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Summary: Latent count models constitute an important modeling class in which a latent vector of counts, z,

is summarized or corrupted for reporting, yielding observed data y = Tz where T is a known but non-invertible

matrix. The observed vector y generally follows an unknown multivariate distribution with a complicated dependence

structure. Latent count models arise in diverse fields, such as estimation of population size from capture-recapture

studies; inference on multi-way contingency tables summarized by marginal totals; or analysis of route flows in

networks based on traffic counts at a subset of nodes. Currently, inference under these models relies primarily on

stochastic algorithms for sampling the latent vector z, typically in a Bayesian data-augmentation framework. These

schemes involve long computation times and can be difficult to implement. Here, we present a novel maximum-

likelihood approach using likelihoods constructed by the saddlepoint approximation. We show how the saddlepoint

likelihood may be maximized efficiently, yielding fast inference even for large problems. For the case where z has a

multinomial distribution, we validate the approximation by applying it to a specific model for which an exact likelihood

is available. We implement the method for several models of interest, and evaluate its performance empirically and by

comparison with other estimation approaches. The saddlepoint method consistently gives fast and accurate inference,

even when y is dominated by small counts.
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1. Introduction

We consider a class of latent count models, in which observed counts y arise from an under-

determined linear system y = Tz. Here, T is a known non-invertible matrix, and z is a

latent vector of counts, for example from a multinomial distribution. Modeling z is natural,

but z itself is unobservable and only a summary or corruption y is available. Our task is to

infer the parameters underlying z from the observed data y.

Latent count models have numerous applications in diverse fields. Examples include estima-

tion of population size in epidemiology or ecology; inference on partially-reported contingency

tables in social sciences; and network analysis for road traffic engineering or communica-

tions systems. The first of these relates to capture-recapture estimation, in which a latent

count structure arises when individual identity is not fully observable. For example, when

estimating disease prevalence from multiple lists of patient records, a single patient might

generate two unmatched records if there are two lists that do not share a common identifier

(Sutherland and Schwarz, 2005). This creates an unknown number of patients that are

counted twice in the observed data y. A similar latent-count structure arises in analysis

of contingency tables when only a subset of marginal totals is made available, perhaps to

preserve confidentiality (Dobra, Tebaldi, and West, 2006). In network models, a latent linear

structure emerges when seeking inference on mean route flows, given traffic counts at a subset

of nodes (Hazelton, 2015).

A likelihood function for these models is easily formulated as L (θ) =
∑

z∈A Pr (z | θ),

where A = {z | y = Tz} and θ parametrizes the model for the latent vector z. Numerous

authors have commented that evaluation of this likelihood is computationally infeasible, due

to the typically enormous cardinality of the set A (e.g. Dobra et al., 2006; Link et al., 2010).

Alternative estimation methods proposed include method-of-moments (Vardi, 1996), quasi-

likelihood (Lee, 2002; Sutherland and Schwarz, 2005), and least-squares (Yoshizaki et al.,
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2011). Recently, attention has focused on stochastic estimation, based on sampling from the

set A rather than enumerating it. A substantial literature has grown around the design of

samplers for the latent vector z under the constraint Tz = y, enabling inference under a

Bayesian MCMC framework or via the stochastic EM algorithm (e.g. Tebaldi and West,

1998; Chen et al., 2005; Dobra et al., 2006; Link et al., 2010; Hazelton, 2015). However, this

sampling problem is difficult, and later work has uncovered problems with earlier algorithms

such as arbitrarily poor mixing or non-irreducibility of the sampler (Schofield and Bonner,

2015; Hazelton, 2015). Proposed solutions include use of dynamic Markov bases (Diaconis

and Sturmfels, 1998; Dobra, 2012; Bonner et al., 2016) or iterative re-partitioning of the

matrix T (Hazelton, 2015); the latter requires T to satisfy a unimodularity property. While

these stochastic methods share considerable ingenuity and versatility, they typically involve

long computation times and require expert implementation in practice.

Here, we propose a new solution for latent models of the form y = Tz, using a saddlepoint

approximation to the likelihood L (θ | y). The saddlepoint approximation is a general method

for approximating a probability density function when the associated moment generating

function is known. It offers a promising alternative to simulation-based inference in cases

where exact densities of random variables are intractable, but their moment generating

functions are readily available. Such cases include sums or transformations of latent variables,

especially where Gaussian approximations are not suitable due to small samples or integer-

valued variables. In our case, the saddlepoint method enables us to construct a likelihood

based directly on Pr (y | θ), without involving the latent variable z.

The saddlepoint approximation was first proposed by Daniels (1954), and was developed

by subsequent authors including Lugannani and Rice (1980), Reid (1988), Barndorff-Nielsen

and Cox (1989), and Goutis and Casella (1999). Butler (2007) gives an accessible introduction

with practical applications. The approximation is known for its accuracy, even in the tails



Likelihood-based Inference for Latent Count Models 3

of a distribution (Butler, 2007; Brazzale and Davison, 2008), but it is surprisingly under-

used, especially for estimation applications. A recent exception is Pedeli, Davison, and

Fokianos (2015), who demonstrated excellent performance of the saddlepoint approximation

for maximum likelihood inference on integer-valued autoregressive processes. Saddlepoint

probability densities are not normalized, which may create problems in some contexts, but

these may be resolvable by more advanced adaptations (Kleppe and Skaug, 2008).

Although the saddlepoint approach applies to any model for z, discrete or continuous, we

focus here on the discrete case, in particular where z has a multinomial distribution. We

describe such models as latent multinomial models (Link et al., 2010). The latent multinomial

class is noteworthy because an exact likelihood is available for one model in the class, namely

model Mt,α for modeling misidentification in capture-recapture studies (Vale et al., 2014).

The exact computation is based on a combinatorial reformulation of the likelihood, and does

not generalize to other models. However, it creates a significant opportunity to evaluate

the multinomial saddlepoint approximation in an authentic setting. Multinomial models are

suitable for most of the aforementioned applications, although other models may be favored

in some contexts (Hazelton, 2015). Focusing on the latent multinomial class, we conduct

extensive empirical tests to validate the saddlepoint approach using model Mt,α and other

models. We also give an efficient implementation for maximizing the saddlepoint likelihood

using customary R software (R Core Team, 2018). This implementation is suitable for any

model for z.

