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Trace-Contrast Models for
Capture–Recapture Without
Capture Histories
R. M. Fewster, B. C. Stevenson and D. L. Borchers

Abstract. Capture–recapture studies increasingly rely upon natural tags that
allow animals to be identified by features such as coat markings, DNA pro-
files, acoustic profiles, or spatial locations. These innovations greatly increase
the number of capture samples achievable and enable capture–recapture esti-
mation for many inaccessible and elusive species. However, natural features
are invariably imperfect as indicators of identity. Drawing on the recently de-
veloped Palm likelihood approach to parameter estimation in clustered point
processes, we propose a new estimation framework based on comparing pairs
of detections, which we term the trace-contrast framework. Importantly, no
reconstruction of capture histories is needed. We show that we can achieve
accurate, precise, and computationally fast inference. We illustrate the meth-
ods with a camera-trap study of a partially marked population of ship rats
(Rattus rattus) in New Zealand.

Key words and phrases: Camera-traps, mark recapture, natural tags, Ney-
man–Scott process, palm likelihood estimation, Rattus species.

1. INTRODUCTION

A technological revolution in methods of wildlife
recognition is currently taking place. New technolo-
gies enable individual animals to be distinguished by
photographic, genetic, acoustic, or location metrics, ei-
ther alone or in combination (e.g., Kühl and Burghardt,
2013, Carroll et al., 2011, Charlton et al., 2011,
Borchers and Efford, 2008). These developments cre-
ate very different sampling opportunities and data from
the traditional mark-recapture studies pioneered by
Cormack (1964), Jolly (1965), and Seber (1965), in
which animals are physically marked by investigators.
Our aim here is to introduce and explore a new way of
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thinking about capture–recapture data, in preparation
for a future in which animal identity might be observed
only indirectly through a series of informative metrics.

Natural attributes that allow animals to be indi-
vidually recognized are known as natural tags, in
contrast to the marked tags that investigators place
upon animals. Many animals are sufficiently distinc-
tive to be recognizable from photographs or acous-
tic traces, while an animal’s spatial location is in-
dicative of its identity if capture–recapture is con-
ducted using a sequence of observations made in quick
succession. Genetic profiling is a powerful method
of distinguishing individuals, although it is not al-
ways easy to obtain genetic samples. The opportuni-
ties for monitoring hard-to-sample populations using
any or all of these protocols are exciting and are rich
in statistical challenges. Large but inaccessible crea-
tures such as Antarctic whales could be monitored by
drones or satellites (Fretwell, Staniland and Forcada,
2014), while estimation for elusive species in dense
forest could become routine with the deployment of
microphone or camera arrays (Borchers et al., 2014,
Stevenson et al., 2015).
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All methods of individual identification that rely
upon natural tags share the same key challenge, that
individuals can no longer be identified with certainty.
A trade-off is introduced between the number of sam-
ples and their quality. Using natural tags can greatly
increase the number of samples it is feasible to collect,
but sacrifices certainty as to whether two samples do
or do not correspond to the same animal. Even genetic
profiling, which might be thought conclusive, suffers
from a nonignorable level of laboratory error, which is
especially pronounced with low-quality genetic sam-
ples obtained noninvasively from feathers, hair, or fae-
ces (Wright et al., 2009, Taberlet and Luikart, 1999).

Researchers typically deal with identity uncertainty
at the sample-matching stage, reconstructing capture
histories for individuals by comparing samples and
verifying putative matches. For example, photographs
are often matched through laborious examination of
the photo catalogue by a panel of experts (e.g. Carroll
et al., 2011). Genetic profiles are typically treated as
matches if they agree on more than a threshold number
of loci, and where there is doubt, the samples might
be genotyped repeatedly for verification, a costly and
time-consuming process (Vale et al., 2014). A different
approach is taken by Wright et al. (2009) and Barker
et al. (2014), who incorporate into their models direct
estimates of error rates based on multiple genotyping
attempts, and treat capture histories as latent variables
to be sampled by a MCMC algorithm.

With all these approaches, model fitting proceeds on
the basis of reconstructed capture histories, whether
they are assumed to be determined without error fol-
lowing a manual matching process or sampled through
MCMC. In this article we develop an alternative frame-
work in which we consider capture–recapture estima-
tion without capture histories. Our aim is to sidestep
altogether the process of deciding which samples are
matches and which are not, and instead to rely upon
the information gained from “similar” and “dissimilar”
pairwise comparisons.

We use the term trace to indicate any type of ani-
mal detection record, such as a photograph, footprint,
acoustic recording, genetic sample, or location in space
or time. We describe our approach as trace-contrast
modeling because it is based on pairwise comparisons
or contrasts between traces. By avoiding making de-
cisions about sample-matching, we aim to accommo-
date the much greater number of samples that will
become available through improved technologies for
wildlife recognition, and for which manual matching
is likely to become infeasible or error-prone. We also

show how the trace-contrast framework allows us to
deal with different marking levels in the population, in-
cluding unmarked or partially marked populations. We
give an illustration using camera-trap data from a par-
tially marked population of ship rats (Rattus rattus) in
New Zealand.

2. A FRAMEWORK FOR ANALYSIS

Our framework is based on ideas from spatial point
process analysis, particularly drawing on the work
of Tanaka, Ogata and Stoyan (2008). We begin by
explaining the context and approach developed by
Tanaka, Ogata and Stoyan (2008), and then show how
the same ideas can be applied to problems in capture–
recapture with uncertain identities.

Suppose we have a field of apple trees, in which
the trees are invisible but we can see dropped apples.
Our interest is in estimating the number of trees, but
our only evidence comes from apples. The situation
is pictured in Figure 1, in which the invisible trees
are marked by crosses and their detectable apples are
marked by points. Although apples cluster around their
own trees, there are regions of overlap in which nei-
ther the number of trees nor the assignment of apples
to trees is clear. The aim is to estimate the number of
trees without needing to make judgements about which
apples belong to which trees.

