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Our aim here is to provide a coherent introduction to the basic concepts of Population Genetics.
Population genetics is a difficult subject for self-study, especially from a statistical perspective.
In the literature, you will see multiple different definitions claiming to be the same quantity;
multiple different quantities that seem to have the same definition; and many confusions and
vagaries regarding the distinction between parameters and statistics, the distributions underly-
ing means and variances, and so on. Our aim is to provide a clear description of basic principles,
and link together the common ways of describing and conceptualising key quantities.

We use the following text as our key reference:
Weir, B.S. (1996). Genetic Data Analysis II. Sinauer Associates, Sunderland, MA.

A model for reproduction

The setting for all our models is as follows. Although these models are not biologically realistic,
they are very helpful for understanding basic genetic processes.

• Diploid organisms: this means that every individual has two alleles at every locus.

• Monoecious: this means we don’t distinguish between individuals of different sexes. All
individuals can create offspring with all other individuals, including themselves.

• Non-overlapping generations.

• Fixed population size of N individuals every generation. Because the organisms are
diploid, this means that we have 2N alleles available in every generation.

• Infinite number of gametes. Statistically, this is the same as saying that gametes are
sampled at random with replacement to make the next generation. Biologically, we can
think of each of the 2N alleles emitting an infinite number of copies of itself, and these
copies mixing together before 2N lucky ones are selected at random to form the next
generation. The proportion of different allele types (A, B, etc) in the infinite mix remains
the same as it was in the original 2N copies, so allele types that are common in the original
generation of size 2N will likely remain common in the next generation, whereas rare allele
types might fail to be sampled and become extinct.

We will use different colours to depict different allele states or types: for example, alleles of
type A will be given the same colour regardless of which individual they appear in. Figure 1
shows an animation of the conceptual reproduction scheme.

Note: A gamete can be thought of as the offspring of a single allele. If there are multiple loci,
we need to be more precise: a gamete is effectively half of a genotype, where the selection of
which half is made at random for every locus. For example, if an individual has genotype AB
at locus 1, and genotype GH at locus 2, it can produce any of the following two-locus gametes:
AG, AH, BG, and BH. In humans, each sperm cell and each egg cell correspond to a single
gamete. Two gametes unite to make an offspring.
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Figure 1: A finite number of individuals N = 6 with 2N = 12 alleles, arranged into two allele types, A
and B. At reproduction, each of the alleles spawns an infinite number of gametes, which mix together.
To make the next generation, 2N of these gametes will be selected at random.

Hardy-Weinberg Equilibrium

Hardy-Weinberg Equilibrium, or HWE, is a long name for a simple phenomenon. Consider
the infinite number of gametes at the end of the animation in Figure 1. The proportions of
allele types A and B are pA = 8/12, and pB = 4/12. To make a new individual for the next
generation, we sample two of these gametes and ‘unite’ them, like a sperm and an egg. The
genotype of the new individual can be AA, AB, or BB. Note that we can’t distinguish between
genotypes AB and BA, so they are written as the single genotype AB.

If the two gametes are sampled independently, the probabilities of the different genotypes are:

P(AA) = p2A
P(AB) = 2 pA pB
P(BB) = p2B

Hardy-Weinberg proportions.

Thus Hardy-Weinberg proportions describe the genotype probabilities obtained if an individual’s
two gametes are sampled independently from the infinite gamete pool. This way of producing
offspring is called random mating.

If a population is very large (N →∞), and gametes are united independently as above, then:
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• Allele frequencies will not change from one generation to the next: i.e. pA(t + 1) = pA(t)
where pA(t) denotes the frequency of allele type A at generation t;

• Genotype frequencies will follow the Hardy-Weinberg proportions, and therefore they will
not change either.

• The population is said to be in Hardy-Weinberg Equilibrium, with the word ‘equilibrium’
meaning that the allele and genotype frequencies are constant over the generations.

The Hardy-Weinberg Principle states that a very large population (N →∞) will be in Hardy-
Weinberg equilibrium unless some specific disturbing force is acting. Possible disturbing forces
include:

• Non-random mating: e.g. due to inbreeding. Inbreeding occurs when gametes are more
likely to unite with other gametes of their own type than they would under random
mating, and it can arise from mating of close kin.

• Mutation or migration: these introduce new alleles into the population and disturb the
binomial proportions.

• Selection: this implies some allele types or genotypes are more likely to create offspring
than others, because they convey some advantage to survival.

If, by contrast, N is small, but mating is still random, the population may follow Hardy-
Weinberg proportions every generation. However, the allele frequencies are likely to change
each generation due to random sampling, and therefore the population is not strictly in Hardy-
Weinberg Equilibrium. The change in allele frequencies from one generation to the next is
called genetic drift.

By illustration, recall the example in Figure 1 with N = 6. At generation t we have 8/12 alleles
of type A, and 4/12 alleles of type B. For generation t+ 1, we sample 12 new alleles at random
and independently, each with pA(t) = 8/12 and pB(t) = 4/12. We might get 6 As and 6 Bs.
This greatly changes the allele frequencies for generation t+ 1 to pA(t+ 1) = 6/12 = pB(t+ 1).
This population is tiny and is subject to severe genetic drift. A much larger population with
the same allele frequencies can not drift far from one generation to the next, under random
mating.

The Wright-Fisher Model

The Wright-Fisher model is the fundamental model of population genetics. It examines genetic
processes for a single locus. The structure is as follows:

• Diploid organisms: 2 alleles for each individual at the locus in question.

• Monoecious: no sexes, and selfing allowed.

• Non-overlapping generations.

• Fixed population size of N individuals every generation.

3



• Infinitely many gametes.

• Random mating: alleles are drawn independently from the infinite gamete pool.

• No selection: no allele or allele type is favoured over any other when selecting 2N gametes
to form the next generation.

• No mutation: alleles can not change into a different type, and new allele types can not
enter the population.

The Wright-Fisher model looks at the genetic composition of a population at generations t =
0, 1, 2, . . ., when it is kept in these conditions. Of interest are the allele types, but also the
individual allele lineages: for example, how many of the alleles available at time t can be traced
back directly to the same ancestor.

At this point we meet an idea of fundamental importance in population genetics: the infinite
reference population or infinite ancestral population. This is a population of infinite size,
in Hardy-Weinberg equilibrium, from which Generation 0 of the Wright-Fisher model will be
drawn. The Wright-Fisher process has a fixed and finite size of 2N alleles from generation 0
onwards, but it is drawn from an infinite ancestral pool. We might be interested in examining
the current generation to deduce how long ago it was split from its ancestral pool: in other
words, to deduce the current value of t given that we know N . Regardless of the properties of
interest, we need to create a statistical framework within which to examine them. The statis-
tical framework used is to conceptualise genetic sampling as multiple replicate populations
stemming from the infinite pool and evolving according to the same rules. This is shown by
animation in Figure 2.

In Figure 2:

• The infinite reference population contains five different allele types (different colours),
with an equal proportion of each.

• We imagine the alleles in the infinite reference population mixing as if they were all put
in a box and shaken.

• For a single replicate population of size N individuals, 2N alleles are drawn at random
from the infinite pool to form Generation 0. These 2N alleles are numbered 1, 2, . . . , 2N
so that we can keep track of the descendents (or lineages) of each one.

• For later generations t = 1, 2, . . ., we form generation t by sampling 2N alleles at random
with replacement from generation t− 1.

• The whole process is repeated (conceptually) for many replicate populations.

The replicate populations form the key statistical population in our genetic models. Al-
though it is often not made explicitly clear, when people talk about means and variances of
genetic processes, they will typically be talking about means and variances with respect to the
population of replicate populations. For example:
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Figure 2: The Wright-Fisher model, showing evolution of multiple replicate populations of
size N , each drawn at time 0 from the infinite reference population and allowed to evolve
independently for generations 0, 1, 2, 3. Different colours correspond to different allele types,
and numbers correspond to allele lineages within a population.

Statement:

‘The expected frequency of allele A in generation t is pA = 1/5.’

Meaning:

Imagine r replicate populations at time t. For each population i = 1, 2, . . . , r, draw a
single allele from generation t. Let Xi be the indicator for whether the selected allele
is allele A: Xi = 1 if the allele from population i is allele A, and 0 otherwise. Then
E(Xi) = pA = 1/5 for i = 1, 2, . . . , r; and as r →∞, we have 1

r

∑r
i=1Xi → pA = 1/5.

The critical thing here is that the ‘allele frequency’ pA = 1/5 is not referring to what is going
on in any of the individual replicate populations. It is the allele frequency in the infinite
ancestral population, which may never have existed, except in our heads.

Key points to notice from Figure 2 are:

• Small populations very quickly lose genetic diversity. Of the original five allele types, only
one or two remain by generation 3, in each of the replicates shown.
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• The population replicates may differ greatly in their genetic composition from each other
and from the infinite reference population. In the Figure, the different replicates barely
have any allele types in common.

Probability of identity by descent

In practice, we observe a small number of present-day replicate populations, from which we
want to deduce properties of the overall genetic process from infinite reference to the present
day: for example, for how many generations t the populations have been separated. The interest
is likely to be in N and t, and allele frequencies in the reference population are just a nuisance.
For this reason, a key idea in the study of genetic structure is that of identity by descent:

Definition: Two alleles in a replicate population are identical by descent (ibd) if they stem from
the same ancestor allele from generation 0.

In the animations, two alleles are identical by descent if they are marked with the same number:
it means they are part of the same lineage.

Contrast this with identity in state, which expresses whether two alleles have the same type
or state:

Definition: Two alleles are identical in state (iis) if they have the same allele type.

In the animations, two alleles are identical in state if they have the same colour.

The probability of identity-by-descent is the probability that two different alleles sampled
from the same population at generation t are identical by descent. As before, the probability
refers to the probability across all replicate populations.

Statement:

‘The probability of identity by descent in generation 3 is 0.42.’

Meaning:

Imagine r replicate populations. For each population i = 1, 2, . . . , r, draw two
alleles, at random without replacement, from generation t = 3. Let Xi be the
indicator for whether the two selected alleles are identical by descent: Xi = 1 if the
alleles from population i are ibd, and 0 otherwise. Then P(ibd) = E(Xi) = 0.42
for i = 1, 2, . . . , r; and as r →∞, we have 1

r

∑r
i=1Xi → P(ibd) = 0.42.