We derive the saddlepoint approximation and its implementation in Section 2. In Section

3, we explore its performance for model Mt,α by comparison with the exact likelihood

of Vale et al. (2014). In Section 4, we apply the method to multi-list capture-recapture

models for estimating disease prevalance, and show that the approximation gives fast and

accurate inference. An application to multi-way contingency tables summarized by subsets
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of marginal totals is given in Web Appendix A. Although we focus on maximum likelihood

estimation, we note that the saddlepoint likelihood could equally well be used in a Bayesian

framework, to enable fast inference without needing to sample the latent vector z. Compared

with simulation-intensive alternatives, we propose that the saddlepoint methodology is more

general, easier to implement, and yields much faster computation times.

2. Likelihood Inference for Latent Multinomial Models

2.1 Notation

We define the random vectors underlying y and z to be Y = (Y1, . . . , YI)
> and Z =

(Z1, . . . , ZJ)>. Then T is a known I × J matrix such that Y = TZ. Suppose Z follows

a multinomial distribution with index N and cell probabilities π = (π1, . . . , πJ)>. We use θ

for any parameters of Z to be estimated, including those underlying π and N as required.

In the context of latent multinomial models, we aim to estimate θ from observed data y.

To illustrate notation, consider a 2× 3 contingency table whose six entries constitute the

latent J-vector Z = (Z11, Z12, Z13, Z21, Z22, Z23)
>. We model Z as multinomial with known

index N and cell probabilities π(θ). Our interest is in the case where information on Z

is released only via marginal totals, perhaps to satisfy concurrent standards of participant

privacy and open data (Dobra et al., 2006). The five observed marginal totals constitute

the I-vector Y = (Z1+, Z2+, Z+1, Z+2, Z+3)
>. The 5 × 6 matrix T is readily derived such

that Y = TZ. However, the distribution of Y is not multinomial, and the vector Z is not

recoverable from Y . For example, the observation y = (6, 15, 5, 7, 9)> could arise from either

z = (1, 2, 3, 4, 5, 6)> or z = (3, 2, 1, 2, 5, 8)>. Our aim is to derive a likelihood L (θ |y) that

does not involve knowledge of z.

2.2 Likelihood factorization and row-reduction of the link matrix

Given the observed vector y, the latent vector z generally has a large number of feasible

solutions; however, for some models, it can happen that some components of z are determined
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by the vector y. For example, if Tij = 1 is the only nonzero entry in the ith row of the

matrix T , we have zj = yi. If y has a component yk = zl + zm observed to be zero, then the

corresponding components zl and zm of z are also known to be zero, since zl and zm are non-

negative counts. The zero components of y are not the same in different data realizations, so

the components of z known to be zero will differ according to the data. For cases where some

components of z are determined by y, we first apply a likelihood factorization step. This is

necessary for the validity of the saddlepoint method if y contains zeros, and can also improve

efficiency in general. Reasons for this step are given in Section 2.3. If the factorization step

is not needed, we proceed directly to the penultimate paragraph of this section.

Suppose we can find unique solutions for R elements of z from the observed vector

y. We reorder the elements of z such that these R values appear first, and write z =(
v>,u>

)>
to distinguish the R known values v = (z1, . . . , zR)> from the unknown values

u = (zR+1, . . . , zJ)>. Accordingly, we also reorder the elements of π, and the columns of T .

We continue to use the equation y = Tz, although z and T have been reordered.

We partition matrix T as T = (B,A), where B is an I ×R matrix that contains the first

R columns of T , and A is an I×(J −R) matrix that contains the remaining J−R columns.

It follows that y = Tz = Bv +Au, and thus the latent vector u satisfies Au = y −Bv.

For convenience, let x = y −Bv. Since y, v, and B are all known, x is a known vector.

However, the equation Au = x still has a large number of feasible solutions for u, so the

original problem still remains.

The likelihood factorization is formulated as follows:

L (θ | y) =
∑

z:Tz=y

Pr (Z = z) =
∑

u:Au=x

Pr (Z1:R = v ∩ ZR+1:J = u)

= Pr (Z1:R = v)
∑

u:Au=x

Pr (ZR+1:J = u | Z1:R = v) ,

(1)

where the random vector Z1:R contains the first R components of the multinomial vector Z,

and ZR+1:J contains all remaining components of Z. By the multinomial marginal property,
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we have

Pr (Z1:R = v) =
N !

z1! . . . zR! (N − v∗)!

(
R∏
j=1

π
zj
j

)(
1−

R∑
j=1

πj

)N−v∗

, (2)

where v∗ =
∑R

j=1 zj is the sum of all elements of vector v.

The problem of evaluating the likelihood L (θ | y) now reduces to finding∑
u:Au=x

Pr (ZR+1:J = u | Z1:R = v) = Pr (AUv = x) , (3)

whereUv is a random variable following the conditional distribution of ZR+1:J | Z1:R = v. By

the multinomial conditional property, we have Uv ∼ Multinomial
(
Ñ ; π̃

)
, where Ñ = N−v∗

and π̃ = (πR+1, . . . , πJ)> /
∑J

j=R+1 πj. Let X = AUv. The problem of computing (3) is

solved if we can find the probability mass function of X given a known matrix A and

a multinomial distribution Uv of dimension J − R. For brevity, we use U to replace Uv

hereafter, and π̃ = (π̃1, . . . , π̃H)> to replace its original formulation, where H = J −R.

The matrix A is of dimension I ×H, but it is not necessarily of full row-rank. Lower-rank

matrices generate observed vectors x with redundant information, in the sense that some

elements of x are determined by the other elements. For cases where we skip the factorization

step and work with the original formulation y = Tz, we may find similarly that T is not

of full row-rank. The proposed saddlepoint method requires a matrix of full row-rank for

reasons described in Section 2.3. In these cases we must reduce A or T to a submatrix

consisting of a maximal set of linearly independent rows. This procedure does not affect

estimation results, as explained below.

