition (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We will call our database dnaexample. Type

mysql> create database dnaexample;

4.1 Creating a table

We will read our flattened input file into a table in the database. The table
has the columns given above RecordID, Id, SubpopID,Locus, Allele1, and
Allele2. The first column, RecordID, will be the primary key of the table.
The primary key of a table uniquely identifies each record in the table. It’s
a good idea to put a primary key in every table you create. We’ll also set it
up so that the primary key is never empty (NOT NULL) and autoincrements
itself (AUTO INCREMENT) if the user doesn’t enter it. To create our table
we use the CREATE TABLE command. Firstly however, we use the USE command
to select our new database.

mysql> use dnaexample;

Database changed

mysql> create table dna_raw (

-> RecordID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,

-> Id INT NOT NULL,

-> SubopID INT NOT NULL,

-> Locus VARCHAR(10) NOT NULL,

-> Allele1 VARCHAR(10),

-> Allele2 VARCHAR(10));

You’ll notice that I have given the Allelel1 and Allele2 columns the type
VARCHAR. This allows the user to specify non-numeric alleles such as X and Y
for Amelogenin and use an ’R’ for rare alleles.

4.2 Reading the data into the table

To read the data into the table we use the MySQL command LOAD DATA INFILE

mysql> load data infile 'c:/curran/work/book/data/db-input.csv'
-> into table dna_raw

-> fields terminated by ',';
This is a lengthy operation as there are 10 million records to read. On my
system it took about 3 minutes and 20s. If you’re sucessful then you should see
something like:

3

Query OK, 10000000 rows affected (3 min 19.63 sec)

Records: 10000000 Deleted: 0 Skipped: 0 Warnings: 0

At this point you can use the QUIT command to exit the command line interface.

5 Setting up MySQL Connector/ODBC

The interface between R and MySQL is controlled by a driver which imple-
ments the ’Open Database Connectivity’ standard (ODBC) for short. Download
and run the installer. Once the installation has completed, open the Control
Panel and double click Administrative Tools. Double click on Data Sources
(ODBC). This should bring up the dialog in figure 1

Figure 1: The ODBC Data Source Administrator dialog box

Click on the Add... button. This will bring up the dialog box in figure 2.
Scroll down and select the MySQL Connector/ODBC v5 item and click on
Finish

This will bring up the configuration dialog shown in figure 3.

The values shown for the Server and Port items in figure 3 are the default
values used with a standard MySQL. If you changed any of these defaults during
your setup then the dialog box should reflect those changes. The Data Source
Name is the external reference we will use to connect to the database. The

4

Figure 2: The Create New Data Source dialog box

Database is the database we created inside MySQL. Click OK to save the
values and OK again to exit the Data Source Administrator. At this point we
should be able to switch to R.

6 Using RODBC

Make sure you’ve installed the RODBC package. Once you have load it up using
the library command.

library(RODBC)

6.1 Connecting to the database

The first step is to establish a connection to the database. We store the con-
nection in a variable called channel - following the convention of the RODBC
manual. This is sometimes referred to as a “handle” to the database.

channel <- odbcConnect("DNA_Example", "root", "james", believeNRows = FALSE)

If your password is something other than “password” then you should replace it
in the command above. The believeNRows argument is set to FALSE to fix a
bug in the MySQL Connector/ODBC v5 driver.

6.2 Querying the database

The workhorse of any software that implements SQL is the Query function.
In RODBC this is called sqlQuery. This function takes two arguments, the
ODBC connection handle, and a SQL query statement. MySQL, like every other
database product, has it’s own implementation of SQL. There is a ANSI stan-
dard but no single product implements all of its features. The reader is directed

5

Figure 3: The Configure Data Source dialog box

to the online documentation http://dev.mysql.com/doc/refman/5.0/en/index.html,
or any one of the books on the subject such as the MySQL Crash Course by
Ben Forta.