More generally, we conceptualize the trees to be un-
observable parent points, and we conceptualize each
parent to produce a number of detected offspring
points, specifically apples. Offspring who share a par-
ent, in other words, apples that fall from the same tree,
are referred to as siblings, and the set of offspring of a
parent is called its family. We shall eventually connect

FIG. 1. Left: a field of apple trees (crosses) with dropped apples
(points) clustering around each tree. Right: intensity function for
the difference process, λ0(r), describing the expected number of
points per unit area at distance r from a single target point in the
left panel. The solid line is the empirical intensity λ̃0(r) (see text),
and the dashed line is the parametric curve λ0(r) evaluated at the
maximum Palm likelihood estimates of μ, ν, and σ (see text).
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this framework to capture–recapture studies by regard-
ing individual animals as the unobservable parents, and
the detected samples or traces of the animal to be the
offspring points.

The Neyman–Scott process (Neyman and Scott,
1958) is a popular way of modeling the parent–
offspring cluster process. The invisible parent points
arise from a homogeneous Poisson process with in-
tensity μ. Each parent generates a random number
of observable offspring, scattered about the parent lo-
cation. The number of offspring of a parent, K , is
a random variable with mean ν: for example, K ∼
Poisson(ν). Offspring positions are generated from a
spatial probability density, for example, the Thomas
process (Thomas, 1949) uses a bivariate Gaussian cen-
tred on the parent location with covariance matrix
σ 2I2, where I2 is the 2 × 2 identity matrix. The param-
eters in this example are (μ, ν, σ ), where μ specifies
the density or abundance of the unseen parent points.
These spatial cluster processes are also known as con-
tagion processes (Diggle, 2003).

There are various ways of estimating the parame-
ters (μ, ν, σ ), but a full maximum likelihood analysis
is generally considered computationally impracticable
(Guan, 2006, Waagepetersen, 2007, Tanaka, Ogata and
Stoyan, 2008). Tanaka, Ogata and Stoyan (2008) pro-
pose two key steps for a pseudo-likelihood estimation
procedure:

1. Construct the contrast process consisting of all
pairwise distances or contrasts between points, and de-
rive the intensity function of this process in terms of the
parameters (μ, ν, σ ).

2. Assume that the contrast process can be approxi-
mated by an inhomogeneous Poisson process with the
intensity function derived in step 1. Maximize the cor-
responding inhomogeneous Poisson likelihood to esti-
mate (μ, ν, σ ).

This method is described as Palm likelihood estima-
tion, and is one of three methods in the spatstat R
package (Baddeley and Turner, 2005) for fitting clus-
tered point processes, the other options being due to
Guan (2006) and Waagepetersen (2007). The idea of
modeling contrasts is common to all three methods.
The Palm likelihood method is attractive for our pur-
poses because the Poisson formulation can easily be
extended to include additional model components.

2.1 The Contrast Process

We refer to the process of offspring points described
above as the offspring process for short. The contrast

process consists of pairwise distances of the form rij =
‖xi − xj‖, where xi and xj are the spatial positions of
offspring points i and j . Due to the proximity of sib-
lings, the intensity of the contrast process peaks at short
distances, as seen in Figure 1. Beyond the range of sib-
ling distances, it reaches an asymptote corresponding
to the background intensity of the offspring process.
Our interest lies in deriving the precise parametric form
of this intensity function in terms of (μ, ν, σ ).

Some care must be taken when defining exactly what
is meant by the contrast process and its intensity. We
assume that our observations take place through a finite
window onto a vast, stationary, isotropic point process
with parameters (μ, ν, σ ). In our example, our data are
the apples in a single field, but we imagine the trees and
apples extending across the landscape in all directions.
We examine pairwise distances of points up to a max-
imum distance R, where R must be pre-selected such
that it is large enough to capture the asymptote shown
in Figure 1, but not so large that it creates problems
with edge effects and computability.

For creating distance comparisons, or contrasts, we
select target points to act as foci, such that we com-
pile distances from the target points one by one. The
finite observation window can be dealt with either by
creating a buffer zone around the perimeter of the win-
dow or by employing periodic boundary conditions.
In the buffer-zone treatment, the target points are in-
terior points whose distance from the window bound-
aries is greater than R. In the periodic boundary sce-
nario, we imagine that the window picks up at one
edge where it leaves off at the opposite edge. This
means that the right-hand edge of a rectangular win-
dow is treated as if it is glued to the left-hand edge,
such that points on the right edge are considered close
to those on the left edge, and similarly for the top and
bottom edges. The buffer-zone treatment is more gen-
erally defensible, although it leads to a reduced num-
ber of target points (Tanaka, Ogata and Stoyan, 2008,
Diggle, 2003, page 13). We define T to be the num-
ber of target points. In the buffer-zone treatment, T is
the number of interior offspring points, whereas in the
periodic boundary treatment, T is the total number of
offspring points.

Before defining the one-dimensional contrast pro-
cess of distances rij = ‖xi − xj‖, we first define the
two-dimensional difference process of points xi − xj

to clarify the link with other literature and to provide
an extendable development. The difference process is
constructed in a disc of radius R centered at the origin
as shown in Figure 2. Consider taking just one of the T
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FIG. 2. (A) The original process of offspring points. The two
white points denote offspring points X and Y that are temporarily
selected as target points; circles of radius R are centered on each
target. (B) Two realizations of the difference process, consisting of
the filled points inside the two circles of radius R. (C) The super-
position of the two realizations of the difference process, gained by
placing the two circles from panel B at the same origin and delet-
ing the two white target points. Eventually, all T eligible points in
panel A will act as targets, and the plot in panel C will become the
superposition of the corresponding T circles of radius R, known as
a Fry plot.

target points, say, point X in Figure 2(A). We draw a
circle of radius R centered on point X , then relocate it
to the origin, including all filled points captured within
the circle, but not including the target point X itself
[Figures 2(B) to 2(C)]. This is a single realization of
the difference process. We then repeat the same steps
for another target point Y , superposing the two realiza-
tions. Eventually we have T realizations of the differ-
ence process all superposed at the origin, correspond-
ing to each of the T target points in turn. The norms of
all points in these T superposed realizations constitute
the contrast process. Thus, Figure 2(A) shows the orig-
inal offspring process; Figure 2(B) shows two realiza-
tions of the difference process; and Figure 2(C) shows
the first two of the T superposed realizations of the
difference process, the norms of which will create the
contrast process. We describe the norm rij = ‖xi −xj‖
as a contrast.