We illustrate the row-reduction procedure using the notation x = Au. Suppose matrix

A has row-rank L < I. We start by using any non-zero row of matrix A as the submatrix,

and attempt to add other rows of A one by one. If a new row increases the row-rank of the

submatrix by one, we accept it and update the submatrix; otherwise we reject it. We finally

obtain a submatrix A1 of row-rank L, and a corresponding subvector x1 of x such that
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x1 = A1u. Estimation results are not affected by using x1 instead of x because the missing

data points are determined by those in x1. See Web Appendix B for proof that estimation

using x1 is equivalent to estimation using x, and is invariant to the choice of submatrix A1.

For brevity, we still use the notations A and x to denote the submatrix and the subvector.

Assume matrix A is now of dimension L×H and vector x is of dimension L, where L 6 I.

2.3 Likelihood approximation using the saddlepoint method

To approximate a probability density f(x), the saddlepoint method uses a Taylor expansion

of the log-integrand in the integral inversion of the moment generating function, known as

the Bromwich integral. The Taylor expansion is taken about a ‘saddlepoint’, ŝ (x), specific to

the value x and chosen to eliminate the linear term of the expansion. This leaves a Gaussian

formulation for the leading terms of the integrand, engendering accuracy in the Laplace

approximation which is then used to evaluate the integral. The result is a simple formula for

the approximated f̃ (x). The derivation and analysis of the method are complicated by the

oscillatory nature of the integrand over the complex plane. While the use of a saddlepoint

customized to each x makes the approximation very accurate, it creates the computational

challenge of finding the saddlepoint for each evaluation.

The joint moment generating function of X = AU is

MX (s) = E
{

exp
(
s>X

)}
= E

[
exp

{(
A>s

)>
U
}]

= MU

(
A>s

)
,

where MU is the moment generating function of U , and s = (s1, . . . , sL)> takes values in RL

for which the expectation of exp
(
s>X

)
exists. Let t = A>s = (t1, . . . , tH)> ∈ RH . Since U

follows a multinomial distribution in the latent multinomial framework, we have

MX (s) = MU (t) =

{
H∑
h=1

π̃h exp (th)

}Ñ

.
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The cumulant generating function of X, which is defined as the logarithm of MX (s), is:

KX (s) = logMX (s) = Ñ log

{
H∑
h=1

π̃h exp (th)

}
.

Following Butler (2007), the probability mass function of any L-dimensional random variable

X can be approximated by the saddlepoint density,

f̃X (x) =
1

(2π)L/2 |K ′′X (ŝ) |1/2
exp

{
KX (ŝ)− ŝ>x

}
, (4)

where the L-vector ŝ solves the saddlepoint equation for the first derivative of KX ,

K ′X (s) = x, (5)

and |K ′′X (ŝ) | denotes the determinant of the Hessian matrix of KX (s) evaluated at ŝ. In

most cases, the saddlepoint equation (5) cannot be solved analytically. In practice we regard

it as an optimization problem, and find ŝ to minimize KX (s)− s>x by numerical methods

such as the Newton–Raphson method.

Substituting equations (2) to (4) into (1) generates an approximate likelihood for latent

multinomial models,

L̃ (θ | y) = Pr (Z1:R = v) f̃X (x) . (6)

For latent multinomial models, the saddlepoint equation (5) to be solved for ŝ expands to

∂KX (s)

∂sl

∣∣∣∣
s=ŝ

=
Ñ
∑H

h=1Alhπ̃h exp
(
t̂h
)∑H

h=1 π̃h exp
(
t̂h
) = xl, l = 1, . . . , L, (7)

where t̂ = (t̂1, . . . , t̂H)> = A>ŝ. Equation (7) reveals the reasons for the likelihood fac-

torization and row-reduction steps described in Section 2.2. Firstly, the matrix A consists

only of non-negative entries for all models considered here, so the middle term of (7) is

strictly positive for all finite s. Consequently, if any observation xl = 0 in the rightmost

term of (7), there is no finite solution to (7) for the saddlepoint ŝ, and therefore no valid

saddlepoint approximation f̃X (x). The likelihood factorization described in Section 2.2 is
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therefore necessary to ensure that there are no zeros in the observed data vector x to which

the saddlepoint approximation is applied.

Secondly, Butler (2007) pointed out that the cumulant generating function KX (s) must

be strictly convex, to ensure that the saddlepoint equation has a solution and the square

root of |K ′′X (ŝ) | in (4) is defined and strictly positive. It can be seen from (7) that if A

is not of full row-rank, then ∂KX (s) /∂sl for l = 1, . . . , L are not linearly independent,

and consequently the Hessian matrix K ′′X (s) is also not of full rank. Thus the row-reducing

exercise in Section 2.2 is needed to ensureA has full row-rank, because otherwise |K ′′X (ŝ) | =

0 appears in the denominator of (4) and the saddlepoint density is not defined.

2.4 Implementation in TMB

Approximate maximum likelihood estimates of θ are found by minimizing the negative

logarithm of (6) in the usual manner. To compute confidence intervals, we use a lognormal dis-

tribution for N , and a normal distribution for other parameters (Vale et al., 2014). Gradient-

based minimization is complicated because each evaluation of the likelihood involves an inner

optimization to obtain ŝ (θ) in (5). In Web Appendix C, we show how this may be tackled

by an adaptation of the R package TMB (Template Model Builder: Kristensen et al., 2016).

Using automatic differentiation, the arg-min value ŝ (θ) can be incorporated into a machine-

precision gradient function for θ suitable for the outer optimization, without the need for

any symbolic derivatives to be supplied.

3. Validation of the Saddlepoint Method

3.1 Model Mt,α for misidentification in capture-recapture studies

We introduce model Mt,α briefly, following Link et al. (2010) and Vale et al. (2014). Model

Mt,α is of interest because it is the only latent multinomial model for which an exact likelihood

is efficiently computable, based on a combinatorial reformulation of the problem (Vale et al.,

2014). Suppose we wish to estimate the size N of a closed animal population, using an error-
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prone scheme such as DNA samples or photographs to identify individuals. Assume that

animals are independent and each animal has probability pt of being captured on capture

occasion t = 1, . . . , K. Denote α to be the probability that a captured animal is correctly

identified on each occasion, for example that its genotype is obtained without error. For

model Mt,α, we have θ = (N,α, p1, . . . , pK).