This concept of the probability of identity-by-descent is shown at the end of the animation in
Figure 2.

The probability of identity-by-descent depends only on N and t in the Wright-Fisher model:
it will be high when N is small, and it increases as t gets larger. It therefore encapsulates
information of interest about the overall genetic process.
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Result: For the Wright-Fisher model with N diploid individuals, the probability of identity-by-
descent in generation t is:

P(ibd) = 1−
(

1− 1

2N

)t
for t = 0, 1, 2, . . .

Proof: Let θt be the probability of identity-by-descent in generation t. Clearly, θ0 = 0 because all
alleles start their own lineages in generation 0.

Consider generation t. We draw two alleles at random without replacement from the 2N
available at time t. Call them a1 and a2.

The two parent alleles of a1 and a2 correspond to two random draws with replacement from the
2N alleles available at time t− 1. With probability 1

2N
, alleles a1 and a2 have the same parent

allele, so they are definitely ibd.

a1 a2

Parents

Offspring

With probability 1− 1
2N

, alleles a1 and a2 have two different parents. In that case, a1 and a2 are
ibd if and only if their parents are ibd. The probability that their parents are ibd is exactly
the probability that two different alleles at generation t− 1 are ibd, which is θt−1.

Thus θt, the probability that a1 and a2 are ibd, satisfies

θ0 = 0

θt =
1

2N
× 1 +

(
1− 1

2N

)
θt−1 (t = 1, 2, 3, . . .)

Solving the difference equation gives the result:

θt = 1−
(

1− 1

2N

)t
. �

Exercise 1: (Answers on page 40.) The expression θt = 1 −
(
1− 1

2N

)t
can be derived directly

without using the difference equation, by noting that 1− θt =
(
1− 1

2N

)t
. Find an argument to

explain this expression.
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Wright’s F-statistics for genetic structure

Sewall Wright (1889-1988) was one of the founders of population genetics. He introduced
a series of so-called F-statistics or Fixation Indices. These quantities are very widely
used today to summarise genetic structure. There are multiple different ways of defining and
conceptualising these quantities, and the literature can be extremely confusing. Because they
are such fundamental concepts of population genetics, we will try to draw together several
common ways in which F-statistics are described.

F-statistics are defined with respect to the total population, which is the infinite reference
population; and the subpopulations, which are individual replicate populations. The three
F-statistics are:

• FIS : inbreeding coefficient of individuals (I) within the subpopulation (S);

• FST : fixation index of subpopulations (S) within the total population (T);

• FIT : overall inbreeding coefficient of individuals (I) within the total population (T).

However, Weir and Cockerham (1984) point out that there is confusion about whether F-
statistics should indeed be regarded as statistics (functions of observations), or as parameters.
It makes more sense to think of these measures of genetic structure as parameters, that we wish
to estimate using data. To try to alleviate the confusion, they introduce new terminology:

• f : parameter corresponding to FIS ;

– within-population inbreeding coefficient;
– correlation of genes within individuals within populations.

• θ : parameter corresponding to FST ;

– coancestry coefficient;
– correlation of genes in different individuals in the same population;
– probability of identity-by-descent for alleles selected from different individuals in the

same population.

• F : parameter corresponding to FIT ;

– overall inbreeding coefficient;
– correlation of genes within individuals.
– probability of identity-by-descent for alleles selected from the same individual.

Weir and Cockerham’s conventions have not been universally adopted, and much confusion still
persists. We adopt the following system:

F = FIT , θ = FST , and f = FIS are alternative names for the same parameters.

The connections between F-statistics, probabilities of identity-by-descent, correlation of genes,
inbreeding, and coancestry, will probably seem obscure. We explain these now.
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The coancestry coefficient, θ, or FST

In the Wright-Fisher model, we did not organise the 2N alleles into N individuals. The coances-
try coefficient, θ or FST , is the only one of the three parameters that does not involve individuals,
so it is the only one that is directly applicable to the unmodified Wright-Fisher model. It also
offers a good example for explaining why so many seemingly-different terms describe the same
thing.

Definition: In the Wright-Fisher model, where there is no organisation of alleles into individuals,
θ = FST is the probability that two different alleles selected at random are identical
by descent, where the probability is understood to be taken across replicate populations as
on page 6. At generation t, this gives (page 7):

θ = FST = P(ibd) = 1−
(

1− 1

2N

)t
.

For models that do organise alleles into individuals, θ = FST is the probability that two
alleles selected at random from different individuals are identical by descent.

θ as correlation between genes

We cannot observe whether or not two alleles are identical-by-descent. We can determine
allele state (denoted by colours on Figure 2), but not the ancestry of an allele. Even over
one generation, by looking only at your own alleles, there is no way of telling which you got
from your mother and which from your father. The only information we can deduce about the
probabilities of identity-by-descent must come indirectly by examining allele states.

Consider any allele type A, whose proportion in the infinite reference population is pA. Define

PA/A = P(two alleles selected at random from different individuals are both A),

where the probability is taken across replicate populations at generation t, as usual. Thus we
imagine drawing two alleles, a1 and a2, from two different individuals in a replicate population.
PA/A is the probability that a1 and a2 both have allele state A.

Recall that θ is the probability of identity-by-descent for the same two selected alleles a1 and
a2. To link PA/A and θ, consider the following two possibilities:

1. a1 and a2 are ibd (probability θ). If a1 and a2 are ibd, they definitely have the same
state. The probability that this state is A is the probability that the original ancestor of
a1 and a2 in generation 0 has state A, which is pA. Note that pA is the frequency of allele
A in the infinite reference population, not in the replicate population from which a1 and
a2 are drawn.

2. a1 and a2 are not ibd (probability 1 − θ). In that case, they have two different ances-
tors in generation 0, each of which were independently drawn from the infinite reference
population. The probability that a1 and a2 are both of state A in this case is therefore
p2A.
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Putting these possibilities together gives:

PA/A = P(two alleles drawn from different individuals are both of state A)

= θpA + (1− θ)p2A
= θpA(1− pA) + p2A ;

⇒ θ =
PA/A − p2A
pA(1− pA)

. (1)

This expression for θ holds for any allele state A, and for any genetic model (not just the Wright-
Fisher model). Weir (1996) takes it as the definition of θ. An advantage of this expression is
that we can at least begin to imagine using it to estimate θ, because it depends upon observable
allele states rather than unobservable identity-by-descent. However, the frequency pA refers to
the infinite reference population — which quite possibly never existed — so we still have some
work to do to make this expression useful.

From equation (1), we can quickly see that θ is the correlation of alleles of different individuals,
in the following sense. For replicate populations i = 1, 2, . . . , r, select two alleles from different
individuals within each population at generation t. Let Xi1 and Xi2 be the indicators for
whether the two alleles from population i have state A: Xij = 1 if the jth allele has state A
and 0 otherwise, for j = 1, 2. Then

E(Xi1) = E(Xi2) = P(ancestor allele has state A) = pA ,

and
E(X2

ij) = E(Xij) = pA ;

so
var(Xi1) = var(Xi2) = pA(1− pA) .

Also,

E(Xi1Xi2) = P(both drawn alleles have state A) = PA/A by definition of PA/A .

Thus,

corr(Xi1, Xi2) =
E(Xi1Xi2)− E(Xi1)E(Xi2)√

var(Xi1)var(Xi2)
=
PA/A − p2A
pA(1− pA)

= θ . (2)

Summary so far. . .

We currently have:

θ = FST = P(ibd for alleles in different individuals in the same population)

=
PA/A − p2A
pA(1− pA)

= correlation of genes in different individuals in the same population.

These are true in all situations and for any allele type A. The same value of θ applies to all
allele types.

For the Wright-Fisher model, we also have θ = 1−
(
1− 1

2N

)t
.
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R simulations
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Figure 3: Simulations of the Wright-Fisher model.

Command: wrightfisher.func(N=20, tmax=50, p.ancestral=c(0.4, 0.6), nrep=10000)

This simulates 10,000 replicate populations of size N = 20 individuals under the Wright-Fisher
model. There are two allele types, 1 and 2, with frequencies 0.4 and 0.6 in the infinite ancestral
population. Two alleles are selected at random without replacement from the generation at
time t (t = 1, 2, . . . , 50) for each of the replicate populations, and the following quantities are
logged:

• identity-by-descent: yes or no for each of the 10,000 populations.

• identity-in-state: yes or no for allele type 1, for each of the 10,000 populations; and yes
or no for allele type 2, for each of the 10,000 populations.

The plot shows:

• Grey line: the curve 1−
(
1− 1

2N

)t
for t ∈ {0, 1, . . . , 50}.

• Grey points: simulation estimates of P(ibd): the number of the 10,000 populations for
which the two selected alleles were ibd, divided by 10,000.

• Red line and green line: simulation estimates of
PA/A−p2A
pA(1−pA)

for allele types 1 (red) and 2

(green). For allele type 1, PA/A is the number of the 10,000 populations for which the two
selected alleles were iis for allele 1, divided by 10,000. Similarly for allele type 2.

We can see that each of the three simulation estimates follow the same curve, 1−
(
1− 1

2N

)t
. The

most accurate is P(ibd) (why?) but this could not be used in practice as it is unobservable.
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Practical Session 1

Explore the Wright-Fisher model in R by animation and simulation.

Animation: wrightfisher.animate.func()

wrightfisher.animate.func(N=3, tmax=3, p.ancestral=c(0.4, 0.6),

nrep=3, manual=F, skip.mix=F, delay.long=1, delay.short=0.5)

• N : number of individuals. Keep it small, as 2N alleles need to be displayed.

• tmax : number of generations simulated. Keep it small for display purposes.

• p.ancestral : allele frequencies pA in the ancestral population. You can choose as many
as you like. Values will be rounded to 2d.p. for the simulation. If the frequencies don’t
sum to 1, they will be rescaled.

• nrep : number of replicate populations to simulate. Keep it small for display purposes.

• manual : if True, animation will pause until you manually press Enter at several points.