The intensity function of the difference process is de-
fined as λ0(r) for 0 ≤ r ≤ R. In terms of the offspring
process, λ0(r) is the expected number of points per unit
area located in a thin ring of radius r centered on a
single target point. Focusing only on two-dimensional
processes at present, the most convenient definition of
λ0 is

λ0(r) = 1

2πr

d

dr
�0(r),

where �0 is defined with respect to the offspring pro-
cess as

�0(r) = E(number of further points located distance

≤ r from one target point).

Equivalently, we can define �0 with respect to the con-
trast process as

�0(r) = E(number of contrasts ≤ r)

T
,

where we divide by T because the contrast process is
gained from superposing T realizations of the differ-
ence process. Our final definition for λ0(r) in terms of
the contrast process is then

λ0(r) = 1

2πrT

d

dr

{
E(number of contrasts ≤ r)

}
.(1)

The function λ0(r) is called the Palm intensity func-
tion of the offspring process, named after the work of
Palm (1943). We note in passing that λ0(r) is related
to the pair correlation function g(·) and Ripley’s K-
function K(·) of the offspring process, via the expres-
sions λ0(r) = μνg(r) and �0(r) = μνK(r) (Tanaka,
Ogata and Stoyan, 2008). However, we shall only work
with the definitions given above.

We can now explain the intensity curves shown in
Figure 1. The empirical intensity, shown in the solid
line, is λ̃0(r), where

λ̃0(r) = {
(number of contrasts ≤ r + ε/2)

− (number of contrasts ≤ r − ε/2)
}

/(2πrT ε),

for suitably small ε. The dashed line is the parametric
form of the Palm intensity λ0(r), parametrized in terms
of (μ, ν, σ ), and evaluated at the maximum Palm like-
lihood estimates (see below).

It is intuitively clear that the Palm intensity should
be informative about μ, ν, and σ . Broadly speaking:

• For large r , beyond the range of siblings, the curve
λ0(r) converges to the overall intensity of the pro-
cess, μν.

• The peak in λ0(r) for small r is due to short dis-
tances between siblings of the same family, so the
width of the peak is informative about the parameter
for offspring dispersal around the parent, σ .

• The height of the peak reflects the concentration of
siblings and is informative about the average number
of offspring per parent, ν.

For the Neyman–Scott process described above, with
K ∼ Poisson(ν) offspring per parent and offspring dis-
persal governed by Gaussian(0, σ 2I2), we show in the
Appendix that

λ0(r) = μν + ν

4πσ 2 exp
(
− r2

4σ 2

)
(r ≥ 0),(2)



TRACE-CONTRAST MODELS 249

from which the comments above about the roles of μ,
ν, and σ can be verified.

Much of the challenge of our proposed framework
is in deriving the correct form for the Palm inten-
sity λ0(r), given the specification of the offspring pro-
cess. The Appendix details the derivation of (2) for
the two-dimensional Neyman–Scott process, and de-
rives the equivalent expression for λ0(r) for the one-
dimensional Neyman–Scott process.

2.2 Maximum Palm Likelihood Estimation

The discussion in the previous section, as well as
the pictorial representation in Figure 1, demonstrates
that the parameters (μ, ν, σ ) are estimable by fitting
the Palm intensity λ0(r) to the contrast data. In or-
der to fit the curve, we need an objective function that
can be optimized with respect to (μ, ν, σ ). While there
are many choices for an objective function, Tanaka,
Ogata and Stoyan (2008) propose the likelihood func-
tion corresponding to an inhomogeneous Poisson pro-
cess with intensity φ(r) = 2πrT λ0(r). Thus, φ(r) de-
notes the expected number of contrasts in a small inter-
val [r, r +δr], divided by the interval width δr . Tanaka,
Ogata and Stoyan (2008) describe the estimators result-
ing from maximizing this objective function as maxi-
mum Palm likelihood estimators (MPLEs).

In reality, the contrast process is not an inhomo-
geneous Poisson process, so properties of maximum
likelihood estimators do not apply. The MPLE pro-
cedure was proved by Prokešová and Jensen (2013)
to yield consistent estimators, but there is no theo-
retical support for variance estimation using the in-
verse Hessian matrix (Tanaka, Ogata and Stoyan, 2008,
Prokešová and Jensen, 2013), so we recommend that
variance is estimated by a bootstrap procedure. A key
advantage of the MPLE formulation is that it can read-
ily be extended to incorporate supplementary informa-
tion about samples by using the marked point-process
formulation of the inhomogeneous Poisson process
likelihood. For these reasons we focus entirely on the
MPLE formulation, while noting that it is only one way
of fitting the curve λ0(r) to the contrast data.

The likelihood for an inhomogeneous Poisson pro-
cess, with data r = (r1, . . . , rn), and with rate function
φ(r) parametrized by (μ, ν, σ ) for 0 ≤ r ≤ R, is

L(μ, ν, σ ; r) = (
∫ R

0 φ(r) dr)n

n! exp
(
−

∫ R

0
φ(r) dr

)

·
n∏

i=1

φ(ri)∫ R
0 φ(r) dr

(3)

= 1

n! exp
(
−

∫ R

0
φ(r) dr

) n∏
i=1

φ(ri).

Disregarding an additive constant, the objective func-
tion for estimating (μ, ν, σ ) is given by the corre-
sponding logarithm:


(μ, ν, σ ; r) = −
∫ R

0
φ(r) dr +

n∑
i=1

log
{
φ(ri)

}
.(4)

In the case of the Neyman–Scott process above,
with offspring distribution K ∼ Poisson(ν) and off-
spring positions generated from Gaussian(0, σ 2I2), the
MPLE process is completed by maximizing (4) with
respect to (μ, ν, σ ), where from equation (2) we have

φ(r) = 2πrT

{
μν + ν

4πσ 2 exp
(
− r2

4σ 2

)}
,(5)

and the data (r1, . . . , rn) consist of all contrasts gen-
erated by the T selected target points. Equation (16)
in Tanaka, Ogata and Stoyan (2008) is gained by
combining (4) and (5), and using the closed-form∫ R

0 φ(r) dr = νT [πμR2 + 1 − exp{−R2/(4σ 2)}].
The formulation above is capable of yielding accu-

rate and precise estimates of (μ, ν, σ ), as long as clus-
ters in the offspring point-process are reasonably dis-
tinguishable. Fundamentally, we succeed in estimating
parameters of the original offspring process, includ-
ing the density of parent points μ, without making any
judgements about which offspring belong to which par-
ent, and despite the overlap in family clusters.