6.2.1 Selecting some rows

In this example I want to retreive all the information I have about the person
with Id number 1

query <- "select * from dna_raw where id=1"

sqlQuery(channel, query)

RecordID Id SubpopID Locus Allele1 Allele2

1 11 1 1 D16 2 3

2 12 1 1 D18 8 3

3 13 1 1 D19 6 3

4 14 1 1 D2 8 3

5 15 1 1 D21 11 3

6 16 1 1 D3 5 3

7 17 1 1 D8 6 3

8 18 1 1 FGA 13 3

9 19 1 1 THO1 2 3

10 20 1 1 VWA 4 3

6.2.2 Counting records

In this example I want to find out how many different loci are used in my
database. I know the answer is ten, but this is just an example.

query <- "select count(distinct locus) from dna_raw"

sqlQuery(channel, query)

6

http://dev.mysql.com/doc/refman/5.0/en/index.html
http://www.amazon.com/MySQL-Crash-Course-Yourself-Minutes/dp/0672327120/ref=pd_ys_qtk_rvi/002-8336090-6535244?pf_rd_m=ATVPDKIKX0DER&pf_rd_s=center-2&pf_rd_r=1DDP8GHCR8WHJ13WACK9&pf_rd_t=1501&pf_rd_p=186412001&pf_rd_i=home

count(distinct locus)

1 10

6.2.3 Creating a new table

All the database operations can be carried out with a SQL query. In this example
I want to create a new table so that I can use it later on to store the results of
another query. The table I will create is going to hold the locus names. There
are two columns: LocusID, which is the primary key, and Locus, which will hold
the locus name. It’s a good idea to use the paste function to paste together
longer SQL statements.

query <- paste("create table if not exists loci",

"(LocusID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,",

"Locus VARCHAR(10) NOT NULL)")

sqlQuery(channel, query)

character(0)

6.2.4 Inserting elements into a table

In this example we’ll use the table we created in the previous section to hold
the list of distinct (different) loci present in the dataset.

query <- "insert loci (locus) select distinct locus from dna_raw"

sqlQuery(channel, query)

character(0)

6.2.5 A more complex example

In this final example we’ll use a combination of R and MySQL to determine the
allele counts for locus D3 for each subpopulation and insert them back into the
database.

query <- paste("create table if not exists a",

"(Allele VARCHAR(10) NOT NULL)")

sqlQuery(channel, query)

character(0)

query <- paste("insert a (Allele) select distinct Allele1",

"from dna_raw where locus = 'd3'",
"order by Allele1")

sqlQuery(channel, query)

character(0)

query <- paste("insert a (Allele) select distinct Allele1",

"from dna_raw where locus = 'd3'",
"order by Allele2")

sqlQuery(channel, query)

7

character(0)

query <- paste("select distinct Allele from a", "order by Allele")

d3.alleles <- sqlQuery(channel, query)

d3.alleles <- d3.alleles$Allele

sqlQuery(channel, "drop table a")

character(0)

query <- paste("create table if not exists d3",

"(AlleleCountID INT NOT NULL AUTO_INCREMENT PRIMARY KEY,",

"Allele VARCHAR(10) NOT NULL,", "SubpopID INT NOT NULL,",

"AlleleCount INT NOT NULL)")

sqlQuery(channel, query)

character(0)

for (subpopid in 1:10) {

query <- paste("select Allele1,Allele2 from dna_raw",

"where locus = 'd3' and subpopid =",

subpopid)

result <- sqlQuery(channel, query)

result$Allele1 <- factor(result$Allele1, levels = d3.alleles)

result$Allele2 <- factor(result$Allele2, levels = d3.alleles)

d3 <- table(c(result$Allele1, result$Allele2))

for (allele in 1:length(d3.alleles)) {

query <- paste("insert into d3 ", "(allele,subpopid,allelecount)",

" values ('", d3.alleles[allele], "',", subpopid,

",", d3[allele], ")", sep = "")

sqlQuery(channel, query)

}

cat(paste("Subpop", subpopid, "done\n"))

}

Subpop 1 done

Subpop 2 done

Subpop 3 done

Subpop 4 done

Subpop 5 done

Subpop 6 done

Subpop 7 done

Subpop 8 done

Subpop 9 done

Subpop 10 done

6.3 Closing the database connection

When we’re finished accessing the database, we should remember to close the
database connection using the close command

close(channel)

8

	Requirements
	Software requirements
	Example input data

	Flattening the data
	Creating the database
	Creating a table
	Reading the data into the table

	Setting up MySQL Connector/ODBC
	Using RODBC
	Connecting to the database
	Querying the database
	Selecting some rows
	Counting records
	Creating a new table
	Inserting elements into a table
	I

	Closing the database connection

