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Benford’s Law, also known as the first-digit law, has long
been seen as a tantalizing and mysterious law of nature.
Attempts to explain it range from the supernatural to the
measure-theoretical, and applications range from fraud detec-
tion to computer disk space allocation. Publications on the
topic have escalated in recent years, largely covering inves-
tigation of the law in different data sources, applications in
fraud and computer science, and new probability theorems. The
underlying reason why Benford’s Law occurs is, however,
elusive. Many researchers have verified for themselves that the
law is widely obeyed, but have also noted that the popular
explanations are not completely satisfying. In this article we do
nothing rigorous, but provide a simple, intuitive explanation of
why and when the law applies. It is intended that the explan-
ation should be accessible to school students and anyone with a
basic knowledge of probability density curves and logarithms.
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1. THE IMPORTANCE OF BEING BENFORD

How good a statistical sleuth are you? Table 1 shows a list of
land areas of world states and territories. That is, one of the col-
umns does. The other column consists of faked data created with a
random number generator (followed by a little massaging to make
the numbers look better). Can you tell which column is which?

If you have heard of Benford’s Law, you will know at a
glance which column is correct. If you haven’t, you probably
won’t have a clue—in which case you would be well-advised
not to try faking any random data in the near future, especially
on your tax return.

Benford’s Law has intrigued scientists and laypeople for over
a century. The story began in 1881, when the American astron-
omer Simon Newcomb noticed that books of logarithm tables

always seemed grubby on the early pages, and clean toward the
back. For some reason, people seemed to look up numbers
beginning with the digits 1 and 2 far more often than they looked
up numbers beginning with the digits 8 and 9. Indeed, it seemed
that numbers beginning with 1 and 2 actually occurred more
often in nature than numbers beginning with 8 and 9.

Newcomb went so far as to sketch out mathematically the law
he expected first digits to follow (Newcomb 1881). A randomly
selected number should begin with the digit 1 about 30% of
the time: more precisely, the proportion should be 0.301, or
log10(2). The frequency of numbers with leading digit 2 should
be about 18% (obtained from log10(3/2)), those with leading
digit 3 should be about 12% (from log10(4/3)), and so on until
the frequency of 8’s should be 5.1% and that of 9’s should
be 4.6%. Overall, for a number chosen at random from those
sought in the logarithm tables of 1881, Newcomb suggested that
the probability of the first or leading digit being d should be

Pðleading digit ¼ dÞ ¼ log10

d þ 1

d

� �
; d ¼ 1; 2; . . .; 9:

With an apparent sleight-of-hand reminiscent of Fermat,
Newcomb simply stated that his logarithmic rule was ‘evident’.
It is counter-intuitive enough to think that the digits should be
anything but uniform, but this obscure expression for their
frequencies has been the last straw for many a baffled onlooker.
Exactly how evident could it have been that the logarithm
books were precisely 6.58 times grubbier on page 1 than on
page 9? Perhaps by way of stunned silence—or perhaps
because Newcomb’s observation seemed so obvious in
1881—nothing further was said on the topic for 57 years.

In 1938, Frank Benford, a physicist with the General Electric
Company, assembled over 20,000 numbers from sources as
diverse as Readers’ Digest articles, street addresses of Ameri-
can Men of Science, atomic weights, population sizes, drainage
rates of rivers, and physical constants (Benford 1938). His data
showed that leading digits from a wide range of sources
showed an uncanny adherence to the logarithmic rule that
Newcomb had penned, apparently unnoticed, decades earlier.
Benford gave the law its name and a certain mystique, but no
convincing explanation. Indeed, he decried the phenomenon as
belonging to ‘outlaw’ and ‘anomalous’ numbers, and reassured
us that the dapper digits of orderly data such as atomic weights
and specific heats would be free of such absurdities. Benford’s
Law was the province of wild data—population sizes,
addresses of American men of science, and figures in Readers’
Digest articles. Over a third began with the digit 1, whereas
fewer than one in 20 began with the digit 9.
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By this time, you don’t need me to tell you that it is the first
column in Table 1 that is correct. According to Benford’s law,
leading digits as far-fetched as those in the second column
would be a one-in-a-thousand rarity. In this way, the law is used
to detect fraudulent data in applications as diverse as election
campaign finance and toxic gas emissions (e.g., Cho and
Gaines 2007). Yet where is the explanation? Why should 101
Dalmatians be so much more likely than 57 Heinz Varieties?
How did a grubby logarithm book evoke a logarithmic proba-
bility lore governing its own pages? (For the record, the number
of Heinz Varieties currently stands at the highly anomalous
1,100: Benford wins again!)