2.3 Auxiliary Information

Recall that a contrast is r = ‖x − y‖ for a pair of
points x and y in the original offspring process. Sup-
pose that each contrast ri has associated with it some
additional observation zi that might be informative
about μ, ν, σ , or some new parameters of interest. We
aim to model the data z = (z1, . . . , zn) along with the
contrast data r = (r1, . . . , rn). In the parlance of point
processes, zi is called a mark, and the contrast point
process with the inclusion of this additional informa-
tion is described as a marked point process.

For a single contrast, let f (z|r) be the probability
density of the observation z given the contrast dis-
tance r . Let θ be a vector of extra parameters needed
for this model, where θ is empty if f (z|r) involves only
the parameters μ, ν, and σ .

A key advantage of the Palm likelihood approach to
model fitting is the easy way in which the Poisson like-
lihood formulation (3) extends to incorporate the ad-
ditional information z. The joint density of the num-
ber of contrasts n, the contrast positions r1, . . . , rn, and
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the additional contrast information z1, . . . , zn factor-
izes as f (n)f (r1, . . . , rn|n)f (z1, . . . , zn|r1, . . . , rn;n).
Assuming that each zi depends only upon ri and marks
are mutually independent under the approximation of
the contrast process by an inhomogenous Poisson pro-
cess, we only need to append the factor

∏n
i=1 f (zi |ri)

to the likelihood in (3) and take logs to give the new
objective function to be maximized in the presence of
auxiliary information:


(μ, ν, σ, θ; r) = −
∫ R

0
φ(r) dr +

n∑
i=1

log
{
φ(ri)

}
(6)

+
n∑

i=1

log
{
f (zi |ri)},

where φ(r) = 2πrT λ0(r) for a two-dimensional pro-
cess, and λ0(r) is the Palm intensity function as before.

It is important to note that the auxiliary information z

is associated with a contrast r = ‖x−y‖, so it typically
comprises a couplet of information about the original
offspring points x and y. It might therefore be tempting
to assume that z is independent of the contrast distance
r , in other words, that f (z|r) = f (z). However, care is
needed with this assumption. If the observations in z

reflect some property of the parents of the two points
x and y, then z is likely to depend upon r due to the
influence of r on the probability that x and y share a
common parent. If x and y are close (small r), they are
more likely to have the same parent than if they are
distant (large r). For the purpose of capture–recapture
studies, the “parent” of a point x corresponds to the
animal who deposited the sample at x, so auxiliary in-
formation will typically be connected with the parent
and we need to derive the influence of r on f (z|r).

We achieve this by deriving an expression for the
probability b(r) that a randomly chosen contrast of
magnitude r is generated by a pair of siblings in the
offspring process. This is readily seen to be the rela-
tive intensity of sibling points to all points at distance r

from the target, which is gained by isolating the sibling
contribution to λ0(r). For the formulation of λ0(r) in
(2), we obtain

b(r) = λ0(r) − μν

λ0(r)
.

We then formulate f (z|r) by partitioning over the two
possibilities that a contrast of size r consists of sib-
lings and nonsiblings. If r has no further influence on
z, given the status of the contrast as siblings or nonsib-
lings, then

f (z|r) = f (z|siblings)b(r)
(7)

+ f (z|nonsiblings)
{
1 − b(r)

}
.

2.4 Connection with Capture–Recapture Studies

The framework outlined above creates an intuitively-
reasonable procedure for drawing inference on clus-
tered spatial point processes without assigning cluster
membership, and involves tools that are well known
in the analysis of spatial point patterns. Our proposal
is to explore how these ideas might be adapted to the
capture–recapture context.

We conceptualize individual animals to be the invis-
ible parent points described previously. Each animal
contributes a random number K of detected samples
or traces to the study, where K = 0 is permissible.
These traces could be records of the animal’s spatial
location, for example, taken by a quick succession of
aerial photographs. In this case we could directly ap-
ply the Neyman–Scott formulation derived throughout
Section 2 to estimate μ, the density of animals in the
area. However, the general conceptual framework em-
braces a wide spectrum of possible sample types. Any
method of animal recognition in which traces from
a single animal tend to be more similar than traces
from different animals could, in principle, form a clus-
tered process similar to that shown in Figure 1. While
Figure 1 portrays a two-dimensional point process, in
the general context it might be anything from one-
dimensional to multi-dimensional, depending upon the
metrics used to assess animal traces. Traces need not be
restricted to spatial locations, but might include pho-
tographs, DNA samples, acoustic traces, time-stamps,
and combinations of these.

In our proposed trace-contrast framework, we model
properties of the pairwise differences between samples,
rather than using samples to construct capture histo-
ries. The framework offers a natural treatment for many
modern capture–recapture protocols, in which analysts
first go through a lengthy process of pairwise compar-
isons in order to create capture histories—for example,
by matching photographs or DNA samples—before
applying a separate step to model capture histories. The
trace-contrast framework removes the need for the lat-
ter step, and in some contexts offers a more accurate
description of the way that samples are deposited by
animals and processed by researchers. It also enables
uncertainty in sample matching to be quantified as part
of the final analysis.

The key advantages of the trace-contrast approach
are therefore as follows:

(a) a more direct way of modeling the sampling pro-
cess in some contexts;
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(b) removing the need for sample matching, thereby
saving the time and expense of verifying matches: for
example by repeat genotyping, or, in the case of pho-
tographs, scrutiny by a panel of experts;

(c) reducing the impact of matching errors and in-
stead creating a proper acknowledgment of matching
uncertainty;

(d) suitability for very large numbers of samples
with imperfect identity metrics, as might be obtained
by automatic detectors;

(e) easy incorporation of information from partially
marked populations, through the auxiliary information
component f (z|r) in (7): if partial marking supplies
knowledge of sibling status for particular contrasts,
then either the sibling or the nonsibling component of
the partition in (7) can be omitted;

(f) depending on the model, estimation can be very
fast, even when including bootstrapping;

(g) estimation does not involve latent variables for
cluster position and membership, as demanded by ap-
proaches based on the full point-process likelihood
using the EM algorithm or Bayesian MCMC sam-
pling (Waagepetersen and Schweder, 2006, Møller and
Waagepetersen, 2007). In particular, unlike the other
approaches, fitting a trace-contrast model does not be-
come more computationally intensive as the number of
clusters in the data increases.