Under model Mt,α, there are three possible events for each animal on occasion t, namely, it

was not captured, it was captured and identified correctly, or it was captured but misiden-

tified. We use codes 0, 1, and 2 to represent the three events, occurring with probabilities

1− pt, αpt, and (1− α) pt. For example, an individual with latent history 1012 was captured

and correctly identified on occasions 1 and 3, captured but misidentified on occasion 4, and

not captured on occasion 2. There are J = 3K possible latent histories. Observable histories

for model Mt,α, by contrast, consist of only two codes 0 and 1, representing non-capture and

capture. For example, the history 1001 denotes an animal that was observed at times 1 and 4

and whose samples from these occasions were correctly matched. Excluding the null history

0. . .0, we have I = 2K − 1 possible observable histories.

Latent histories containing code 2 cannot be observed due to identification errors. Model

Mt,α assumes that the same identification error never occurs twice, and that an individual

is never misidentified as other captured individuals. Following these assumptions, an animal

with latent history 1221 necessarily produces three observed histories: 1001, 0100, and 0010.

The vectors Z and Y comprise frequencies of the latent and observable histories respectively.

The matrix T connecting Y and Z for model Mt,α can be derived according to the known

relationships between the observable and latent histories (Link et al., 2010).

The latent vector Z follows a multinomial distribution with index N and cell probabilities

π = (π1, . . . , πJ)>, where for j = 1, . . . , J ,

πj =
K∏
t=1

[
p
I{λjt>0}
t (1− pt)I{λjt=0} αI{λjt=1} (1− α)I{λjt=2}

]
,
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where λjt is the capture code for latent history λj on occasion t and I {·} is the usual

indicator function. The parameter of interest is the population size, N .

3.2 Comparison of saddlepoint and exact MLEs

We simulated data sets in R using every combination of parameter values chosen fromK ∈ {4,

6, 8, 10}, N ∈ {400, 1000}, α ∈ {0.8, 0.9, 0.95, 0.97}, and p1 = · · · = pK ∈ {0.1, 0.2, 0.3, 0.4}.

For each setting we generated 500 data sets, and for each data set we calculated maximum

likelihood estimates and 95% confidence intervals using both the saddlepoint method and

the exact computation of Vale et al. (2014).

[Figure 1 about here.]

Figure 1 shows parameter estimates obtained from the two methods, using settings N =

400, α = 0.97, and p1 = · · · = p8 = 0.1. The saddlepoint method consistently gives almost

identical estimation results to the exact likelihood function. Estimates of pt for t = 1, . . . , 8,

and α from the two approaches are typically identical to four or five decimal places, while

estimates of N are typically identical to one or two decimal places. The two methods also

produce almost the same variance estimates, so confidence intervals for all parameters from

the two methods are almost identical.

For all other settings listed above, as well as many others outside this range, scatterplots

maintained the same pattern of agreement seen in Figure 1. This applies even for N as

small as 50; we did not explore lower values of N because maximum likelihood inference

itself becomes inherently inaccurate for very small N (Vale et al., 2014). The two methods

continue to agree when α or pt take values close to their boundaries. We did not observe any

case where the two approaches yielded noticeably different estimates or confidence intervals.

Average fitting time using the saddlepoint method for one simulated data set using the

settings in Figure 1 was roughly 10 seconds on a customary laptop with a clock speed of

1.3 GHz, contrasting with approximately 4 seconds using the exact likelihood on the same
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machine. The slight loss of efficiency arises because every evaluation of the saddlepoint

likelihood involves numerical solution of the inner optimization problem.

3.3 Comparison with Bayesian estimation

We used a data set generated by Link et al. (2010) under a specific setting of Mt,α with

K = 5. As usual, we obtained almost identical parameter estimates and confidence intervals

to those reported by Vale et al. (2014), which are extremely close to the results of Link et al.

(2010). The saddlepoint method cost 0.9 seconds on a 1.3 GHz laptop, while Link et al.

(2010) indicated that their Bayesian method cost over 30 minutes on a 3.8 GHz machine.

3.4 Comparison of saddlepoint and exact likelihood curves

We investigate the performance of the saddlepoint approximation in reproducing likelihood

curves for model Mt,α, which are available from the computation of Vale et al. (2014).

We generated data sets by simulation and plotted exact and saddlepoint log-likelihoods,

each expressed in terms of the parameter N while α, p1, . . . , pK are fixed at their maximum

likelihood estimates under the exact method. A suite of examples with various settings is

shown in Figure 2.

From Figure 2, and many other similar plots, we see that the log-likelihoods obtained using

the two methods do not match one another perfectly; however, the two functions differ by

an almost constant value. This presumably reflects the missing normalization constant in

the saddlepoint formulation, the value of which differs for different settings. The discrepancy

does not affect either the position of the maximum or the curvature near the maximum,

allowing the methods to deliver indistinguishable estimates and confidence intervals.

[Figure 2 about here.]

The difference between the saddlepoint and exact log-likelihoods appears to decrease when

pt increases, or when the number of capture occasions K decreases while other parameters
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remain the same. Each of these scenarios leads to an increase in the proportion of relatively

large frequencies in the vector x. Inspection of numerous results indicates that if most

components of the vector x are at least five, the saddlepoint method yields an extremely

good approximation to the exact log-likelihood function. For example, the second and third

panels in the top row of Figure 2 present two scenarios where all components of x are

over five. When the number of capture occasions increases, it is more difficult to observe

a vector x with most components larger than five, and accordingly differences between the

two log-likelihoods are larger for the three scenarios shown in the bottom row.

4. Applications

4.1 Multi-list models for capture-recapture in social sciences

Capture-recapture methods are used in social sciences to estimate the size of a human

population based on records distributed across several administrative lists. Each list uses

tags such as name or health insurance number to identify individuals. Here, we consider the

case where some lists do not share a common tag. For a K-list problem, the latent history λ

of an individual is defined as λ1 . . . λK , where λk is 1 if the individual is on list k, otherwise 0,

for k = 1, . . . , K. There are J = 2K latent histories. For example, when K = 4, an individual

with latent history 1010 is on lists 1 and 3, but not on lists 2 and 4. We assume individuals

are matched correctly between lists when a common tag is available.

[Figure 3 about here.]