• skip.mix : if True, the display of the initial mixing phase is omitted.

• delay.long, delay.short : delay in seconds between various phases of the animation.

For the fastest animation, use skip.mix=T, delay.long=0, delay.short=0.

Simulation: Produces graphics similar to Figure 3.

wrightfisher.func()

res = wrightfisher.func(N=50, tmax=50, p.ancestral=c(0.1, 0.2, 0.3, 0.4), nrep=1000)

The results in res have components:

• $ibd : simulation estimates of the probability of identity-by-descent: the grey points on
the plot.

• $PA.A : simulation estimates of PA/A. A matrix with one row for each allele type A, and
one column for each generation t.

• $theta.by.allele.type : simulation estimates of
PA/A−p2A
pA(1−pA)

. A matrix with one row for
each allele type, and one column for each generation t. The matrix rows correspond to
the coloured lines on the plot. For each t, the matrix columns are multiple estimates of
the same quantity (θt), and the corresponding entry of $ibd is yet another estimate of θt.

Exercise 2: (Answers on page 40.) Using the simulation wrightfisher.func, how would you
change the arguments N, tmax, p.ancestral, and nrep to obtain the following results?

(a) Reduce θ = FST at generation t = 50?

(b) Increase θ = FST when N = 20?

(c) Increase the scatter of the grey points, P(ibd), about the grey line 1−
(
1− 1

2N

)t
?

(d) For a fixed nrep=1000, increase or decrease the deviation of the coloured lines
PA/A−p2A
pA(1−pA)

from the grey line 1−
(
1− 1

2N

)t
?
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Exercise 3: (Answers on page 40.) Consider an allele type A under the Wright-Fisher model for
a population with 2N alleles. Define Yt to be the number of alleles of type A in generation t.
Clearly, {Yt}t≥0 is a Markov chain.

(a) Let P = (pij) be the transition matrix of the Markov chain. Find pij = P(Yt+1 =j |Yt= i).

(b) Will the Markov chain converge to an equilibrium distribution as t→∞? If so, what are
the equilibrium states?

(c) Show that {Yt}t≥0 is also a martingale; in other words that E(Yt+1 |Yt, . . . , Y0) = Yt.

(d) When the chain reaches the state Yt = 0 or Yt = 2N , it is said to have reached fixation.
Let T be the generation at which fixation occurs, and let α be the probability that the
chain is eventually fixed at state 2N rather than state 0. Because {Yt}t≥0 is a bounded
martingale, we can apply the Optional Stopping Theorem:

E(YT ) = E(Y0).

Using this, find α, the probability that all individuals eventually have allele A.

Population differentiation and fixation

It is clear that θ = FST is a measure of population differentiation or ‘distance’. Under the
Wright-Fisher model, all populations will eventually reach fixation: the allele frequencies will
drift until there is only one allele type left in each population. The probability (across replicate
populations) that a population is eventually fixed for allele A is pA: see Exercise 3.

As t→∞, the probability of fixation approaches 1. FST or θ also approaches 1, which can be
seen in two ways. Firstly,

θ = 1−
(

1− 1

2N

)t
→ 1 as t→∞ .

Secondly, note that when the population is fixed at A with probability pA, and fixed at some
different allele with probability 1− pA, then PA/A = pA. This is because two alleles drawn from
the population will both be A if and only if the population is fixed for A. Thus,

θ =
PA/A − p2A
pA(1− pA)

→ pA − p2A
pA(1− pA)

= 1.

If the only process going on is genetic drift, θ tells us how long the populations have been
separated:

t =
log(1− θ)

log
(
1− 1

2N

) .
A more interesting situation is the Infinite Islands Model with migration, in which θ can be
used to estimate the migration rate in a mainland-island situation.
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Infinite Island Model: migration-drift equilibrium

Wright’s Infinite Island Model is largely the same as the Wright-Fisher model, with one excep-
tion. When an allele is drawn for generation t of a replicate population, it is drawn in the usual
way from the time t− 1 alleles only with probability 1−m. With probability m, the allele is
a ‘migrant’: it is drawn directly from the infinite reference population.

This model is shown in the animation in Figure 4. Migrant alleles are marked with red squares,
and are given a new number designating the start of a new lineage in the population. The
model can be thought of as representing a large mainland population (the ‘infinite reference’),
with a large number of islands of equal population sizes. The islands are mostly isolated, but
get occasional migrants from the mainland.

Figure 4: The Infinite Island model with migration parameter m = 0.2. Migrant alleles are
marked during the animation with red squares, and are drawn directly from the infinite reference
population.

The addition of migrants ensures that the populations will not reach fixation, and θ will not
inevitably tend to 1. Instead, θ will reach an equilibrium value, representing a balance between
the two opposing effects of (i) drift, which tends to increase θ, and (ii) migration, which tends
to decrease θ. Effectively, the island populations do not drift so far apart from each other,
because they are linked by a common connection with the mainland. The populations are said
to reach migration-drift equilibrium.
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The infinite island model is particularly nice because there is a direct relationship between the
equilibrium value of θ = FST and the migration rate, m. For this reason, θ is often used to
estimate migration rate, m. You will often hear θ = FST referred to as a measure of gene
flow. This refers to the following relationship.

Result: For the infinite island model with populations of size N individuals and migration rate m,
the value of θ = FST at migration-drift equilibrium is approximately

θ∞ '
1

4Nm+ 1
. (3)

Proof: We use the definition of θ as the probability of identity by descent. Let θt be the probability of
identity-by-descent in generation t. Draw two different alleles a1 and a2, from the 2N available
at time t. Alleles a1 and a2 can only be ibd if they are both non-migrants: probability (1−m)2.
For two non-migrants, we draw from the 2N parents at time t − 1 exactly as in the Wright-
Fisher model on page 7. Thus, by partitioning into the cases of a1 and a2 sharing the same
parent (probability 1

2N
) or not, and following the argument on page 7:

P(a1 and a2 are ibd | both non-migrants) =
1

2N
+

(
1− 1

2N

)
θt−1 .

Thus,

θt = (1−m)2
{

1

2N
+

(
1− 1

2N

)
θt−1

}
. (4)

At migration-drift equilibrium, θt = θt−1 = θ∞. Rearranging (4):

θ∞ =
(1−m)2

2N − (1−m)2(2N − 1)
=

1

2N(1−m)−2 − 2N + 1
(5)

=
1

2N {1 + 2m+O(m2)} − 2N + 1
(Taylor expansion)

' 1

4Nm+ 1
as required.

Note that for large m, the exact expression (5) can be used. �

All models are wrong, but some are useful. . .

The infinite island model is very clearly an oversimplification of reality. There is some conflict
of opinion about how useful equation (3) is for estimating gene flow. No independent opinion
is attempted here, but the following quote from Neigel (2002) is relevant:

No one has seriously argued that natural populations have [the infinite island model] charac-
teristics; the model is just a convenient abstraction that isolates the opposing effects of genetic
drift and gene flow. However the model is relevant to the interpretation of data from real pop-
ulations because it is possible to relax its assumptions without greatly altering the relationship
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between FST and Nm. The number of populations doesn’t really have to be infinite (or even a
very large number), mutation and selection are only likely to be important when populations are
very large, and even if gene flow is limited by distance the overall value of FST is expected to be
similar to that obtained for the infinite island model. . . . The infinite island model has provided
a robust, albeit coarse guide to how overall levels of gene flow influence overall FST .

In practice, using the expression θ = 1
4Nm+1

to estimate migration rate, m, requires an estimate
of the population size N (or rather, genetic effective population size, which is even more difficult
to estimate). Instead, the expression is often used to estimate the composite Nm, which
corresponds to the (effective) number of migrants per population per generation.

R simulations
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Figure 5: Simulations of the Infinite Island model with N = 20, m = 0.02. The bold horizontal
line shows the approximate equilibrium value θ = 1/(4Nm+1), with the exact expression given
by (5) shown by the dashed horizontal line. The dashed grey line shows the Wright-Fisher value
of θ without migration for comparison.

Command:
infinite.island.func(N=20, m=0.02, tmax=50, p.ancestral=c(0.4,0.6), nrep=10000)

For this population size N = 20, a small amount of migration is sufficient to lower the equilib-
rium θ from 1 to 1/(4Nm + 1) = 0.38. The migration rate is m = 0.02, corresponding to an
average of less than one migrant allele per generation in each population.
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Inbreeding Model

So far in the Wright-Fisher model and Infinite Island model, we have not organised the 2N
alleles into N individuals. We have focused on the coancestry coefficient, θ = FST , and not
described the other two of Wright’s F-statistics, f = FIS and F = FIT . The inbreeding model
is more general than the Wright-Fisher model, as it does organise alleles into individuals, and
allows the two alleles of a single individual to be more closely related than two alleles of two
different individuals. This effect is called inbreeding:

Definition: A population exhibits inbreeding if the two alleles of a single individual are more likely
to be the same than two alleles selected from two different individuals in the population.

This suggests a connection with the idea of correlation of alleles within individuals, similar to
the descriptions of θ as correlation of alleles of different individuals seen on page 9.

Figure 6: The inbreeding model with inbreeding parameter f = 0.2. ‘Inbred’ individuals are
marked during the animation with red rims, and always have two identical alleles.

The inbreeding model is similar to the Wright-Fisher model, but differs as follows.

• Organise the 2N alleles in each population into N individuals.

• When drawing the two alleles for an individual in generation t, follow the usual Wright-
Fisher scheme with probability 1− f , by drawing the two alleles at random with replace-
ment from those available at time t− 1.

• With probability f , the individual is ‘inbred’. In this case, draw only one allele from time
t− 1 for this individual, and give it two copies of the same allele.

• f is called the within-population inbreeding coefficient, and is Wright’s FIS.

17



As ever, this mechanism for conceptualising inbreeding is not thought to be realistic, but it is
a plausible description of real genetic structure.

Wright’s F-statistics revisited

Before looking at the inbreeding model in more detail, we revisit Wright’s F-statistics and focus
on the two statistics relating to inbreeding: FIT and FIS. The definitions below are valid for any
genetic model, not just the inbreeding model which we will return to soon. However, as always,
they do rely on the idea of an infinite reference population and genetic sampling leading to a
population of replicate populations. It is the statistical properties of the replicate populations
that we are interested in.