Counter to these advantages, if capture histories are
readily constructed, then greater precision should be
expected from traditional capture–recapture models.
For example, we can compare the two-dimensional
Neyman–Scott process in (4) and (5), parameterized by
(μ, ν, σ ), against the traditional model Mt parameter-
ized by (N,p1, . . . , pm), where N is the number of an-
imals in the study region, pt is the detection probabil-
ity for each animal on capture occasion t = 1, . . . ,m,
and all animals are identified with certainty. To com-
pare model performance on the same simulated data,
we equate μ = N/A, where A is the area of the study
region, ascribe each spatial detection to a capture oc-
casion at random, and construct capture histories based
on known identities for model Mt , but use the spatial
data without identity information for the trace-contrast
model. We find that when σ is small enough for there
to be negligible spatial overlap between detections of
different animals, the trace-contrast model and model
Mt have roughly equal precision. As σ increases, pre-
cision from trace-contrast modeling declines relative to
model Mt , as is natural. This comparison is however
rather artificial, as the two approaches are intended for

very different sampling scenarios. The ultimate aim
of trace-contrast models is to accommodate situations
where lack of identity information is offset by a much
higher quantity of samples than is usual for traditional
capture–recapture studies.

Additional challenges and directions for further de-
velopment include the following:

(a) creating a framework for model selection and
goodness-of-fit testing, bearing in mind that the MPLE
framework is not based on a true likelihood;

(b) investigating robustness and the impact of model
misspecification;

(c) possible alternatives to bootstrap variance esti-
mation;

(d) creating a suite of exemplars for the equivalent
of the Palm intensity function λ0(r) for various models
and sample types, including genetic, photographic, and
acoustic data.

3. CAMERA-TRAP MODEL FOR NEW ZEALAND
SHIP RATS

Our motivating example in this article is a study of
camera-trap data for invasive ship rats (Rattus rattus)
in forest reserves in northern New Zealand (Nathan,
2016). New Zealand has no native land mammals, so
introduced mammals such as ship rats create enor-
mous problems for the conservation of native species
and habitats. Ship rats eat seeds and fruit, and pre-
date directly on invertebrates, reptiles, and birds’ nests,
with the result that they have a severely deleterious
impact on the health of the forest as well as its na-
tive inhabitants. Through forest damage, competition,
and direct predation, they have been solely responsi-
ble for the global extinction of several endemic bird
and reptile species (e.g., Bell, Bell and Merton, 2016,
Robins et al., 2016).

There is considerable effort in New Zealand to im-
prove methods of rat control and elimination. One
active area of research is to investigate the efficacy
of control devices such as traps and bait stations. In
our motivating study, researchers mounted motion-
sensitive video cameras around a selection of (non-
live) control devices to record the rats’ behavior when
they encountered the device. The primary research aim
is to estimate the probability that a rat interacts with
the device, having encountered it, where an “interac-
tion” corresponds to the rat entering a trap or taking
a pellet of bait from a bait station. The chief prob-
lem is that there is no definition of what constitutes



252 R. M. FEWSTER, B. C. STEVENSON AND D. L. BORCHERS

an “encounter.” Rats frequently linger for several min-
utes around a device, repeatedly triggering the motion
cameras, so there might be several detections per en-
counter. However, the biologically relevant unit of as-
sessment is the encounter as a whole, not the individual
motion-triggered detections within the encounter.

Here, we show how the camera data can be modeled
in the trace-contrast framework. An unobservable par-
ent point corresponds to a single encounter of a single
rat with a device. Detections or traces correspond to
motion-triggered video recordings, which each have a
time-stamp. The offspring points of the original pro-
cess correspond to the times at which these detec-
tions take place. The clustered point process therefore
takes place on a one-dimensional time axis. Sibling
points correspond to multiple detections of a single en-
counter. The definition of an “encounter” is made in-
directly via the clustering of detections over time. In-
stead of imposing arbitrary thresholds—for example,
defining an encounter to be a period of activity last-
ing 10 minutes—we allow the clustering patterns in the
data to delimit encounters. Sibling points, correspond-
ing to within-encounter detections, generate a peak in
the Palm intensity function as shown in Figure 1. By
distinguishing the peak from the asymptote we can
estimate properties of encounters, such as interaction
probability, without needing to define what constitutes
an encounter or assign detections to encounters.

Our parameter of interest, α = P(interaction|
encounter), enters the model only through the aux-
iliary component of the Palm likelihood, outlined in
Section 2.3. We define parents (encounters) to be one
of two types: an interaction type I or a noninteraction
type I . The status of each parent encounter is deter-
mined by parameter α, but is nonobservable. However,
if the encounter is of type I , the interaction may be
revealed on some of the video recordings of the en-
counter. The auxiliary information z corresponding to
a pairwise contrast of video recordings i and j is the
pair (Ii, Ij ), specifying whether each of the recordings
i and j did or did not reveal the rat interacting with
the device. If the rat is seen interacting with the device
during video recording i, then Ii = 1, otherwise Ii = 0.

3.1 Detection Data

The full study described by Nathan (2016) involves
various control devices, with two motion-sensitive in-
frared video cameras and a passive integrated trans-
ponder (PIT logger) set around each device to moni-
tor the behavior of the nocturnal ship rats. For simplic-
ity, we pool data from all devices and consider results

only from one type of camera, which is mounted hori-
zontally on a post 3 meters from each device. Extend-
ing to multiple cameras and the PIT logger is readily
done, but involves substantial additional detail, so we
do not include data from the vertically mounted camera
or the PIT logger in the illustrative analysis here. Our
aim is to demonstrate in a simplified context how trace-
contrast modeling can deliver inference on the param-
eters of interest.