The set of observable histories differs for different list structures. Following Sutherland and

Schwarz (2005), we use a graph such as that shown in Figure 3a to illustrate the procedure

of finding observable histories. Lists are represented by vertices, and are joined by edges if

they share a common tag. The example in Figure 3a requires at least two different tags, one

for matching records on lists 1, 2, and 3, and another for matching records on lists 3 and 4.

Latent histories with code 1 for list 3 are fully observed for this list structure. Other latent
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histories are not observable: for example, the latent history 1101 is observed as two vague

histories 110· and ··01, where “·” means that it is unknown whether or not an individual

is recorded on a list. Sutherland and Schwarz (2005) show that there are 12 observable

histories, namely {100·, 010·, 110·, 1010, 1011, 0110, 0111, 0010, 0011, 1110, 1111, ··01}, and

they present the 12× 16 matrix T such that Y = TZ, where Z and Y comprise counts of

latent and observed histories respectively.

In the modeling framework of Sutherland and Schwarz (2005), it is assumed that

Z ∼ Poisson (µZ) , log (µZ) = Wβ, (8)

where W is a design matrix that typically consists of zero and one entries, and β is a

vector of parameters. The vector β typically consists of an intercept β0, main effects βk for

lists k = 1, . . . , K, and interaction effects between some pairs of the lists, such as 2-way

interactions βkl between lists k and l for k, l ∈ {1, . . . , K} with k < l.

Previous authors have noted that the distribution of Y = TZ resulting from (8) is un-

known, with dependence among components, and have employed a quasi-likelihood approach

for inference on β based on data Y (Sutherland and Schwarz, 2005; Lee, 2002). A separate

step is used for estimating N given β̂. In our analysis, we instead apply a multinomial model

to describe the latent vector Z. This provides a natural way of estimating N together with

cell probabilities that match those of the Poisson model (8), and properly accommodates

dependence between cells of Y :

Z ∼ Multinomial (N ;π) , π =
exp (Wβ)∑

exp (Wβ)
. (9)

The probability vector π does not depend on the parameter β0, because the first column

of the matrix W consists entirely of one-entries, causing exp (β0) to vanish from (9). The

parameters θ in our model therefore include all components of β except for the intercept β0,

as well as the extra parameter N , so the two models have the same number of parameters.
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4.2 Example: Auckland diabetes study

We consider multi-list data from a study for estimating the prevalence of diabetes in Auck-

land, New Zealand (Sutherland and Schwarz, 2005). The list structure considered by Suther-

land and Schwarz (2005) is given in Figure 3b. There are J = 16 latent capture histories,

written as λ = (λG, λP , λO, λD), where λi = 1 if the individual is on list i and λi = 0

otherwise, for i ∈ {G,P,O,D}. The observable histories are {01··, 0·1·, 0··1, 1000, 1001,

1010, 1011, 1100, 1101, 1110, 1111}. The observed data vector of counts is y = (1183, 12265,

3276, 654, 51, 366, 91, 40, 4, 5, 14)> (Sutherland and Schwarz, 2005).

Sutherland and Schwarz (2005) selected the Poisson log-linear model [GP = OD][GO =

GD = PO = PD] to describe the latent vectorZ, because it yielded the lowest QICu statistic

(Pan, 2001) among their candidate models. QIC is an analog of the Akaike Information

Criterion (AIC) (Akaike, 1974) when parameters are estimated using estimating functions.

The model selected includes all possible 2-way interactions, but some of these are set to

be equal in the interests of parsimony. For example, the notation [GP = OD] means that

the interaction effect between lists G and P is set equal to that between lists O and D, i.e.

βGP = βOD. Thus the parameter vector for this model is β = (β0, βG, βP , βO, βD, βGP , βGO)>.

[Table 1 about here.]

The estimate N̂ of the number of diabetes sufferers from the Poisson quasi-likelihood

approach of Sutherland and Schwarz (2005) is 45,853. Associated with the estimate are

three standard errors, 4530, 4343, and 4008, calculated in different ways. Here, we apply

the multinomial saddlepoint method using the same interaction effects and obtain a smaller

estimate 43,422, with a similar standard error 4303. Computation time was less than one

second on a 1.3 GHz laptop. The two methods yield slightly different estimates of the

population size; however, they give almost identical estimates and standard errors for other

model parameters as shown in Table 1. This suggests that the difference in N̂ is due to the

Rachel Fewster
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ad-hoc step required under the Poisson formulation to estimate N as a derived parameter

(Sutherland and Schwarz, 2005). The multinomial formulation favored here incorporates

estimation of N , as well as non-independence of cell entries, in a natural fashion.

4.3 Model selection

We use the Auckland diabetes data to investigate performance of AIC for model selection.

Because AIC is based on the absolute value of the maximized log-likelihood, caution is

needed when applying it to saddlepoint likelihoods due to the missing normalization constant

shown in Figure 2. Model comparisons by AIC may be invalid if the normalization constant

differs substantially between different models; but in general this constant is not known or

computable. However, the investigations in Section 3.4 suggest that the missing normalization

constant may be negligible if most components of the observed data vector y are moderately

large: for example if most yi > 5. Since this is the case for the Auckland diabetes data, we

proceed with AIC for this dataset. If counts in y were not sufficiently large, model selection

could instead be based on score tests, which rely only on the derivatives of the log-likelihood

function and not on its absolute value (McCrea and Morgan, 2011).

The model [GP =OD][GO=GD=PO=PD] in Table 1 was selected by Sutherland and

Schwarz (2005) from 15 candidate models. These models include two with 3-way interactions:

[GPO][GPD][POD] and [GPO=GPD=POD], each with all 2-way interactions equal; two

with main effects only; and the remaining 11 with various 2-way interactions in different

combinations. Sutherland (2003) lists the models examined together with their QIC statistics.

We applied saddlepoint estimation to the same 15 models. The saddlepoint AIC results

closely mirror the QIC results, with both criteria producing very similar rankings of the 15

models. The only exception of note was the most complex 3-way interaction model, which

ranked better according to AIC than to QIC. Both routines yielded the same selected model

[GP =OD][GO=GD=PO=PD] with the lowest AIC and QIC. We call this Model 1.
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Since Model 1 retains all six 2-way interactions, we also conducted an exhaustive search

of all 203 models which partition these six interactions into different equality classes. We

fitted all 203 models using the saddlepoint likelihood. The top-ranked model was Model 2:

[GP =OD = PO][GO =GD = PD], for which AIC was 5.3 units lower than Model 1. We

used a chi-square test on the elements of y to confirm that the fit under Model 2 (χ2
4 = 1.68;

p = 0.79) was better than that under Model 1 (χ2
4 = 7.12; p = 0.13). We conclude that

model selection using AIC has proved effective for this dataset. Our final estimate of N

using Model 2 is N̂ = 37,467 with 95% confidence interval (30,482, 46,051).