Overall inbreeding coefficient, F = FIT

The concept and derivations of the overall inbreeding coefficient, F or FIT , are exactly analogous
to those for θ = FST , except that F relates to alleles within the same individual, whereas θ
relates to alleles of different individuals within the same population.

Probability of identity by descent

• θ = FST is the probability of identity-by-descent for two alleles selected from different individ-
uals in the same population: page 9. The probability is taken across all replicate populations.

• F = FIT is the probability of identity-by-descent for two alleles selected from a single individual
in a population. Again, the probability is taken across all replicate populations.

In the Wright-Fisher model or infinite island model, alleles are not organised into individuals.
For these two models, therefore, there is no difference between selecting two alleles from the
same individual or from different individuals, so F = θ. In the inbreeding model, F 6= θ.

Relationship to probabilities of identity in state

• θ = FST =
PA/A−p2A
pA(1−pA)

, where PA/A is the probability (across populations) that two alleles selected
from different individuals in the same population are both of allele type A. The expression is
valid for any allele type A, regardless of its frequency pA in the ancestral population.

Recall (page 9): selected alleles a1 and a2 are definitely identical in state if they are ibd:
probability θ; so with probability θpA, they are ibd and have allele type A. If they are not ibd,
they have two different ancestors at generation 0, so the probability they are iis for allele A is
p2A. So

PA/A = θpA + (1− θ)p2A ⇒ θ =
PA/A − p2A
pA(1− pA)

.
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• The analogous expression for F is

F = FIT =
PAA − p2A
pA(1− pA)

,

valid for any allele type A, where PAA is the probability (across populations) that both alleles
of a single individual are of type A.

Explanation: Let a1 and a2 be the two alleles of the selected individual. By definition of F ,
the probability that a1 and a2 are ibd is F . The probability that a1 and a2 are ibd and have
allele type A is therefore FpA, because pA is the probability that their common ancestor allele
in generation 0 had type A.

With probability 1 − F , the alleles a1 and a2 are not ibd. They therefore had two differ-
ent ancestor alleles at time 0, drawn independently from the reference population. Thus the
probability they are both of type A is p2A.

Overall,

PAA = FpA + (1− F )p2A ⇒ F =
PAA − p2A
pA(1− pA)

.

Correlation of alleles within or between individuals

• θ = FST is the correlation between two alleles selected from different individuals in the same
population.

Recall (page 9): let X1 and X2 be indicator random variables for whether alleles a1 and a2
have type A; where a1 and a2 are selected from different individuals in the same population.
Then

E(Xi) = E(X2
i ) = pA (i = 1, 2); E(X1X2) = PA/A by definition of PA/A .

So

corr(X1, X2) =
E(X1X2)− E(X1)E(X2)

E(X2
i )− E(Xi)2

=
PA/A − p2A
pA(1− pA)

= θ.

• Similarly, let Y1 and Y2 be indicator random variables for whether alleles a1 and a2 belonging
to a single individual have type A. Then

E(Yi) = E(Y 2
i ) = pA (i = 1, 2); E(Y1Y2) = PAA by definition of PAA .

So

corr(Y1, Y2) =
E(Y1Y2)− E(Y1)E(Y2)

E(Y 2
i )− E(Yi)2

=
PAA − p2A
pA(1− pA)

= F .

Overall, θ = FST is the correlation between alleles of different individuals in the same pop-
ulation; whereas F = FIT is the correlation of alleles within individuals. In either case, the
correlation is taken across all replicate populations.
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Within-population inbreeding coefficient, f = FIS

To understand the within-population inbreeding coefficient, f , we need a new way of thinking.
Up till now we have been thinking in terms of the total population: the ‘population of popula-
tions’ generated by genetic sampling. By contrast, the within-population inbreeding coefficient
f refers to processes inside a replicate population, but it is still a global parameter that applies
to all replicate populations at once.

The key difference that this makes is that we need to consider allele frequencies within popula-
tions, instead of considering the overall allele frequency pA. Each generation, the allele frequency
in replicate population i will change due to random genetic drift; so we also have to be clear
which generation of allele frequency we are referring to.

Define the following quantities for a single replicate population i and for allele types A and B:

pAi = frequency of allele type A in replicate population i at generation t

pAi? = frequency of allele A in replicate population i in the parental generation t− 1.

PAAi = probability an individual in replicate population i at generation t has genotype AA.

Similarly, for another allele type B, define pBi and pBi? as the frequency of allele type B respec-
tively in the offspring generation t and the parental generation t− 1. Here, the allele frequency
is the proportion of the 2N alleles with the corresponding type.

f = FIS as the probability of inbreeding

As in the description in the inbreeding model, we define f to be the probability that an individ-
ual’s two alleles are identical copies of the same allele from the parental generation. Consider
the genotype probabilities for individuals in generation t of population i.

With probability f , an individual has two copies of the same parental allele. The probability
this allele is of type A is pAi?.

With probability 1−f , the individual’s alleles are drawn at random with replacement from the
parental stock. The probability that they are both of type A is p2Ai?.

Thus the probability that the individual has genotype AA is

PAAi = fpAi? + (1− f)p2Ai? .

For any two allele types A and B, the individual can only have genotype AB if it is not ‘inbred’.
Thus

PABi = 2(1− f)pAi?pBi? .

The ‘2’ arises because the selected alleles could be A first and B second, or the other way
around.
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These expressions hold for all allele types. If there are only two allele types available, A and
B, then the entire set of genotype probabilities is:

PAAi = fpAi? + (1− f) p2Ai?

PABi = (1− f) 2 pAi? pBi?

PBBi = fpBi? + (1− f) p2Bi?

(Check that these probabilities sum to 1 if pAi? + pBi? = 1.)

This shows that f describes the deviation from Hardy-Weinberg proportions in each generation.
We can imagine that proportion (1−f) of the population follows Hardy-Weinberg proportions,
while proportion f is ‘inbred’. The parameter f controls the surplus of homozygotes (indi-
viduals with both their alleles the same) compared with Hardy-Weinberg proportions.

f = FIS as the correlation of alleles within individuals within populations

Inside replicate population i, we consider selecting two alleles a1 and a2 from a single individual
at generation t. Here, we have to be careful, because there are two things we might mean by
‘selecting an individual at generation t’:

1. Generation t is already formed, and we sample from the realised N individuals in gener-
ation t;

2. Generation t is not yet formed from the parental generation t− 1. Instead, our sampling
at generation t describes the process of forming individuals for generation t, and therefore
the relevant frequencies are those in the parental generation, pAi?.

Conventionally, it is Option 2 that is used. The sampling process therefore describes the unit-
ing of gametes to form generation t, rather than a sampling of the specific N individuals
that survived from the infinitely many united gametes. For this reason, the correlations we are
about to describe are often referred to as the correlation between uniting gametes. This
is a rather subtle way of saying that the correlations are calculated with respect to the allele
frequencies in the parental generation, rather than the offspring generation.

Thus, let a1 and a2 be a pair of uniting gametes for generation t, in other words, the two alleles
of a ‘potential’ individual at generation t. Let Y1 and Y2 be indicator random variables for
whether alleles a1 and a2 have type A. Then

E(Yk | pAi?) = E(Y 2
k | pAi?) = pAi? (k = 1, 2); E(Y1Y2 | pAi?) = fpAi? + (1− f)p2Ai?.

So

corr(Y1, Y2 | pAi?) =
E(Y1Y2 | pAi?)− E(Y1 | pAi?)E(Y2 | pAi?)

E(Y 2
k | pAi?)− E(Yk | pAi?)2

=
fpAi? + (1− f)p2Ai? − p2Ai?

pAi?(1− pAi?)
= f .

In this sense, the within-population inbreeding coefficient f is the correlation between uniting
gametes at any generation.
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The relationship between f , F , and θ

Result: Wright’s three F-statistics, f = FIS, F = FIT , and θ = FST , are linked by the following
formula:

f =
F − θ
1− θ

. (6)

(This expression is stated without explanation on page 49 of Weir (1996).)

Proof: To link the global quantities F and θ with the within-population quantity f , we need to
relate the global PAA to its within-population analogue PAAi, by taking the expectation across
populations.

Let E? denote the expectation over the distribution of pAi?, the allele frequency in the parental
distribution. First note the following:

• PAA = E?(PAAi) by definition of PAA as the probability across populations of sampling a
homozygote for allele type A.

• E?(pAi?) = pA.

• E?(p2Ai?) = PA/A. This is because PA/A describes the probability of sampling two A alleles
from two different individuals at generation t, so the two parental alleles at generation
t − 1 are sampled independently (with replacement) from the parental allele frequencies
pAi?.

Using these expressions, we have:

PAA = E?(PAAi)
= E?

{
fpAi? + (1− f)p2Ai?

}
from above;

= fpA + (1− f)PA/A

⇒ f =
PAA − PA/A
pA − PA/A

∴ f =
F − θ
1− θ

using F =
PAA−p2A
pA(1−pA)

, θ =
PA/A−p2A
pA(1−pA)

. �

Other ways of defining f , θ, and F

As we’ve already seen, there are lots of different ways of defining and conceptualising the F-
statistics f = FIS, θ = FST , and F = FIT . In fact, there are even more ways in common use.
For completeness, we describe these here.
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f , θ, and F as measures of heterozygosity

This is perhaps the most common way of describing f, θ, and F , at least in biological texts.
Heterozygosity describes the level of heterozygotes in a population. An individual is a
heterozygote at a particular locus if its two alleles are of different types. If its two alleles
are of the same type, it is a homozygote. We have already seen that inbreeding inflates the
homozygosity in a population. Even if there is no inbreeding (f = 0), a large θ implies that
populations are reaching fixation, so the individuals inside the replicate populations are more
likely to be homozygous than they would be within the infinite reference population, or total
population. These ideas motivate the definitions of f , F , and θ in terms of heterozygosity
levels.