Video recordings from the horizontally mounted
camera last 60 seconds, so the camera is not available
to be triggered again until 
 = 60 seconds after an ini-
tial trigger. All recordings are later watched to verify
that they contain footage of a ship rat, and an obser-
vation is made of whether or not the recording reveals
the rat interacting with the control device (I = 1 or
I = 0). It is inevitable that some interactions will not be
seen on the video recording, and rats can move swiftly
enough that an interaction can occur without triggering
the camera at all: these possibilities are confirmed by
examining the PIT records. Occasionally, two or more
ship rats can be seen simultaneously in the same video:
we deal with this by entering a new record for each rat
at a time randomly chosen between 0 and 60 seconds
from the start of the recording. Further resolution was
not possible given the speed with which rats enter and
leave the video frame during recordings, and given the
number of videos to be transcribed.

Before the study, some of the rats were trapped and
marked with visually recognizable coat markings. Not
all rats are marked, and marks are frequently not read-
able from the video recordings. We shall use this to
demonstrate how our framework can accommodate in-
formation from partially marked populations.

A data entry, indexed by d , consists of the following
details:

• The time td at which the recording was triggered,
measured in seconds since the beginning of the
study. The data (t1, t2, . . . , tD) correspond to the ob-
served offspring points in the one-dimensional point
process.

• Id , an indicator that specifies whether or not the
recording reveals an interaction of the rat with the
control device.

• md , the individual rat ID number if the rat has a coat
marking and it can be positively identified from the
video recording.

The contrast data for a pair of recordings i and j con-
sists of the contrast r = |ti − tj | and auxiliary infor-
mation z = (Ii, Ij ,mi,mj ). From now on we shall
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consider primarily the contrast data (r1, . . . , rn) and
auxiliary information z1, . . . , zn resulting from n con-
trasts. We create the contrast data using a 1-hour buffer
(R = 3600 s) around the beginning and end of each
night of the study, such that recordings are only used as
target points if they are more than R seconds from sun-
set or sunrise. Contrasts are only made between pairs
of recordings from the same night and the same camera
location.

We define a parent point to be an encounter of a sin-
gle rat with a single device, where the definition of
“encounter” will be delimited by the clustering in the
data as discussed earlier. Each parent possesses status
I or I , where P(I) = α. Status I indicates that the en-
counter involves an interaction, but it does not require
the interaction to be seen on any video recording. The
parameter of interest is α.

3.2 Video-Lag Model

The Neyman–Scott model described previously is
not suitable for the camera data because siblings are
not independently and identically distributed about a
parent. A single detection makes the camera unavail-
able for new triggers for 
 = 60 seconds, so there is
serial dependence between the times of different de-
tections during the same encounter (siblings). In view
of this, we propose a sequential model for camera de-
tections, which we call the video-lag model, described
now:

• Invisible parent points (encounters) occur according
to a one-dimensional Poisson process with rate μ en-
counters per second. Suppose for illustration that the
parent point arises at time a.

• Each parent is assigned status I or I , where
P(I) = α.

• Parents are also assigned a status M or M that spec-
ifies whether the encounter involves a rat with iden-
tifiable coat markings. The probability of a marked
rat is defined by the parameter τ = P(M).

• Parents produce K offspring where K ∼ Poisson(ν).
The offspring correspond to detected video record-
ings of the encounter.

• If K = 0, there are no offspring. If K ≥ 1, the
first offspring occurs at time a + Y1, where Y1 ∼
Exponential(ψ). If there are more offspring, the sec-
ond occurs at time a + Y1 + 
 + Y2, where Y2 ∼
Exponential(ψ) and is independent of Y1, and where
the video-lag time 
 (60 seconds here) is the time
that the camera is unavailable for new triggers be-
cause it is recording a previous detection. In gen-
eral, offspring s occurs at time a + Y1 + · · · + Ys +
(s − 1)
.

• If the parent is of type I , the interaction is revealed
on each of the k recordings independently with prob-
ability η.

• If the parent is of type M, the mark is readable on
each of the k recordings independently with proba-
bility ω.

• A final parameter γ is the probability that a ran-
domly chosen pair of marked rats from different
encounters are different rats, and enables use of
information from the partially marked population
when two recordings correspond to different rats and
therefore cannot be part of the same encounter.

3.3 Palm Intensity for the Video-Lag Model

The Palm intensity λ0(r) for one-dimensional pro-
cesses is specified in Appendix equation (12). For the
video-lag model, we find λ0(r) by first deriving �0(r)

in terms of siblings and nonsiblings. The nonsibling
term gives the expected number of detections within
an interval of width 2r centered on a target point, and
is 2rμν. This applies for all r due to our treatment of
video recordings with more than one rat visible, en-
suring that the data do include nonsibling contrasts
within time 
 of each other. The sibling term takes
more derivation, and details are omitted for brevity. It is
obtained by partitioning over family size k = 2,3, . . . ,
because at least k = 2 siblings are required to make a
sibling contrast, and then for a family of size k parti-
tioning again over the sibling rank difference within a
contrast. The sibling rank difference ranges from s = 1
for adjacent siblings, to s = k − 1 for the difference
between siblings 1 and k. Finally, we use the fact that
a sum of s independent Exponential(ψ) random vari-
ables has the Gamma(s,ψ) distribution, where s is the
shape parameter and ψ is the rate parameter. Some al-
gebra gives

λ0(r) = μν + 1

ν

∞∑
k=2

{
k−1∑
s=1

(k − s)ϕ(r − s
, s,ψ)

}
νk

k!
(8)

· exp(−ν),

where ϕ(r − s
, s,ψ) is the probability density of the
Gamma distribution with shape parameter s and rate
ψ , evaluated at r − s
, and for r > s
 is given by

ϕ(r − s
, s,ψ) = ψs

�(s)
(r − s
)s−1e−ψ(r−s
).