4.4 Simulation study

Here we show simulations of the saddlepoint method applied to the list structure shown in

Figure 3a, and explore different types of list dependence following Sutherland and Schwarz

(2005). In the first simulation, we assumed the four lists to be independent and fitted β =

(β1, . . . , β4)
>. Secondly, we investigated scenarios with simple list interactions using β =

(β1, . . . , β4, β12, β13)
>. Thirdly, we explored scenarios with interactions between every pair

of lists. The parameter vector β = (β1, . . . , β4, β12, . . . , β34)
> contains 10 parameters. We

compare results with the quasi-likelihood method of Sutherland and Schwarz (2005).

[Figure 4 about here.]

Figure 4 shows results for one setting of the third scenario. For every parameter except N ,

the two methods each generate estimation results with negligible bias and almost identical

values for mean confidence interval width and confidence interval coverage. However, while

the saddlepoint method also gives estimates for the parameter N with no discernable bias and

close to nominal confidence interval coverage, the ad-hoc estimator of N from Sutherland

and Schwarz (2005) is positively biased with very low confidence interval coverage. This

is consistent with the outcome seen in the Auckland diabetes study. Similar results were

obtained from the other two simulation scenarios.
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4.5 Application to incomplete contingency tables

Web Appendix A presents a further application of the saddlepoint method to analysis of

multi-way contingency tables that are partially reported using subsets of marginal totals.

We analyse epidemiological data on risk factors for coronary thrombosis among Czech factory

workers (Dobra et al., 2006), and demonstrate by simulation that the saddlepoint method

yields accurate inference.

5. Discussion

The saddlepoint method delivered uniformly fast and accurate inference across numerous

parameter settings in all of the latent multinomial models we explored. We did not encounter

any case in which the approximation broke down. Using model Mt,α, for which the exact

likelihood is known, we found that saddlepoint inference remained accurate for N as small

as 50, suggesting that the saddlepoint approximation holds across the range of application for

which maximum likelihood is itself suitable. We have also provided an efficient implementa-

tion for maximizing saddlepoint likelihoods using the R package TMB. This implementation

is suitable for any saddlepoint likelihood, not just for latent multinomials.

It is straightforward to derive saddlepoint likelihoods for latent models of the form y = Tz,

or joint likelihoods for independent vectors (y1, . . . ,yn) = (T1z1, . . . ,Tnzn), as long as

the moment generating functions of the latent vectors z are known. Empirical work may

be needed to verify the approximation for new distributions of z. It is anticipated that

saddlepoint behavior will generally be good when distributions do not deviate too far from

Gaussian forms. If performance is found to be inadequate, saddlepoint approximations with

non-Gaussian leading terms offer a promising alternative (Kleppe and Skaug, 2008).
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Figure 1. Parameter estimates from 500 simulations using the saddlepoint approximation
method and the exact likelihood method of Vale et al. (2014), using the setting N = 400,
α = 0.97, and p1 = · · · = p8 = 0.1 under model Mt,α. Points on straight lines across the plots
indicate that the estimates from the two approaches are almost identical.
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Figure 2. Saddlepoint log-likelihood curves (solid) shown against exact log-likelihood
curves (dashed) for model Mt,α. The number of capture occasions is K = 4 in the top
row and K = 6 in the bottom row. All six panels have N = 400 and α = 0.97, while
p1 = · · · = pK are 0.2, 0.3, and 0.4 for left, center, and right panels respectively. Vertical
lines show the positions of maxima under the saddlepoint computation (solid) and the exact
computation (dashed). These cannot be distinguished because the saddlepoint estimates and
the exact estimates of N are extremely close to one another.
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(b)

List G

List P List O List D

List 3

List 4

List 1 List 2List 2List 2

(a)

Figure 3. List structures for: (a) a four-list two-tag example; and (b) the Auckland diabetes
study. Lists in (b) are: general practitioner records (G); pharmacy records (P); outpatient
records (O); and inpatient discharge records (D).
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Figure 4. Boxplots of parameter estimates from 1000 simulations using the saddlepoint
approximation method (right-hand boxes) and the quasi-likelihood approach of Sutherland
and Schwarz (2005), given true parameter values N = 1000, β1 = · · · = β4 = −1.5, and
β12 = · · · = β34 = 1, indicated by thin horizontal lines across the plots. Bold horizontal lines
across the boxes indicate the means of the 1000 estimates. Quantities above the boxes show
the mean width of 95% confidence intervals. Percentages below the boxes show percentage
bias and coverage of nominal 95% confidence intervals.
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Table 1
Parameter estimates and standard errors for the Auckland diabetes study obtained by the saddlepoint method and

the method of Sutherland and Schwarz (2005).

βG βP βO βD βGP βGO

Sutherland and Schwarz (2005)
Estimate −3.76 −3.74 −1.01 −2.95 1.13 0.45
Standard error 0.14 0.14 0.14 0.11 0.10 0.10

Saddlepoint approximation
Estimate −3.76 −3.74 −1.00 −2.94 1.13 0.44
Standard error 0.14 0.14 0.14 0.11 0.10 0.10



Web-based Supplementary Materials for “Fast Likelihood-based

Inference for Latent Count Models using the Saddlepoint

Approximation”

by W. Zhang, M. V. Bravington, and R. M. Fewster

Web Appendix A

Application to multi-way contingency tables

Consider aK-way table of counts over aK-dimensional discrete random vector ξ = (ξ1, . . . , ξK).

For each k ∈ {1, . . . , K}, the random variable ξk has Ik possible values, denoted by integers

1, . . . , Ik for convenience. Let i1 . . . iK denote a single cell of the table, where ik takes values

from {1, . . . , Ik}. Each cell therefore represents one unique combination of the K variables.