Many writers have come to the conclusion that Benford’s law
is a mysterious law of nature, for which a true explanation lies
with the gods. It is commonly accepted that the first rigorous
explanation of the law was due to Hill (1995), who provided a
measure-theoretical proof that data drawn from a random mix of
different distributions—rather like Frank Benford’s original
20,000—will ultimately converge to Benford’s law. Although
rigorous, this gives us little insight into why Benford’s law
applies, or when. Should we expect, for example, that the street
addresses of American men of science would qualify?

Attempts at intuitive explanations have centered on ideas of
scale-invariance and base-invariance. The scale-invariance
argument says that, if there is a universal law of nature that
governs the distribution of leading digits, then it should not
depend upon the units in which the numbers are measured. If
we were to convert the areas in Table 1 from km2 to square
miles—a simple scaling—the same distribution of leading
digits should result. It can be shown that Benford’s law follows
automatically: if there is a universal law of nature, it must be
Benford’s. Similarly, any universal law should apply whether it
is being observed by humans, with 10 fingers apiece, or by
ducks with six toes. There should be nothing special about the
base 10 number system. Again, it can be shown that a universal

pattern in the leading digits that applies in all number bases is
forced to be an obvious generalization of Benford’s law.

These explanations are not wholly satisfactory, because they
do not explain why a universal law of nature should arise in the
first place. And while modern applications of Benford’s Law
flourish—for example in deciding the allocation of computer
disk space and detecting fraud—popular insight into why and
when numbers should be Benford is lacking. There is, however,
a simple and intuitive explanation accessible to anyone who has
a basic knowledge of probability density curves and loga-
rithms. The simple explanation has been seen by previous
authors, but seems only to have been published using technical
language and tools—for example, as an application of Poin-
caré’s Theorem in circular statistics (Mardia and Jupp 2000), or
in terms of digital signal processing with Fourier transforms
(Smith 2007). The aim of this note is to give a simple, graphical
explanation of why and when the law holds, in language
accessible to school students and laypeople.

2. LAW OF THE STRIPEY HAT

Benford’s law hinges on the simple observation that, if a hat
is covered evenly in black and white stripes, then about half
of the hat will be black. More generally, think of a two-
dimensional hat-shaped piece of cardboard (Fig. 1). If the black
stripes cover proportion p of the ‘rim’, they will cover
approximately proportion p of the whole hat. The approx-
imation will tend to improve as the hat-shape contains more
stripes: a large number of thinner stripes is more likely to
average out any asymmetries in the hat-shape than a smaller
number of fatter stripes. On average, as we slide the stripes
randomly to left or right, the striped area will cover proportion
p of the total area of the hat-shape.

A short step relates this to Benford’s law. We will show that,
for any positive number X, the leading digit of X is 1 precisely
when log10(X) is between n and n þ 0.301 for some integer n.
Now think of X as a random number drawn from some prob-
ability distribution. The hat in Figure 1(b) represents the
probability density curve of log10(X). The numbers X with
leading digit 1 correspond to the stripes on the hat, with each
stripe covering the interval from n to n þ 0.301 for some
integer n. There is one stripe for every integer n included within
the distribution of log10(X), so the total number of stripes is the
total number of integers spanned by log10(X). The stripes cover
about 0.301 of the ‘rim’ of the hat, so they will capture about
0.301 of the total probability of X. The chance of X having
leading digit 1 will be almost a third.

To show that the stripes correspond to numbers X with
leading digit 1, first write X in ‘scientific notation’. This is the
unique format X ¼ r 3 10n, where r is a real number with 1 #

r < 10, and n is an integer. For example, if X ¼ 124, then X ¼
1.24 3 102, or if X ¼ 76 then X ¼ 7.6 3 101. The leading digit
of X is the same as the leading digit of r, but whereas we need to
consider many intervals for X (e.g., X ¼ 1–1.999; 10–19.999;
100–199.999), we only need to consider one interval for r: the
leading digit of X is 1 precisely when 1 # r < 2.