For r ≤ s
 we have ϕ(r − s
, s,ψ) = 0, except for the
special case ϕ(0,1,ψ) = ψ .
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3.4 Auxiliary Information

The auxiliary information z for a single contrast is
the quartet (Ii, Ij ,mi,mj ) specifying whether the tar-
get and comparison points in the contrast revealed an
interaction and identified marked animals. As in Sec-
tion 2.3, auxiliary information is formulated via b(r),
the probability that a randomly selected contrast with
magnitude r corresponds to a pair of siblings, where

b(r) = λ0(r) − μν

λ0(r)
,(9)

with λ0(r) specified in (8).
The information about rat identity, mi and mj , is

used to identify cases where the two video recordings
in the contrast cannot be siblings. When both rats are
marked, both marks are readable, and the two marks
differ, the two rats involved in the contrast must be dif-
ferent rats and therefore the contrast must correspond
to two different encounters. However, if both rats are
marked and the two marks are the same, this does
not specify that the recordings are siblings because the
same rat might be involved in two different encounters.
This is the reason for the parameter γ that gives the
probability that, if two different encounters of type M
are chosen at random, the two rats involved are differ-
ent rats. In this study, the partial marking of the popula-
tion therefore contributes some information about non-
siblings, but does not contribute any information about
siblings. We summarize the information by an indica-
tor J , where J = 1 if marks mi and mj are both present
and differ, and J = 0 otherwise.

The final model for auxiliary information, f (z|r) =
f (Ii, Ij , J |r), requires expressions for each triple
(Ii, Ij , J ) ∈ {0,1}3. By way of example, we give just
two of the eight expressions. Each expression partitions
over the two possibilities that the detections in the con-
trast are siblings and nonsiblings, where the probability
of siblings is b(r), and we also use the fact that J = 1
is impossible for siblings:

f (0,0,0|r)
= {

α(1 − η)2 + (1 − α)
}
b(r) + (

1 − τ 2ω2γ
)

· {
α2(1 − η)2 + 2α(1 − α)(1 − η) + (1 − α)2}

(10)

· {
1 − b(r)

};
f (1,1,1|r) = τ 2ω2γα2η2{

1 − b(r)
}
.

The maximum Palm likelihood estimates for the
camera-trap model are obtained by maximizing the ob-
jective function (6), where the intensity function for

a one-dimensional process is φ(r) = 2T λ0(r), and
where the Palm intensity λ0(r) for the video-lag model
is given by (8), and auxiliary information is treated by
expressions such as those in (10), with b(r) as given
in (9).

3.5 Real Data

The data comprise 2374 video recordings made over
8 consecutive nights in February 2014 from a grid of
34 camera stations in Huapai Reserve. We applied a
buffer of R = 3600 seconds (1 hour) at each end of
each night, leaving T = 2188 recordings to act as target
points. The total number of contrasts using this value
of R is 27,837. The model takes about 15 seconds to
fit on a 1.73 GHz laptop. For variance estimation, we
bootstrap across stations until the number of contrasts
in the bootstrap replicate data is at least 90% of that in
the real data.

The maximum Palm likelihood estimates, together
with bootstrapped 95% confidence intervals from 1000
replicates, are as follows: average encounter rate per
hour, 3600μ̂ = 6.1 (2.7,9.3); probability of interac-
tion, α̂ = 0.44 (0.31,0.61); expected number of de-
tections per encounter, ν̂ = 0.97 (0.66,1.64); detec-
tion lag rate, ψ̂ = 0.0047 (0.0018,0.0112); probabil-
ity that an interaction is revealed on any recording of
a type I encounter, η̂ = 0.68 (0.59,0.81); probability
a rat is marked, τ̂ = 0.40 (0.27,0.44); probability that
the mark of a marked rat is readable on any recording,
ω̂ = 0.67 (0.45,0.73); probability that two encounters
with marked rats correspond to different rats, γ̂ = 0.58
(0.46,0.62).

Figure 3 shows the estimated Palm intensity func-
tion, λ0(r), and the estimated sibling probability func-
tion, b(r). Examples of the corresponding empirical
curves from simulated data using the same generat-
ing values and of about the same sample size as the
real data are also shown. The curves show that the esti-
mated sibling probability drops to 0 at time differences
of about 1500 seconds (25 minutes), with only a small
probability of siblings beyond 15-minute contrasts.

3.6 Simulation Study

To verify the accuracy of inference using Palm like-
lihood estimation with the video-lag model, Figure 4
shows the results from 1000 fits using data simulated
from the video-lag model, from which contrasts are
constructed. The generating parameters for the simula-
tion are the MPLEs from the real data, and the sample
sizes approximately match those in the real data. All
eight parameters of the model are estimated with no
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FIG. 3. Estimated curves for the Palm intensity, λ0(r), and the sibling probability at distance r , b(r), fitted to the real data (bold curves).
Empirical results using a simulated data set generated using the same parameter values are shown beneath the curves (thin jagged lines).
Empirical results for b(r) can only be calculated using simulated data because sibling knowledge is required.

discernable bias and with excellent precision. The co-
efficient of variation is 8.5% for the interest parameter
α. In full, the parameters have coefficients of variation
11–12% (μ,ν,ψ); 8–9% (α,η); and 1–2% (τ,ω, γ ).

Simulation results are not sensitive to the choice of
R, for R ranging from 45 minutes, through 60 mins
(shown in Figure 4), to 90 mins, and there is only mi-
nor deviation when R is as low as 30 mins. For 100
runs of simulated data, the correlation in α̂ between
R = 60 mins and other choices of R is 0.93 for R = 30
mins, and 0.98 to 0.99 for R = 45,75, and 90 mins; and

the maximum difference between estimated α values is
0.03, obtained when R = 30 mins.

4. DISCUSSION

We have shown that the Palm likelihood estima-
tion framework, first proposed by Tanaka, Ogata and
Stoyan (2008) in the context of clustered point pro-
cesses, opens a promising new direction for draw-
ing inference from capture–recapture studies without
needing to construct capture histories. For our example

FIG. 4. Boxplots showing estimates of each of the video-lag model parameters using 1000 simulated data sets using the MPLEs from the
real data as the generating values. The thin lines across the center of each box show the generating values, and the thick lines show the means
of the 1000 estimates. Boxes are drawn from the lower to upper quartiles of the 1000 estimates.
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settings, inference is accurate and precise, and com-
putationally fast enough that variance estimation by
bootstrap is readily achieved. Although there are still
many details to explore regarding the robustness of the
framework, and how to evaluate it in the absence of a
true likelihood function, we propose that the ideas may
prove suitable for many kinds of data collected in mod-
ern capture–recapture studies. Of additional note is the
seamless way in which data on partially marked popu-
lations may be accommodated. Partial marking can be
used in the framework either to specify that two sam-
ples are known matches or, as in our example, known
nonmatches.