The previous developments in terms of probabilities of identity-by-descent and correlation of
alleles are statistically more precise, and biologically more general, as heterozygosity only ap-
plies to diploid organisms whereas the F-statistics (in particular θ = FST ) are relevant to any
organisms. Even for diploid organisms, there is no concept of heterozygosity for their mtDNA
haplotypes. However, heterozygosity is a fundamental biological concept because it affects pop-
ulation fitness: heterozygous individuals may have two chances of resistance to a disease, or
some other useful trait. This is probably why it is often taken as the definition of choice for
F-statistics.

Suppose at first that there are just two allele types, A and B. Define the following measures
for allele A:
• HT = 2pA(1 − pA) : expected heterozygosity in the total population, assuming random

mating. The total population refers to the infinite reference population. Thus HT is
the frequency of genotype AB (heterozygotes) in the total population, if genotypes are
formed by independent selection of alleles.

• HS = E? {2pAi?(1− pAi?)} : the mean, over replicate populations, of the expected het-
erozygosity within the populations, if there were random mating within the populations.
As in the previous section, we consider the heterozygosity in uniting gametes for genera-
tion t, so we use the allele frequency pAi? from the parental generation t− 1 for replicate
population i.

From the results on page 22, we have HS = E? {2pAi?(1− pAi?)} = 2(pA − PA/A).

• HI = E?(PABi) = PAB, the mean observed heterozygosity within replicate populations.
This allows for the possibility that mating is not random within replicate populations.

Now in the total population, we have

pA = PAA +
1

2
PAB ,

because we can imagine selecting an allele by first selecting an individual, and then selecting
one of the individual’s two alleles. If the individual has genotype AA (probability PAA), then
the selected allele will definitely be of type A. If the individual has genotype AB (probability
PAB), the selected allele will be of type A with probability 1

2
. Thus

HI = PAB = 2(pA − PAA) .
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Wright’s F-statistics are then defined as follows:

f = FIS =
HS −HI

HS

, θ = FST =
HT −HS

HT

, F = FIT =
HT −HI

HT

. (7)

With these expressions, it is easy to derive the relationship f =
F − θ
1− θ

.

Exercise 4: Check that the expressions in (7) satisfy the previous definitions θ =
PA/A−p2A
pA(1−pA)

,

F =
PAA−p2A
pA(1−pA)

, f = F−θ
1−θ .

When there are more than two allele types, the expressions above still apply for each allele type
A, where all other allele types are grouped into a single ‘not-A’ type.

θ = FST as the between-population percentage of variance

Another common definition of θ = FST is as the between-population component of variance.
By now, you will be alert to the question ‘variance of what?’ The intended variance is the
variance in allele selection, for the gametes forming generation t. Explicitly:

• Select one allele at random from any replicate population, from the gametes that will form
generation t. Let X be the indicator for whether this allele is of type A.

• E(X) = pA, and E(X2) = pA, so var(X) = pA(1− pA). This is the total variance of X.

• Partition the total variance ofX into a within-populations component, and a between-populations
component, using the law of total variance:

var(X) = E? {var(X | pAi?)}+ var? {E(X | pAi?)} .

As previously, the expectation and variance are taken over the distribution of pAi?, the allele
frequency of allele type A in the parental generation t− 1 of replicate population i.

• The between-populations component of the variance is the second term,

var? {E(X | pAi?)} = var?(pAi?) = E?(p2Ai?)− {E?(pAi?)}2 = PA/A − p2A ,

using E?(p2Ai?) = PA/A as on page 22.

Viewing θ as the percentage of variance that is between populations implies taking the ratio of
between-populations variance to total variance:

θ =
PA/A − p2A
pA(1− pA)

as before.
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Inbreeding model revisited

For the Wright-Fisher model, we had f = 0, so Ft = θt for any generation t, and θt =
1−

(
1− 1

2N

)t
. The inbreeding model is a bit like the Wright-Fisher model but with inbreeding

included. We can derive analogous expressions for θt and Ft.

Expressions for θt and Ft

Result: For the inbreeding model with size N individuals and within-population inbreeding param-
eter f , the generation-t values of θ and F are

θt = 1−
{

1− (1 + f)

2N

}t
Ft = 1− (1− f)

{
1− (1 + f)

2N

}t
.

Proof: We set up coupled recursions for θt and Ft. For generation 0,

θ0 = 0 F0 = f ,

using the definitions as probabilities of identity-by-descent between and within individuals.

Consider θt, the probability two alleles a1 and a2 in different individuals at time t are ibd.
Partition over different possibilities for the parent alleles of a1 and a2 at time t− 1:

Parent alleles Probability P(ibd) given these parents

Same parent allele 1
2N

1

Different parent alleles within same individual 1
2N

Ft−1

Different parent alleles in different individuals 1− 2
2N

θt−1

Thus

θt =
1

2N
+

1

2N
Ft−1 +

(
1− 1

N

)
θt−1 . (8)

Similarly, consider Ft, the probability two alleles a1 and a2 in a single individual at time t are
ibd. The individual can be ‘inbred’ (probability f), or with probability 1 − f there are the
same possibilities for the parents as before. Partition over possibilities:

Possibility Probability P(ibd) given possibility

Inbred f 1

Not inbred; same parent allele 1−f
2N

1

Not inbred; different parents in same individual 1−f
2N

Ft−1

Not inbred; different parents in different individuals (1− f)
(
1− 2

2N

)
θt−1
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Thus

Ft = f + (1− f)

{
1

2N
+

1

2N
Ft−1 +

(
1− 1

N

)
θt−1

}
=

1

2N
+ f

(
1− 1

2N

)
+

(1− f)

2N
Ft−1 + (1− f)

(
1− 1

N

)
θt−1 . (9)

Equation (8) gives Ft in terms of {θt}. Substituting for Ft and Ft−1 in (9) gives a difference
equation in θt. Solving gives the results. �

R simulations: inbreeding model
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Figure 7: Simulations of the inbreeding model with N = 20, f = 0.2.

Command:
inbreeding.model.func(N=20, f=0.2, tmax=50, p.ancestral=c(0.4, 0.6), nrep=10000)

For this population size N = 20, the within-population inbreeding coefficient is quite large at
f = 0.2. The effect is a small increase in θ over its Wright-Fisher value (shown in the dashed
grey line), and a larger increase in F over its Wright-Fisher value, in the generations before
convergence to 1. In the Wright-Fisher model without inbreeding, F = θ.

Practical Session 2

1. Infinite Island model

Animations: Use wrightfisher.animate.func but with the parameter m added, where m
is the probability that each individual is a migrant.

wrightfisher.animate.func(m=0.2)

## For faster simulation:

wrightfisher.animate.func(N=3, m=0.2, tmax=3, p.ancestral=c(0.4, 0.6),

nrep=3, skip.mix=T, delay.long=0.2, delay.short=0.2)
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Simulations: Produces graphics similar to Figure 5.

infinite.island.func()

infinite.island.func(N=50, m=0.1, tmax=50, p.ancestral=c(0.4, 0.6), nrep=1000)

Exercise 5: (Answers on page 41.)

(a) Consider θ in the infinite island model with particular values of m, N, p.ancestral, and nrep.
Which argument would you change, and how, to achieve the same value of θ in the Wright-Fisher
model?

(b) Try the following simulations:

infinite.island.func(m=0.1, tmax=50, p.ancestral=c(0.4, 0.6)) # High m, N=50

infinite.island.func(m=0.01, tmax=50, p.ancestral=c(0.4, 0.6)) # Low m, N=50

infinite.island.func(m=0.01, tmax=100, p.ancestral=c(0.4, 0.6)) # Low m, longer t
Does θt converge more quickly to equilibrium with large m or with small m? Can you think
of an argument to explain why? (Hint: consider the relationship between θ under the infinite
island model, and θ under the Wright-Fisher model.)

(c) Run the animation function with m = 1: wrightfisher.animate.func(m=1). What should
the value of θ be? Why does the expression 1/(4Nm+ 1) give the wrong answer?

2. Inbreeding model

Animations: e.g. inbreeding.animate.func(N=3, f=0.2, tmax=3)

Simulations: Produces graphics similar to Figure 7. Example:
inbreeding.model.func(N=50, f=0.1, tmax=50, p.ancestral=c(0.4, 0.6), nrep=1000)

Exercise 6: (Answers on page 42.)

(a) If f = 0, what is the relationship between F and θ? What is the relationship between the
inbreeding model and the Wright-Fisher model when f = 0?

(b) If we had data from only one replicate population, which quantities out of F , θ, and f would
we have information to estimate?

(c) Suppose we have f = 0 in the inbreeding model. Sample a single individual from one population
at time t > 0. Is this individual more likely to be a homozygote than it would be if it were
sampled directly from the infinite reference population? Why?

(d) Run the following command (it will take a minute):
res=inbreeding.model.func(N=10,f=0.6,tmax=10,p.ancestral=c(0.4,0.6),nrep=10000)

The result res has components that include pA= Epops, i(pAi), pAsq= Ei(p2Ai), PA.A= PA/A =
Ei(PA/A,i), PAA= PAA = Ei(PAAi), and two.indiv.ibd. Using plots, verify that E?(p2Ai?) = PA/A,
where the ? refers to the parental generation relative to PA/A. Also find the correct objects
to verify that θ is the percentage of variance between populations. Would you expect that
Ei(p2Ai) = PAA?
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Estimating f = FIS, θ = FST , and F = FIT

It’s now time to consider how we would use real data to estimate the three components of
genetic structure, f , θ, and F . Although many estimating approaches have been proposed,
it is probably true that the approach of Weir and Cockerham (1984) has the widest accep-
tance. Their approach is used (with a slight modification for combining estimates across
loci) by the popular Genepop software (Raymond and Rousset, 1995; Rousset, 2008): see
http://genepop.curtin.edu.au/Appendix2.htm.

Consider the definitions:

θ =
PA/A − p2A
pA(1− pA)

, F =
PAA − p2A
pA(1− pA)

, f =
F − θ
1− θ

.

These expressions hold for any allele A. They rely upon pA, the frequency of allele A in the
ancestral population — which probably never existed and about which we have no data. Weir
and Cockerham’s approach is to derive quantities with expectations that depend upon F , θ,
and pA(1 − pA), and to take ratios of these to cancel out the dependence upon the unwanted
pA(1− pA). Their approach follows the layout of an analysis of variance table, although it is
not a conventional analysis of variance model. The idea of partitioning variances in this layout
is sometimes called Analysis of Molecular Variance, or AMOVA.