We can isolate r by taking logs to base 10:

Table 1. One of the columns gives the land area of political states
and territories in km2. The other column contains faked data,

generated with a random number generator.

State/Territory Real or Faked Area (km2)

Afghanistan 645,807 796,467
Albania 28,748 9,943
Algeria 2,381,741 3,168,262
American Samoa 197 301
Andorra 464 577
Anguilla 96 82
Antigua and Barbuda 442 949
Argentina 2,777,409 4,021,545
Armenia 29,743 54,159
Aruba 193 367
Australia 7,682,557 6,563,132
Austria 83,858 64,154
Azerbaijan 86,530 71,661
Bahamas 13,962 9,125
Bahrain 694 755
Bangladesh 142,615 347,722
Barbados 431 818
Belgium 30,518 47,123
Belize 22,965 20,648
Benin 112,620 97,768
. . . . . . . . .
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log10 ðXÞ ¼ log10 ðr 3 10nÞ ¼ log10 ðrÞ þ n:

The leading digit of X is 1 precisely when 1 # r < 2, which is the
same as saying that 0 # log10(r) < log10(2)¼ 0.301. Thus X will
have leading digit 1 precisely when log10(X) lies between nþ 0
and n þ 0.301 for some integer n: in a set of evenly spaced
‘‘stripes’’ of equal width 0.301. For example, when X¼ 124, we
find log10(X) ¼ 2.093. Sure enough, 2.093 lies between 2 and
2.301, and the leading digit of 124 is 1. On the other hand, when
X ¼ 76, then log10(X) ¼ 1.881, which lies outside the interval
from 1–1.301; happily, the leading digit of X ¼ 76 is not 1.

We have shown that the numbers X with leading digit 1
satisfy:

0 # log10 ðXÞ< 0:301; 1 # log10 ðXÞ< 1:301;

2 # log10 ðXÞ< 2:301; . . .

The X-values with leading digit 1 lie in regularly-spaced stripes
on the log10 scale, where each stripe has width 0.301. If the
cardboard hat in Figure 1 is the probability density function of
log10(X), then the probability that X has leading digit 1 is
precisely the probability that log10(X) falls within the black
stripes on Figure 1(b). The stripes cover proportion p ¼ 0.301
of the rim of the hat, so they cover approximately proportion
p ¼ 0.301 of the area of the hat. For probability density curves,
areas correspond to probabilities. So the probability that X has
leading digit 1 will be somewhere close to p ¼ 0.301—just as
Benford discovered.

The preceding argument explains not only why the pro-
portion of numbers beginning with 1 should be close to a third,
but when it should be. The more stripes we have, the closer to
0.301 we should expect our proportion to be, because local
asymmetries in the hat shape sampled by one stripe will be
better balanced by results from other stripes. Therefore, the
more stripes there are, the more ‘Benford’ our data should look.
We can’t increase the number of stripes by making them closer
together, because they have to be located at the intervals [0,

0.301), [1,1.301), [2, 2.301), and so on. The only way to get
more stripes is to make the hat wider. This means the dis-
tribution of log10 (X) should cover a larger range: in other
words, the distribution of X should span several orders of
magnitude. If X can take values from 1–106, then log10(X) will
span six integers, giving six stripes as in Figure 1. This will
usually be enough to make the distribution look convincingly
‘Benford’.

We can conclude that data from any distribution will tend to
be ‘Benford’, as long as the distribution spans several integers
on the log10 scale—several orders of magnitude on the original
scale—and as long as the distribution is reasonably smooth.
Clearly, we could cheat the Benford property by deliberately
punching a dent in the hat at every black stripe. We look more
at this in Section 4. However, the dent-punching requires
deliberate manipulation: any distribution arising in nature that
is reasonably smooth and covers several orders of magnitude is
almost guaranteed to obey Benford’s law. Example dis-
tributions such as areas of world states (ranging from 0.4 km2

for Vatican City to 1.7 3 107 km2 for Russia), or world pop-
ulations (from 50 for the Pitcairn Islands to 1.3 3 109 for
China), explain why Benford’s law provides such a reliable
party trick whenever an atlas is at hand.