APPENDIX: DERIVATIONS AND REFERENCE

Here we derive the general Palm intensity for-
mulation for one-dimensional and two-dimensional
processes. We give explicit derivations for the one-
dimensional and two-dimensional Neyman–Scott pro-
cesses.

A.1 Palm Intensity Definition in One and Two
Dimensions

In any dimension, the Palm intensity is defined as
the expected number of points per unit area located at
distance r from a single target point. For a process in
any dimension, define

�0(r) = E(number of further points located distance

≤ r from one target point).

For a two-dimensional process, the area of a thin ring
of width δr at distance r around the target is approx-
imately 2πrδr , so the Palm intensity λ0(r) is defined
as

λ0(r)
2D = lim

δr→0

�0(r + δr) − �0(r)

2πrδr
(11)

= 1

2πr

d

dr
�0(r).

For a one-dimensional process, an interval of width δr

located distance r from either side of the target has total
width 2δr , so the Palm intensity is

λ0(r)
1D = lim

δr→0

�0(r + δr) − �0(r)

2δr
(12)

= 1

2

d

dr
�0(r).

The intensity needed in (4) or (6) is φ(r)1D =
2T λ0(r)

1D or φ(r)2D = 2πrT λ0(r)
2D.

A.2 Sibling Contrasts for IID Siblings

Suppose that, for any single family, the locations
of the offspring about the parent are independent and
identically distributed. Let F be the cumulative distri-
bution function (CDF) for inter-sibling distances:

F(r) = P(distance between a randomly chosen

pair of siblings is ≤ r).

As a preliminary, we derive the expected number of
siblings within distance r of a randomly selected tar-
get point, which is the component of �0(r) for sibling
contrasts. The following derivation holds for point pro-
cesses in any dimension.

We can consider the selection of a random target
point to be equivalent to selecting a family at random
and then examining one point within the family. Tak-
ing the family perspective is an important step because
families of size k have k times as many chances to be
selected for targets as families of size 1. In practice,
we do not know the family membership or family sizes
of any of the target points, but it is convenient to con-
ceptualize the selection of a target as operating via its
family.

Suppose therefore that we select a single family from
all possible families in the point process, where the
family size distribution is given by the random variable
K with probabilities P(K = k), and the selection prob-
ability for a family of size k is k times the selection
probability for a family of size 1, for k = 0,1,2, . . . .
Over the sample space of families,

P(randomly selected family has size k)
(13)

= kP(K = k)∑∞
h=0 hP(K = h)

= kP(K = k)

E(K)
.

Having selected a family of size k ≥ 1, we select any
of the k identical points to be the target. By assumption,
it has k − 1 siblings, each of which lies within distance
r with probability F(r). Thus,

E(#siblings distance ≤ r from target|
(14)

family size = k) = (k − 1)F (r).

Partitioning over the selected family size, and using
(13) and (14), gives

E(#siblings ≤ r from randomly-selected target)

=
∞∑

k=1

(k − 1)F (r)

{
kP(K = k)

E(K)

}
(15)

= E{K(K − 1)}F(r)

E(K)
.
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A.3 Two-Dimensional Neyman–Scott Process

We have defined the two-dimensional Neyman–
Scott process as follows:

• Parent points arise according to a two-dimensional
Poisson process with intensity μ;

• Families comprise K ∼ Poisson(ν) offspring per
parent;

• For a parent located at point a, offspring locations
are independent Gaussian(a, σ 2I2) variates. (This fi-
nal condition defines a Thomas process.)

Clearly, under these assumptions the expected number
of nonsiblings within distance r of any target point is
πr2μν. The expected number of siblings within dis-
tance r is given by (15), and �0(r) is the sum of the
nonsibling and sibling terms.

For K ∼ Poisson(ν), the computations needed in
(15) are E(K) = ν and E{K(K − 1)} = ν2. It remains
to find F(r), the CDF of distances between siblings.

Given a parent at 0, suppose two siblings are placed
at positions x = (x1, x2) and y = (y1, y2). By assump-
tion, x1 ∼ x2 ∼ y1 ∼ y2 ∼ Normal(0, σ 2), and all four
components are independent. The distance between

them is
√

(x1 − y1)2 + (x2 − y2)2, where (x1 − y1) ∼
(x2 − y2) ∼ Normal(0,2σ 2). This distance is readily
seen to be a variate from the σ

√
2 Chi(2) distribution.

Transforming the Chi(2) density gives the required ex-
pression for F ′(r) for r ≥ 0:

d

dr
F (r) = r

2σ 2 exp
(
− r2

4σ 2

)
.(16)

Using (11), adding nonsiblings and siblings to obtain
�0(r), and combining (15) and (16) give

λ0(r) = 1

2πr

d

dr
�0(r)

= 1

2πr

d

dr

[
πr2μν + E{K(K − 1)}F(r)

E(K)

]

= μν + 1

2πr

{
ν2F ′(r)

ν

}

= μν + ν

4πσ 2 exp
(
− r2

4σ 2

)
,

as given previously in equation (2). For a two-dimen-
sional process, the intensity function for Palm likeli-
hood estimation using (4) or (6) is φ(r) = 2πrT λ0(r).

A.4 One-Dimensional Neyman–Scott Process

The one-dimensional Neyman–Scott process is de-
fined like the two-dimensional process in Section A.3,
except that the parent points follow a one-dimensional
Poisson process with intensity μ, and the offspring
locations for a parent at position a are independent
Gaussian(a, σ 2) variates. Inter-sibling distances are
now σ

√
2 Chi(1) variates, giving for r ≥ 0,

d

dr
F (r) = 1√

πσ 2
exp

(
− r2

4σ 2

)
.(17)

Using (12), adding nonsiblings and siblings to obtain
�0(r), and combining (15) and (17) give

λ0(r) = 1

2

d

dr
�0(r)

= 1

2

d

dr

[
2rμν + E{K(K − 1)}F(r)

E(K)

]

= μν + ν√
4πσ 2

exp
(
− r2

4σ 2

)
.

For a one-dimensional process, the intensity function
for Palm likelihood estimation using (4) or (6) is
φ(r) = 2T λ0(r).
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