The total number of cells in the table is m =
∏K

k=1 Ik. The cell i1 . . . iK has a non-negative

integer cell entry Zi1...iK that represents the frequency of the random vector ξ being observed

as (i1, . . . , iK), i.e. the number of participants with this combination of observations.

To illustrate notation, consider a simple table with K = 3 binary variables, for example

male/female; smoker/non-smoker; employed/unemployed. There are Ik = 2 possible values

for each variable k = 1, 2, 3. The 3-way table has m =
∏3

k=1 Ik = 8 cells, each corresponding

to one combination of the three variables. The cell 111 corresponds to the first level of each of

the three variables (male, smoker, employed) and the count Z111 is the number of participants

with this combination of attributes.

For simplicity, let Zj denote the cell entry of the jth cell of the table for j = 1, . . . ,m. The

1



contingency table is an m-dimensional vector consisting of all cell entries:

Z = (Z1...1, . . . , ZI1...IK )> = (Z1, . . . , Zm)> .

A marginal table is a vector of summary statistics of the full table, obtained by summing

over a subset of the K variables. Consider a subset D = {ξd | d ∈ Ω} with Ω ⊆ {1, . . . , K}.

The vector YD is obtained by summing over all variables not included in D, and it corresponds

to the marginal table with dimension
∏

d∈Ω Id. Continuing the example with K = 3 for

illustration, suppose D = {ξ1, ξ2} corresponds to gender and smoking status. Then YD

corresponds to a two-way marginal table, YD = Y{ξ1,ξ2} = (Z11+, Z12+, Z21+, Z22+)>, where

Z11+ is the total number of male smokers, summed over the two employment categories, and

so on. In general, we would have Zi1i2+ =
∑I3

i3=1 Zi1i2i3 for all combinations of i1 ∈ {1, . . . , I1}

and i2 ∈ {1, . . . , I2}. If D′ ⊆ D, the marginal table YD′ can be obtained directly from YD.

Any marginal table can be expressed as a linear transformation of the full table. If we

consider several marginal tables YD1 , . . . ,YDn over subsets D1, . . . , Dn of the K variables,

then Y =
(
Y >D1

, . . . ,Y >Dn

)>
is a linear transformation of the full table Z. Thus Y = TZ,

where T is a known matrix of zero and one entries. We wish to draw inference on the

parameters underlying Z, given observed data Y .

As with multi-list studies, contingency tables can be modeled using Poisson or multinomial

formulations via equations (8) and (9) in the main text. The number of participants N is no

longer a parameter to be estimated, as it can be obtained by summing any of the n marginal

tables. Inference to date has focused on Bayesian MCMC approaches (e.g. Dobra et al., 2006;

Dobra, 2012).

We first investigate a real example in the form of a six-way contingency table over six

binary variables {A,B,C,D,E, F} as shown in Table 1 of Dobra et al. (2006). This study

examined risk factors for coronary thrombosis among 1841 workers in a Czech car factory.

2
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Web Figure 1: Distributions of parameter estimates obtained using the saddlepoint method
for a four-way table with true parameter values: N = 5000, β1 = · · · = β4 = 1, and β12 =
· · · = β34 = −2, indicated by thin horizontal lines across the plots. Bold horizontal lines
across the boxes indicate the means of the 1000 estimates. Quantities above the boxes show
the mean width of 95% confidence intervals. Percentages below the boxes show percentage
bias and coverage of nominal 95% confidence intervals.

The six binary variables are A: smoking status; B: strenuous mental work; C: strenuous

physical work; D: high systolic blood pressure; E: high ratio of β and α lipoproteins; F:

family anamnesis of coronary heart disease.

Assume the information we know about the table is three five-way marginal tables, y =(
y>{A,B,C,D,F},y

>
{A,B,C,E,F},y

>
{A,B,D,E,F}

)>
. These data do not determine z because the three-

way table y{C,D,E} is omitted. We fitted a model using the saddlepoint likelihood involving all

possible 2-way and 3-way interactions and six main effects. One possible output of interest is

to use the fitted model to draw inference on a particular cell entry. We use the entry Z122112

considered by Dobra et al. (2006). The saddlepoint multinomial method gives estimate 1.42

with 95% confidence interval [0, 3], which is consistent with the true count of 1 in the entry.

For a simulation study, we consider a four-way table over four binary variables ξ1, . . . , ξ4

with an underlying model consisting of four main effects and all six 2-way interactions. The

data are the marginal totals y =
(
y>{ξ1,ξ2,ξ3},y

>
{ξ2,ξ3,ξ4}

)>
that omit the two-way marginal

table y{ξ1,ξ4}. Results are shown in Web Figure 1. The saddlepoint method produces roughly

unbiased estimates with approximately nominal confidence interval coverage for all model

3



parameters. Fitting one data set cost less than one second. The mean width of confidence

intervals for β14 is much higher than that for the other parameters, due to the omission of

the marginal table y{ξ1,ξ4}. All parameters related to variables ξ1 and ξ4 are estimated with

lower precision than their analogs that rely only on ξ2 and ξ3.

Web Appendix B

Estimation invariance from maximally independent rows of matrix A

Let A be an I ×H matrix with row-rank L < I. Recall that x = Au where x is I × 1 and

u is H × 1. Define A1 to be an L×H submatrix of A consisting of maximally independent

rows of A, and let x1 = A1u be the corresponding L × 1 subvector of x. We aim to show

that estimation based on x1 is equivalent to estimation based on x.

LetAc
1 be the remaining I−L rows ofA formed by removing matrixA1, and let xc1 = Ac

1u

be the corresponding (I − L)× 1 subvector of x.

Since A1 comprises maximally independent rows of A, the rows of matrix A1 span the

row-space of A. Because each row of matrix Ac
1 also lies in the row-space of A, it follows that

Ac
1 = CA1, where C is a fixed (I − L)× L matrix of coefficients. Consequently, xc1 = Cx1.

Thus,

Pr(x) = Pr(x1,x
c
1) = Pr(x1)Pr(xc1 | x1) = Pr(x1)Pr(Cx1 | x1) = Pr(x1) .

This proves that estimation based on x1 is equivalent to estimation based on x.