A more complete explanation of Benford’s law runs like this.
Write X ¼ r 3 10n for 1 # r < 10, r 2 R, and n 2 Z. For
d2 {1,2,. . ., 9}, the leading digit of X is d if and only if d # r < dþ
1, or equivalently, log10(d) # log10(r) < log10(d þ 1).
This corresponds to sampling strips of width log10(d þ 1) �
log10(d) ¼ log10{(d þ 1)/d} at integer spacing across the dis-
tribution of log10(X). If the distribution of log10(X) is reasonably
smooth and spans several integers, then the area covered by these
strips will be approximately the same as the proportion of the
interval they cover, namely log10{(dþ 1)/d}. We therefore expect
that the probability of obtaining leading digit 1 is about log10(2/1)
¼ 0.301; the probability of leading digit 2 is about log10(3/2) ¼
0.176; and so on. Benford’s law amounts to the observation that a

Figure 1. (a) A hat with alternating black and white stripes of equal width will be approximately half black and half white. (b) If the black
stripes cover proportion p of the rim of the hat, then approximately proportion p of the hat will be colored black. The p shown in (b) is p¼ 0.301.
An arbitrary number-line is featured along the rim of the ‘‘hat.’’ The black stripes correspond to the numbers X with leading digit 1, if the hat-
shape represents the probability density curve of log10(X).
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sample of areas taken systematically along the rim of a hat-shape
will give a good estimate of the total area of the hat.

3. BENFORD OR NOT?

Figure 2 shows a selection of real data distributions that are
candidates for Benfordness. The first is a Benford classic:
populations of world states and territories. The histogram of
populations (X) has extreme skew, covering nine orders of
magnitude from 101 to 109. By contrast, the histogram of log-
populations (log10(X)) is much more symmetric. It is this second
histogram that contains the clues for the Benford detective—it
is the hat shape from Section 2. The second histogram is rea-
sonably smooth and spans nine integers from 1–9, clues that
will clinch the detective’s case. The barplot in the third column
shows the evidence. The bars give the proportions of each
leading digit in the sample of 235 world states, whereas the

horizontal lines give the Benford predictions. The world states
pass the Benford test with flying colors. The minor deviations
of the bars from the predictions do not approach statistical
significance.

The second example is more of a challenge for our detective.
It shows the size of United States Powerball jackpots, in mil-
lions of dollars, twice-weekly from June 2002 to September
2008. The data are available from www.lottostrategies.com. At
first glance the distribution seems a reasonable candidate: it
ranges widely from $10 million to $365 million. The difference
is certainly a lot of money—enough to launch a small fleet of
satellites around the moon—but in the land of Benford it is
merely small change. Only the orders of magnitude count, and
the range from $1 3 107 to $3.65 3 108 gives us a diminutive
hat spanning only 1.5 integers on the log scale of the second
histogram. This means only one or two stripes per digit, and no
guarantee of Benfordness. On the other hand, the shape of the

Figure 2. Benford detection for four real datasets. Each row features one dataset. Shown are the histogram of the original data, the histogram of
the log-transformed data, and a barplot of the leading digit proportions. Heights of the bars give the proportions of the leading digits in the
dataset, whereas the Benford proportions are superimposed with horizontal lines marked with plotted points. Also marked on the barplots are the
sample size, n, and the p-value from a chi-squared test for Benfordness with 8 degrees of freedom.
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hat is rather rectangular—more like a top hat than a Napoleonic
hat—so one or two stripes might actually be enough to capture
the Benford proportions. The only recourse is to look at the facts
of the case in the third column. The fit to Benford is surprisingly
good given the clues, but a well-equipped statistician would be
able to spot the difference. In fact, Powerball jackpots form a
sort of ‘super-Benford’ distribution: there are too many 1’s (36%
instead of 30%) and not enough 9’s (2.6% instead of 4.6%).

The third distribution shows population sizes of congressional
districts in California. Deliberately chosen to be as uniform as
possible, to be fair to the voters, the populations range from
583,000–773,000. Being a confined and deliberately manipu-
lated dataset, its prospects for Benfordness are hopeless. The
log-scale hat covers only a fraction of an integer, and the leading
digits are all 5, 6, or 7. No dice for Benford here.