To estimate F and θ, we need data from at least two replicate populations: for example,
contemporary populations on two different islands. The data that we can observe are sample
allele frequencies and correlations within each of the populations. Following Weir (1996), we
use the symbol tilde (˜) to denote a sample frequency. For example, if we sample 2ni alleles
from population i, then

p̃Ai =
number of the 2ni alleles that are of type A

2ni
.

More precisely:

• there are r replicate populations: populations i = 1, 2, . . . , r;

• there are ni individuals sampled from population i: individuals j = 1, 2, . . . , ni;

• each individual has 2 alleles: alleles k = 1, 2.

For allele k of individual j in population i, define the indicator

Yijk =

{
1 if allele ijk is of type A,
0 otherwise.

Then

p̃Ai =
1

2ni

ni∑
j=1

2∑
k=1

Yijk = Yi

Similarly, the sample frequency of homozygotes for allele type A is

P̃AAi =
1

ni

ni∑
j=1

Yij1Yij2
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Clearly, E(p̃Ai) = pA, and E(P̃AAi) = PAA, where the expectation is taken over all replicate
populations. We will also need E(p̃ 2

Ai), which we find by computing var(p̃Ai):

Result: Consider the process of drawing a replicate population (genetic sampling), then taking a
sample of size ni (statistical sampling) and finding p̃Ai. The variance of p̃Ai is

var(p̃Ai) = E(p̃ 2
Ai)− p2A = PA/A − p2A +

1

2ni
(pA + PAA − 2PA/A)

= pA(1− pA)

{
θ +

1

2ni
(1 + F − 2θ)

}
,

where expectations are taken over the entire process of genetic sampling and statistical sam-
pling. This is called the total variance of allele frequency by Weir (1996), p. 48, eqn 2.14.

Proof: Consider
p̃Ai =

1

2ni

ni∑
j=1

(Yij1 + Yij2) =
1

2ni

ni∑
j=1

Xj ,

where Xj = Yij1 + Yij2. Using the standard expression for the variance of a sum:

var(p̃Ai) =
1

4n2
i

{
nivar(Xj) + ni(ni − 1)cov(Xj, X`)

}
(` 6= j) . (10)

Now

var(Xj) = var (Yij1 + Yij2) = 2var(Yijk) + 2cov (Yij1, Yij2)

= 2
(
pA − p2A

)
+ 2

(
PAA − p2A

)
= 2(pA + PAA − 2p2A) ,

noting that E(Yijk) = pA = E(Y 2
ijk), and E(Yij1Yij2) = PAA, so var(Yijk) = pA − p2A and

cov(Yij1, Yij2) = PAA − p2A.

Also,

cov(Xj, X`) = E
{

(Yij1 + Yij2) (Yi`1 + Yi`2)
}
− E (Yij1 + Yij2)E (Yi`1 + Yi`2)

= 4 cov (Yijk, Yi`m) (` 6= j)

= 4
(
PA/A − p2A

)
,

because E(YijkYi`m) = PA/A for ` 6= j. Inserting these expressions into (10) gives the result. �

Weir and Cockerham’s estimators

The data observed from real populations can be written as yijk, the observed indicator for
whether allele k in individual j in population i is of type A. Weir and Cockerham’s idea is
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to partition the overall sum of squares of the {yijk} into a hierarchy of intermediate sums of
squares: within individuals; between individuals within populations; and between populations:

r∑
i=1

ni∑
j=1

2∑
k=1

(yijk − y)2 =
r∑
i=1

ni∑
j=1

2∑
k=1

{
(yijk − yij) + (yij − yi) + (yi − y)

}2

=
r∑
i=1

ni∑
j=1

2∑
k=1

(yijk − yij)2 +
r∑
i=1

ni∑
j=1

2∑
k=1

(yij − yi)2 +
r∑
i=1

ni∑
j=1

2∑
k=1

(yi − y)2 ,

(11)

where

y =

∑r
i=1

∑ni

j=1

∑2
k=1 yijk

2n·
, yi =

∑ni

j=1

∑2
k=1 yijk

2ni
, yij =

∑2
k=1 yijk

2
, n· =

r∑
i=1

ni

Equation (11) results because the cross-terms in each sum of squares vanish. Following a lot of
tedious algebra, the following expressions emerge, equivalent to Weir (1996), p. 177, Table 5.4:

• Level 1 (alleles within individuals). This level is given code G (for Gametes).

Simplification:
r∑
i=1

ni∑
j=1

2∑
k=1

(yijk − yij)2 =
r∑
i=1

ni

(
p̃Ai − P̃AAi

)

Expectation: E

{
r∑
i=1

ni∑
j=1

2∑
k=1

(yijk − yij)2
}

= E

{
r∑
i=1

ni

(
p̃Ai − P̃AAi

)}
= n·pA(1− pA)(1− F )

• Level 2 (I: individuals within populations).

Simplification:
∑r

i=1

∑ni

j=1

∑2
k=1(yij − yi)2 =

r∑
i=1

ni

(
p̃Ai + P̃AAi − 2 p̃ 2

Ai

)

Expectation: E
{∑r

i=1

∑ni

j=1

∑2
k=1(yij − yi)2

}
= E

{
r∑
i=1

ni

(
p̃Ai + P̃AAi − 2 p̃ 2

Ai

)}

= pA(1− pA)(n· − r)
{

1− F + 2(F − θ)
}

• Level 3 (P: between Populations):

Simplification:
∑r

i=1

∑ni

j=1

∑2
k=1(yi − y)2 =

r∑
i=1

2ni (p̃Ai − p̃A)2 (p̃A = y)

Expectation: E
{∑r

i=1

∑ni

j=1

∑2
k=1(yi − y)2

}
= E

{
r∑
i=1

2ni (p̃Ai − p̃A)2
}

= pA(1− pA)(r − 1)
{

1− F + 2(F − θ) + 2nc θ
}
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where nc = 1
r−1

(
n· −

∑r
i=1 n

2
i

n·

)
acts as an average of the sample sizes, and emerges from the

algebra when finding the expectations. The term nc indicates that it acts as a ‘combined’
sample size per population.

Overall, the working produces Table 1, which is written in an analysis-of-variance type format,
and corresponds to Table 5.4 on page 177 of Weir (1996).

To finish off, we use the method-of-moments to find θ̂ and F̂ as follows (see Table 1 for notation):

E(msp) = pA(1− pA)
{

1− F + 2(F − θ) + 2nc θ
}

E(msi) = pA(1− pA)
{

1− F + 2(F − θ)
}

E(msg) = pA(1− pA)
{

1− F
}

Manipulating gives:

θ =
E(msp)− E(msi)

E(msp) + (nc − 1)E(msi) + ncE(msg)
⇒ θ̂ =

msp−msi

msp + (nc − 1)msi + ncmsg
;

(12)

F = 1− 2ncE(msg)

E(msp) + (nc − 1)E(msi) + ncE(msg)
⇒ F̂ = 1− 2ncmsg

msp + (nc − 1)msi + ncmsg
;

(13)

f =
F − θ
1− θ

⇒ f̂ =
F̂ − θ̂
1− θ̂

. (14)

Note that these expressions are not exactly unbiased for θ and F , because the expected ratio
is not equal to the ratio of expectations. However, they have the big advantage of avoiding
altogether the need to estimate pA, the proportion of allele type A in the infinite ancestral
population that probably never existed. They are entirely compiled from observable data from
populations i = 1, 2, . . . , r.

Combining estimates for different alleles and loci

The estimators (12), (13), and (14) are gained from a single allele type, A, at a single locus. In
practice, there will be many loci, each with many different allele types. Each allele type will
give a different estimate of θ, F , and f ; but all alleles are estimating the same parameter value.
We therefore need a way of combining the estimates from different allele types and loci into
one single estimate from a data set.

There is also a subtlety here regarding the sample size, ni, from population i. For one particular
locus, ni is the number of individuals successfully genotyped at that locus, from population i.
All alleles at the locus therefore have the same sample size ni. However, for different loci, the
sample sizes for population i may differ, because some individuals will genotype successfully
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at some loci but not at others. For example, at locus 1 we might have ni = 31 successful
genotypes, but at locus 2 we might have only ni = 28.

There is no ‘right’ way to combine the allele-specific estimates into an overall estimate, so
various authors have suggested various schemes which are tested by simulation. The ideal
scheme will lead to good properties with respect to both accuracy and precision.

Consider the estimates from allele type m at locus `. In equations (12) and (13), we could write

θ̂`m =
theta.top`m

denom`m
, F̂`m = 1− F.top`m

denom`m
.

Our need is to combine the multiple estimates for all ` and m into a single estimate. Weir (1996)
suggests summing the top terms across alleles, summing the denominator across alleles, and
dividing so that the overall estimate is a ratio of means rather than a mean of ratios. However,
Weir suggests a by-locus weighting that would give equal weight to all loci, regardless of how
many individuals were successfully genotyped at each locus. Genepop on the Web broadly uses
Weir’s approach, but they use a different weighting such that loci with fewer individuals geno-
typed will contribute less to the overall estimates than loci with more individuals genotyped:
see http://genepop.curtin.edu.au/Appendix2.htm. In practice, the difference tends to be
very small because the sample sizes do not differ greatly between loci. We use the Genepop
method here.

The overall estimates of θ and F from multiple alleles and loci are therefore as follows, where
sums are taken over loci ` and over allele types within loci, m:

θ̂ =

∑
`

∑
m theta.top`m∑

`

∑
m denom`m

=

∑
`

∑
m {msp`m −msi`m}∑

`

∑
m {msp`m + (nc,`m − 1)msi`m + nc,`mmsg`m}

. (15)

F̂ = 1−
∑

`

∑
m F.top`m∑

`

∑
m denom`m

= 1−
∑

`

∑
m {2nc,`mmsg`m}∑

`

∑
m {msp`m + (nc,`m − 1)msi`m + nc,`mmsg`m}

. (16)

These expressions are equivalent to the calculations done on Genepop on the Web (Raymond
and Rousset, 1995; Rousset, 2008), and in the function Fstatistics.func in the R bundle.