Estimation is also invariant to the choice of submatrix A1. Suppose we select a different

L × H submatrix A2 comprising maximally independent rows of A. The data vector after

reduction is x2 = A2u. Both A1 and A2 have rank L, and the rows of each matrix span the

row-space of A. Because A1 lies in the row-space spanned by A2, there is an L× L matrix

G such that A1 = GA2. Since the rank of a matrix product is less than or equal to the rank
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of each constituent matrix, we have:

L = rank(A1) = rank(GA2) ≤ rank(G) .

Since G has dimension L× L, it also holds that rank(G) ≤ L. It follows that rank(G) = L,

so G is invertible.

We therefore have a bijection between x1 and x2 such that x1 = Gx2 and x2 = G−1x1.

Consequently, Pr(x2) = Pr(x1), so it is equivalent to use either x1 or x2 for inference.

Web Appendix C

Maximizing saddlepoint-based likelihoods using TMB

Our efficient implementation of saddlepoint-based likelihood maximization relies upon the

theoretical connection between the saddlepoint approximation and the Laplace approxima-

tion, which leads to similarities in the corresponding optimization problems. The R package

TMB is designed to deliver highly efficient optimization for random-effect models, using the

Laplace approximation in tandem with automatic differentiation software (Kristensen et al.,

2016). We show how we can adapt their formulation to maximize saddlepoint likelihoods,

maintaining the advantages of automatic differentiation for speed and accuracy. We first give

a brief introduction to the Laplace approximation following Skaug and Fournier (2006) and

Kristensen et al. (2016).

Suppose l (µ,γ) denotes the joint negative log-likelihood function of a statistical model

with random effects µ ∈ Rm and fixed parameters γ ∈ Rn. The maximum likelihood estimate

of γ can be obtained by maximizing the marginal likelihood:

L (γ) =

∫
Rm

exp {−l (µ,γ)} dµ,
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which is a function of only the fixed model parameters after the random effects are integrated

out. However, calculating this integral is prohibitively difficult when the dimension m of the

random effects is high.

Define µ̂ (γ) to be the minimizer of l (µ,γ) with respect to µ, so that

µ̂ (γ) = arg min
µ
l (µ,γ) .

This minimization is treated as an inner problem in TMB, and can be handled by the classical

Newton method. Then the Laplace approximation to L (γ) is

L ∗ (γ) = (2π)
m
2 det {H (γ)}−

1
2 exp {−l (µ̂,γ)} ,

where H (γ) = H (µ̂,γ) = l′′µµ (µ̂,γ) is the Hessian matrix of l (µ,γ) with respect to µ and

evaluated at µ̂. Maximizing L ∗ (γ) is equivalent to minimizing the negative logarithm of

L ∗ (γ), which is

− log L ∗ (γ) = −m
2

log(2π) +
1

2
log det {H (γ)}+ l (µ̂,γ) . (1)

To fit a random effects model using TMB, the user codes the joint negative log-likelihood

function l (µ,γ) in a C++ function template. When µ is declared as a vector of random

effects, the MakeADFun function from TMB is formulated to return the objective (1) and its

gradient function with respect to γ, where the gradient incorporates the computation of the

arg-min value µ̂ (γ) (see Kristensen et al., 2016, for more details). Thus, TMB has specific

functionality for minimizing expressions of the form (1), using automatic differentiation to

generate a gradient function with respect to γ that encapsulates the inner optimization

needed to find µ̂ (γ). Automatic differentiation generates gradients that are as accurate as

symbolic differentiation, without requiring any analytical derivatives to be supplied (Fournier

et al., 2012). Availability of a machine-precision gradient function ensures very high accuracy
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and efficiency in the outer optimization with respect to γ, using standard gradient-based R

optimizers such as nlminb or nlm.

To use TMB to maximize saddlepoint-based likelihoods, we consider

f̃X (x) =
1

(2π)L/2 |K ′′X (ŝ) |1/2
exp

{
KX (ŝ)− ŝ>x

}
,

which is the general expression for a saddlepoint likelihood, and is not confined to latent

multinomial models. Some algebra gives:

− log f̃X (x) =
L

2
log(2π) +

1

2
log det {K ′′X (ŝ)} − h (ŝ) , (2)

where h (s) = KX (s)− s>x, and ŝ is the solution to h′ (s) = K ′X (s)− x = 0. The Hessian

matrix K ′′X (s) with respect to s is positive definite because KX is strictly convex, so finding

ŝ is equivalent to minimizing h (s) with respect to s. In the specific case of latent multinomial

models, there is an additional factor in the likelihood L̃ (θ | y) = Pr (Z1:R = v) f̃X (x), which

creates the following saddlepoint objective function for minimization:

− log L̃ (θ | y) = − log Pr (Z1:R = v) +
L

2
log(2π) +

1

2
log det {K ′′X (ŝ)} − h (ŝ)

=
L

2
log(2π) +

1

2
log det {K ′′X (ŝ,θ)} − g (ŝ,θ) ,

(3)

where g (ŝ,θ) = log Pr (Z1:R = v) +h (ŝ,θ). Here, we write KX (s) = KX (s,θ) and h (s) =

h (s,θ) to emphasize dependence on the parameters θ. Clearly g′′ss (ŝ,θ) = h′′ss (ŝ,θ) =

K ′′X (ŝ) and ŝ (θ) = arg mins h (s,θ) = arg mins g (s,θ).

Equation (3) is an exact analog of equation (1), with ŝ replacing µ̂, θ replacing γ, and

g (ŝ,θ) replacing l (µ̂,γ), except for two sign changes in the first and third terms of equa-

tion (3). Motivated by this similarity, we implement maximum saddlepoint likelihood by

copying the source code of the function MakeADFun in TMB, and changing the requisite two
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signs. By declaring vector s to be a vector of random effects, and defining our objective

function to be g (s,θ), we can deploy the modified version of TMB to generate an efficient

optimization of (3) that includes a gradient function calculated using automatic differenti-

ation. The inner optimization problem for ŝ is taken care of by TMB, whereas the outer

problem for θ is dealt with efficiently by customary gradient-based optimizers.

Extending this method to likelihoods outside of the latent multinomial framework is

straightforward. The formulation above minimizes the general saddlepoint objective (2)

simply by setting g (s,θ) = h (s,θ).
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