What about naturally-occurring populations in California?
The problem with the congressional districts is that they are
deliberately chosen to be within certain population bounds. If,
on the other hand, we look at the populations of all Californian
cities, we have a natural, unfettered distribution—one that is a
real candidate for Benfordness. The population sizes of Cali-
fornian cities in 2003 are shown in the fourth distribution. They
range from a population of 94 for the tiny city of Vernon, to
3.9 million for the vast metropolis of Los Angeles. Once again,
the original data are highly skewed, but the log-transformed
data are smooth and symmetric. The Benford detective is
quietly confident: the log-histogram hat spans over 4.5 inte-
gers, and the distribution is smooth. The third plot shows that
the leading digits are distinctively Benford. Interestingly, the
departures from Benfordness in this case are weakly statisti-
cally significant—for some unexplained reason, there are too
many Californian cities with populations beginning with a 6!

4. MAXIMIZING BADNESS-OF-BENFORD

We mentioned that Benford’s law can be cheated by
punching judiciously-chosen dents in the Benford hat. Intui-
tively, it seems clear that Benford’s law will have to hold as the
distribution of X becomes wide and smooth enough. Here we
investigate how far from the Benford fold a distribution can
stray, and how this changes as the distribution becomes wider
and smoother. For this, we need ways of controlling the width
and smoothness of a distribution, and we also need some
measure of ‘badness-of-Benford’ so we can find the worst-case
scenario for a distribution of given width and smoothness.

For distribution width, we focus on the number of integers
spanned by the support of log10(X). If the support of log10(X)
spans a single integer—e.g., if X takes values between 1 and 10,
or between 10 and 100—then there is only one stripe on the
Benford hat, and it will be quite easy to cheat Benford’s law.
When the support of log10(X) ranges over s integers—e.g., X
can take values between 1 and 10s—there will be s stripes on
the Benford hat. Cheating Benford’s law when s is large will
require a more deliberate sabotage operation, and one that is
less likely to arise in nature.

For our badness-of-Benford measure, we recommend
launching a sabotage job on the statistician’s favorite goodness of

fit tool: the Pearson chi-squared test statistic. For d¼ 1, 2, . . ., 9,
define the Benford digit probabilities as bd ¼ log10{(d þ 1)/d},
so bd is the probability according to Benford’s law that the
leading digit is d. For a random variable X, let pX (x) be the
probability density function (p.d.f.) of log10(X), defined on
the interval [0, s] for some integer s. The probability that X has
leading digit d is:

pd ¼ PðX has leading digit dÞ

¼
Xs�1

n¼0

ðnþlog10 ðdþ1Þ

nþlog10 ðdÞ
pXðxÞ dx: ð1Þ

By analogy with the Pearson chi-squared statistic, we define
the badness-of-Benford for the distribution to be

BX ¼
X9

d¼1

ðpd � bdÞ2

bd
:

It is easily shown that BX dominates the expected Pearson chi-
squared statistic that would be obtained if a sample of data
were drawn from X. If we choose pX to maximize BX, we will
have the best chance of gaining a significant chi-squared test
result against the null hypothesis that the data follow Benford’s
law. If the chi-squared test is our yardstick of Benfordness, then
BX is our best sabotage tool.

Finally, we need some way of controlling the smoothness of
X. If we allow sufficient flexibility in the p.d.f. pX, we will
always be able to enact a perfect sabotage: simply bring out the
statistical scimitar and hack holes in pX where the leading digit
is 1, while drawing out peaks where the leading digit is 9.
Natural distributions don’t look like this, however. Instead it is
fair to require pX (x) to be reasonably smooth over its support
interval [0, s]. We can do this by maximizing a penalized
badness-of-Benford criterion—by subtracting a term from BX

that drags it down if pX is too rough or wiggly.
A useful penalty term for downweighting wiggly functions is

l
Ð s

0 p 0XðxÞ2dx; where l is called the smoothing parameter
(Hastie and Tibshirani 1990), and is chosen at our discretion.
By integrating the square of the second derivative of pX over its
support interval, we penalize excessive curvature or wiggli-
ness. Instead of simply choosing pX to maximize BX, we
choose it to maximize

BX � l

ðs

0

p 0XðxÞ2dx: ð2Þ

Choosing a large value of l will force the p.d.f. pX to be very
smooth, whereas a small value of l will allow pX to be more
flexible.