The within-population inbreeding coefficient f is estimated from f̂ = F̂−θ̂
1−θ̂

using the overall F̂

and θ̂ estimates.

Haploid data

In the case of haploid data (e.g. mtDNA), the inbreeding coefficients F and f are no longer
relevant, but θ = FST is still relevant and commonly used to measure population structure and
gene flow from haplotypes. Instead of indicators yijk, we do not have the level of alleles within
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individuals. The observations are indicators yij for whether individual j in population i has
haplotype A. The partitioning of sums of squares corresponding to (11) becomes

r∑
i=1

ni∑
j=1

(yij − y)2 =
r∑
i=1

ni∑
j=1

(yij − yi)2 +
r∑
i=1

ni∑
j=1

(yi − y)2 .

Following the same scheme as for diploid data, the lengthy algebra finally results in

θ̂haploid =
msphap −msghap

msphap + (nc − 1)msghap

,

where nc = 1
r−1

(
n· −

∑r
i=1 n

2
i

n·

)
as before, msphap =

∑r
i=1 ni(p̃Ai−p̃A)2

r−1 and msghap =
∑r

i=1 nip̃Ai(1−p̃Ai)

n·−r .

See Weir (1996), Table 5.3, page 172.

AMOVA: Inference about population structure from data

The idea of AMOVA (Analysis of Molecular Variance) is to compare the variability drawn from
different sources in the ANOVA-like layout in Table 1, and to draw inference about θ = FST
through numerical resampling procedures such as permutation tests and bootstrapping.

Although some of the ideas apply to F and f as well, if inbreeding is of interest it is more
likely to be tested using within-population tests for Hardy-Weinberg proportions: noting that
f describes the deviation of genotypes from HW proportions (page 21). We will focus on
FST = θ here, as it is used to describe population differentiation or structure.

Bootstrapped confidence intervals

The alleles within a locus are not statistically independent, because having more of one allele
type necessitates having less of another. Therefore, different alleles within a locus do not
provide statistically independent estimates of θ. For an extreme example, if there are only two
allele types at a locus, it is easy to show that the estimate in equation (12) will be the same
for both alleles.

However, most studies in population genetics choose loci on different chromosomes (unlinked
loci), for example a suite of microsatellite loci is typically chosen to ensure this. If so, then loci
are statistically independent and estimates of θ from different loci are statistically independent.
In this case, confidence intervals can be gained for θ by bootstrapping the data across loci.
However, many loci are needed for this to be effective. In practice, we may be more interested
in specific hypotheses such as H0 : θ = 0, and these are more effectively tested by permutation
tests.

AMOVA permutation test for H0 : θ = 0.

Permutation tests are described briefly in Weir (1996), and in the manual to the population
genetics software Arlequin (Excoffier, Laval, and Schneider, 2006): Section 7.2, p.119 - 127.

Under the null hypothesis H0 : θ = 0, there is no population differentiation, so any individual
could be drawn from any population. The permutation test works by permuting the population

34



labels such that the data for each individual is assigned to a randomly generated population,
keeping the sample sizes constant for each population.

In R, if the data frame dat contains ndot individuals, and their population labels are in dat$pop,
we can achieve the necessary permutation as follows:

> dat.perm = dat

> dat.perm$pop = sample(dat$pop, ndot, replace=F)

Then θ is estimated for the permuted data in dat.perm. This process is repeated many times
(say, 500 times) to generate 500 estimates of θ under the null hypothesis. If the real-data value
of θ is greater than 95% of the simulated values, it is considered unusually large for the null
distribution and there is evidence that the true value of θ is not 0. The p-value for the one-sided
test would be:

p =
number of the 500 sims giving estimated θ greater than the real-data estimate of θ

500
.

A one-sided test is used because (as a general rule) the true value of θ is ≥ 0. For example,
θ can be defined as a probability of identity-by-descent; although we note that under the more
general definition as a correlation θ could in principle be < 0.

Fixed populations versus random populations

Throughout our development, we have been treating populations as random replicate pop-
ulations and using observed data to deduce properties of the mechanism for generating these
random populations. Our inference and interest is therefore about the population-generating
mechanism, not about the specific populations we happen to observe.

We could alternatively imagine that our populations are fixed and that these fixed populations
are our object of interest and inference. The statistic FST = θ̂ could be calculated using equation
(15) just as before. However, as Weir (1996, page 166-167) points out, there are more direct
ways of determining differentiation between fixed populations, for example using a chi-squared
test for equality of their allele frequencies. If they have different allele frequencies, they may
be considered as ‘differentiated’ populations.

Example: ship rats (Rattus rattus) on Great Barrier Island, New Zealand

We illustrate here how θ = FST can be used to get a rough picture of landscape barriers to
gene flow, using data from ship rats (Rattus rattus) on Great Barrier Island, New Zealand. The
analysis below is crude and simple, but does appear to provide some insight into barriers to
ship rat dispersal.
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Code Awa BM Fit Flat Grey Haku Kai Mahu

Population Awana Mainland Fitzroy Flat Grey Motuhaku Kaikoura Mahuki

ni 8 7 34 25 5 22 61 21

Code Nel Red Taik WH

Population Nelson Red Cliffs Motutaiko Windy Hill

ni 15 17 16 39

The FST network analysis is described in
Fewster, Miller, and Ritchie (2011). The network
is created using a Delaunay triangulation given the
coordinates of each location. FST = θ is estimated
separately for every pair of populations in the
network. Boundaries are grown using the
Monmonier algorithm (Monmonier, 1973)
by picking the edge with the largest FST ,
and growing the boundary until it can no longer
find an edge with FST above a pre-set threshold.
Here, the threshold used is FST = 0.15.
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Figure 8: FST network for ship rats on Great Barrier Island, New Zealand. FST estimates are
multiplied by 100 on the network. The geographical locations of boundaries are marked on the
map on the right. Locations of cliffs are shown in bold lines on the map.
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A rule of thumb for interpretation of θ = FST values is given by Wright (1978), although it
should be stressed that it is only a very crude guideline:

• FST = 0 to 0.05 : little genetic differentiation.

• FST = 0.05 to 0.15 : moderate genetic differentiation.

• FST = 0.15 to 0.25 : great genetic differentiation.

• FST = 0.25 to 1 : very great genetic differentiation.

For the ship rat example, there is an association between high values of FST and either cliffs or
long water crossings (> 1 km). There is relatively little genetic distinction between locations
separated by much longer distances over land (20-30 km), because there are no significant
habitat barriers to rat dispersal. Interestingly, the link between Kaikoura Island and Fitzroy
is stronger than that between Kaikoura and Red Cliffs, even though the separation distance is
much smaller between the latter pair. This is probably due to a combination of fast currents
through the dividing channel between Kaikoura and Red Cliffs, and the fact that Fitzroy is the
hub for boat traffic to and from Kaikoura.

The linking of genetic boundaries to landscape features is described as landscape genetics.

Mantel test for isolation-by-distance

A popular way of using FST estimates is to conduct a test of isolation-by-distance, in which
pairwise FST estimates are related to pairwise geographical distances. A Mantel test is a
way of testing for correlations between two matrices: for example, whether genetic distance is
correlated with geographical distance. Like the other tests, it is based on permutations. Rows
and columns of the first matrix are permuted, and after each permutation, the matrix correlation
between the permuted first matrix and the second matrix is computed. The correlation between
the real-data matrices is then compared against this null distribution to test for significance of
the correlation.

In our context, we have the matrix D such that Dij is the geographical distance between
sampled locations i and j; and the matrix G of ‘genetic distances’, where Gij might be the
pairwise FST between locations i and j, or some transformation of FST such as FST/(1− FST )
(suggested in Genepop on the Web); or (1/FST − 1)/4 corresponding to Nm in the infinite
island model (see Bohonak, 2002); or some other genetic distance, such as distances based on
the number of shared alleles among individuals. If the test is significant, there is evidence that
the genetic separation of populations is correlated with their geographical separation. Other
geographical ‘distances’ that incorporate habitat type can also be used.
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Practical Session 3

Open the file PopGen-Practical-3.txt and follow the instructions within to do the following
examples.

Exercise 7: Answers on page 43.

(a) Estimate θ = FST for the Great Barrier Island data using R. Only use individuals with
at least 6 loci successfully genotyped:
res = Fstatistics.func(gbi.dat, min.loci.per.indiv=6)

Does the overall θ estimate indicate much population differentiation?

(b) Check that the R code gives the same answers for θ = FST as Genepop on the Web.

(c) Look at the pairwise FST estimates in res$pairs. Check a few of them against the
network in Figure 8 to be sure they are the same.

(d) Write your own code in R to do an AMOVA permutation test of the hypothesis H0 : θ = 0
for the overall θ on all populations. Is there significant evidence that θ > 0?
Note: use Fstatistics.func with the option allpairs=F to save time in the permu-
tation test. The option allpairs=F means that only the overall θ will be calculated for
each permutation; not all pairwise θ values.

(e) Do a pairwise AMOVA permutation test for θ between the two populations ‘Mainland’
(BM) and Fitzroy (Fit). The easiest way is to create a new data set containing just these
two populations, and use the code you wrote for (d):

new.dat = gbi.dat[gbi.dat$pop=="BM" | gbi.dat$pop=="Fit", ]

Is the differentiation between these populations significant? Comment on this in the light
of the sample sizes from the two populations: 7 from BM, 34 from Fit.

Note: You can check your answer for (e) using the function
perm.theta.func(new.dat, Nsim=500, allpairs=F)

Increase Nsim for a more accurate p-value.

(f) Another data set of Norway rats (Rattus
norvegicus) from three islands in the
Bay of Islands, New Zealand, is also provided
in boi.dat. Find FST = θ, and use
perm.theta.func(boi.dat) to test H0 : θ = 0.

Under the assumptions of the Infinite Island
Model, what is the effective number of migrants
per generation in each of the three populations?
Note: this number is not usually interpreted literally,
but rather as a comparative measure.
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Effective population size, Ne

In the models we have examined, the rate of change of genetic quantities from one generation
to the next depends fundamentally on the population size N . Conversely, information about
the rate of change of genetic quantities, such as allele frequencies or inbreeding, should provide
information about population size N . However, all the models are highly idealised and do not
necessarily describe the reproduction of real animals. In practice, individuals are not equally
successful as breeders, and some contribute many more gametes to the next generation than
others. Although our models do allow for some variance in the number of gametes contributed
across individuals, the variance in our idealised models is much lower than it is likely to be in
reality. For this reason, the notion of genetic effective population size, Ne, has been developed.
The effective population size is the size of an idealised population whose genetic parameters are
changing at the same rate as those in the population we have observed. The ideal population
meets the three conditions of equal sex ratio, random mating, and constant census population
size over generations. (Note that we have not looked at models that include sexes: the ideal
population is a dioecious version of the Wright-Fisher model.) The idea is that the real popula-
tion, with a census size of Nc individuals, can then be studied as if it were an ideal population
with size Ne individuals.

Generally, because of the uneven contribution of individuals to gametes, the effective population
size Ne is smaller than the census population size Nc, and often it is much smaller (perhaps
10 or even 100 times smaller, depending on the species and mating system). Additionally,
the ratio of Ne to Nc is not constant or predictable, and there are several possible definitions
of Ne depending upon which genetic parameters are inspected. Although Ne is a parameter
of fundamental importance in evolutionary genetics, it is less clear how useful or relevant it
is for describing population size of a contemporary population, or for use in conservation or
management. Some discussion and references are provided in Russell and Fewster (2009).
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Solutions to Exercises

Exercise 1. 1 − θt is the probability that two different alleles a1 and a2 in generation t are
not ibd. Trace back the ancestors of alleles a1 and a2 for generations t− 1, t− 2, . . . , 1, 0. If a1
and a2 share the same ancestor in any of these generations, they are ibd. In each generation,
the probability that they share the same ancestor is 1/(2N). There are t generations between
0 and t− 1, each giving an opportunity for sharing the same parent.

Thus, to not be ibd, all t of the opportunities must fail. So (1− θt) =

(
1− 1

2N

)t
.

Exercise 2.

(a) The only way to reduce θ = FST for a fixed t is to increase N . Neither p.ancestral nor

nrep will have any effect. This can also be deduced by θ = 1−
(
1− 1

2N

)t
.

(b) The only way to increase θ = FST when N is fixed is to increase t. The differentiation
between populations increases with the number of generations for which they have been
separated.

(c) The scatter of the grey points is increased by decreasing nrep. This is a consequence of
increasing simulation variability: it is nothing to do with the genetic process.

(d) The deviation of the coloured lines from 1 −
(
1− 1

2N

)t
is governed by p.ancestral.

The coloured lines
PA/A−p2A
pA(1−pA)

will have high variance if the denominator pA(1− pA) is small.
The most precise results use p.ancestral=c(0.5, 0.5), whereas p.ancestral=c(0.01,
0.99) gives much less precise estimates. Like (c), this is not connected with the genetic
process itself, but it does suggest that the ancestral allele frequencies may affect the
precision of estimates of θ.

Exercise 3.

(a) The conditional distribution is Yt+1 |Yt ∼ Binomial
(
2N, Yt

2N

)
. Thus

pij = P(Yt+1 = j |Yt = i) =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j

.

(b) From the transition probabilities in (a), we can see that the Markov chain is irreducible
and aperiodic, and it has a finite state space. Therefore, an equilibrium distribution
exists, and the chain will converge to the distribution. The possible equilibrium states
are the two absorbing states, Yt = 0 and Yt = 2N .

(c) Using the Binomial distribution in (a),

E(Yt+1 |Yt) = 2N × Yt
2N

= Yt , as required.
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(d) Generation 0 is drawn from the infinite reference population, so Y0 ∼ Binomial(2N, pA),
and E(Y0) = 2NpA. At the stopping time T , the only states that YT can take are 0 or 2N:

YT =

{
2N with probability α,

0 with probability 1− α.

Thus E(YT ) = 2Nα + 0(1− α) = 2Nα.

Using E(YT ) = E(Y0), we have

2Nα = 2NpA ⇒ α = pA.

Thus the probability that the population is eventually fixed for allele A is the same as
the frequency of A in the infinite reference population.

Exercise 4. Using the expressions HT = 2pA(1−pA), HS = 2(pA−PA/A), and HI = 2(pA−PAA)
from page 23, the results follow immediately.

Exercise 5.

(a) In the Wright-Fisher model, θ depends only upon t and N . Migration in the infinite island
model lowers θ relative to the Wright-Fisher model. Therefore, for a fixed t, increasing
N in the W-F model is the only way the W-F θ can be changed to match θ in the infinite
island model. For any level of migration m, we can always find a large enough N to
compensate for one particular t, but not for all t because the W-F θ will always converge
to 1 eventually.

(b) For a given N and t, the Wright-Fisher θ will always be higher than the infinite island θ,

so the infinite island θt < 1−
(
1− 1

2N

)t
for all t. Thus it cannot converge to equilibrium

1
4Nm+1

until 1−
(
1− 1

2N

)t ≥ 1
4Nm+1

. As m decreases, the right-hand side increases, so a
larger t is needed before convergence can occur.

(c) With m = 1, all alleles are drawn directly from the infinite reference population, so
PA/A = p2A and θ = 0.
The 1

4Nm+1
formula is not correct because it is an approximation suitable for small m,

not for m = 1. The exact expression is θ∞ = (1−m)2/ {2N − (1−m)2(2N − 1)} which
is 0 when m = 1.
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Exercise 6.

(a) f = F−θ
1−θ = 0, so F = θ. When f = 0, the inbreeding model is identical to the Wright-

Fisher model.

(b) Only f can be estimated from data on a single population, as it is a within-population
parameter. Both θ and F pertain to the relationship between replicate populations, so
cannot (or should not) be estimated from a single population.

(c) Yes, the individual is more likely to be a homozygote than one sampled directly from
the infinite reference population, despite having f = 0. This is because of the effect of
population division, which causes an increase in overall ‘inbreeding’ even though there is
no inbreeding effect within any of the individual populations. This is the meaning of the

parameter F , the overall inbreeding parameter. If f = 0, then F = θ, so F =
PAA−p2A
pA(1−pA)

is

greater than 0, ensuring that homozygotes (corresponding to PAA) are more common in the
overall population than they would be under Hardy-Weinberg proportions (corresponding
to p2A).

(d) First type attach(res) so the components of res can be accessed directly.

(i) Verify that E?(p2Ai?) = PA/A:
For each allele type (1 or 2), we need to compare pAsq at time t− 1 with PA.A at time t.
Thus we link t−1 (1:9) for E(pA^2) with t (2:10) for PA.A, and observe that the points lie
on the y = x red line: plot(pAsq[1, 1:9], PA.A[1, 2:10]);abline(0, 1, col=2)

Same again for allele type 2: plot(pAsq[2, 1:9], PA.A[2, 2:10]);abline(0, 1, col=2)

It doesn’t work to link E(pA^2) with PA.A at the same generation:
plot(pAsq[1, ], PA.A[1, ]);abline(0, 1, col=2)

(ii) Verify that θ is the percentage of variance between populations: again, we need the
parental generation when computing the variance E?(p2Ai?)−E?(pAi?)

2. The overall variance
is 0.4×0.6 for these alleles. For θ, the best object to use is two.indiv.ibd. Alternatively,
we can use theta.by.allele.type[1,] or theta.by.allele.type[2,].

plot((pAsq[1, 1:9] - pA[1, 1:9]^2)/(0.4*0.6), two.indiv.ibd[2:10])

abline(0, 1, col=2)

## or:

plot((pAsq[1, 1:9] - pA[1, 1:9]^2)/(0.4*0.6), theta.by.allele.type[1, 2:10])

abline(0, 1, col=2)

## For allele type 2:

plot((pAsq[2, 1:9] - pA[2, 1:9]^2)/(0.4*0.6), theta.by.allele.type[2, 2:10])

abline(0, 1, col=2)

(iii) We do not expect that Ei(p2Ai) = PAA, either at same generation or different generations,
because PAA incorporates the extra effect of within-population inbreeding. The following
plots do not lie on the red lines.

plot(pAsq[1, ], PAA[1,]); abline(0, 1, col=2)

points(pAsq[1, 1:9], PAA[1, 2:10], col=3)
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Exercise 7.

(a) The overall θ estimate is 0.130. Using the rule of thumb on page 37, this is moderate to
high population differentiation.

(d) Possible code for the permutation test is below. The code can be pasted from the PDF
into R.

## Find the real-data value of theta:

real.theta = Fstatistics.func(gbi.dat, min.loci.per.indiv=6, allpairs=F)["theta"]

## Set up vector to store permutation values of theta for 500 permutations:

perm.res = rep(NA, 500)

n.indiv = nrow(gbi.dat)

## Run the permutations:

for(sim in 1:500){

perm.dat = gbi.dat

## Permute the population labels:

perm.dat$pop = sample(perm.dat$pop, size=n.indiv, replace=F)

## Find theta for the permuted data, and insert into perm.res:

perm.res[sim]=Fstatistics.func(perm.dat,min.loci.per.indiv=6,allpairs=F)["theta"]

}

## View histogram of the results: ensure the x-axis can display the real value too:

hist(perm.res, col="blue", xlim=range(c(perm.res, real.theta)))

## Draw a vertical line where the real data result lies:

abline(v=real.theta, col=2, lwd=2)

## Find the p-value:

length(perm.res[perm.res > real.theta]) / 500

(e) The p-value for the single pair BM and Fitzroy should be close to 0.15. Thus there is no
evidence against H0 : θ = 0 for this pair of populations. The estimated θ is very small
(0.012). However, the sample size from BM is very small (7 individuals), and this will
contribute to the non-significant result.

(f) Using perm.theta.func(boi.dat) shows very small, but statistically significant, values
of θ overall and between each pair of populations. The overall θ is 0.024. Under the
Infinite Island Model assumptions, this gives

0.024 =
1

4Nm+ 1
⇒ Nm = 10.1.

The effective number of migrants per island per generation, under these assumptions, is
10.1.
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