Our Benford sabotage job is formulated as finding pX to
maximize the expression (2) out of all possible p.d.f.s p that are
continuous and have continuous first and second derivatives on
the interval [0, s]. Remarkably, such a sabotage job has a
unique solution that can be written down in closed form. The
maximizing pX is a cubic spline, which means it is a piecewise
cubic. If we approximate the integrals in (1) using the tra-
pezium rule over a fine grid, the knots or joins in the piecewise
cubic are placed at the same grid-points. Technical details of
how to calculate the cubic spline are given in Fewster and
Patenaude (2008). For technical reasons, a few constraints are
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necessary at the endpoints. We choose to constrain pX (x) such
that pX (0) ¼ pX (s) ¼ 0, and ordain that pX should be linear
(perhaps flat) at x ¼ 0 and x ¼ s.

Figure 3 shows a selection of optimal sabotage jobs for s ¼
6, 4, and 2. Each row corresponds to one value of s: the number
of orders of magnitude spanned by the distribution of X. For
each s, the first panel shows how our Benford-cheating ability
deteriorates as the distribution becomes smoother. For small l

(wiggly distributions, or hats with many dents), we can arrange
for the Benford test to be failed as often as we like—in Figure
3, this corresponds to Pð �BÞ ’ 1; where Pð �BÞ is the probability
that a sample of size 100 drawn from X will fail the Benford
chi-squared test. (In a convenient abuse of terminology, we say
that a test is ‘failed’ if it returns a p-value of 0.05 or less.)
Examples of such distributions are shown in the second column
of Figure 3. As l increases and our dent-punching is brought
under stricter control, Benford’s law rapidly triumphs. Even the
energetic sabotage jobs shown in the third column of Figure 3
will show a significant difference from Benford’s law for only
about a quarter of samples. By the time our dent-punching has
subsided to finger-tapping in the fourth column of Figure 3,
only about 5% of samples will fail the chi-squared test: exactly

the proportion that would be expected if Benford’s law holds
exactly. And remember these are our best possible sabotage
jobs! It is very difficult for a distribution not to look reasonably
Benford in a sample of size 100, once it spans about s ¼ 4
orders of magnitude or more.

In summarizing the explanations for Benford’s law current in
1976, Ralph Raimi wrote, ‘‘. . . any phone company can print a
directory violating Benford’s law. What remains tantalizing is
the notion that there is still some unexplained measure in the
universe which says that the probability of such violations is
small’’ (Raimi 1976). He suggested that the logarithmic rule
originally set down by Simon Newcomb in 1881 was an inspired
guess—pulled out of a hat with a magician’s flourish and the
muttered incantation, ‘‘It is evident that . . .’’. We have seen that
the tantalizing universal law is not so inexplicable, and it really
is evident to anyone who has met probability density curves and
logarithms. It’s as easy as painting stripes on the magician’s hat.

It is not surprising that Benford’s law is everywhere. Even
Frank Benford was a victim of his own law. In his 1938 paper,
he collected a total of 20,229 observations from 20 vastly
different datasets, a study ‘‘as wide as time and energy per-
mitted’’. His sample sizes ranged from 91 atomic weights, to

Figure 3. Worst-case Benford scenarios for a range of s and l. The rows correspond to s¼ 6, 4, and 2 respectively. For each s and l, the optimal
badness-of-Benford density pX(x) is found by maximizing (2). We then draw 1,000 samples of size 100 from the distribution of X and conduct a
chi-squared test with 8 degrees of freedom against the null hypothesis that the distribution of leading digits in the sample is Benford. The
proportion of the 1,000 samples that ‘fail’ the chi-squared test is Pð �BÞ in the first column, and it can be seen to plummet as the distributions reach
a certain smoothness. The thin horizontal line shows Pð �BÞ ¼ 0:05, corresponding to a true Benford distribution. The other three columns show
examples of the worst-case density pX(x) with increasing smoothness l, for which Pð �BÞ is respectively close to 1; close to 0.25; and close to 0.05,
as it would be for a true Benford distribution. To create an integer scale for l, the values shown are those from (2) multiplied by 8,000.
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5,000 entries from a mathematical handbook. Funnily, of the 20
datasets that Benford collected, six of the sample sizes have
leading digit 1. Notice anything strange about that?

[Received May 2008. Revised October 2008.]
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