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ABSTRACT 

 
This paper identifies key concepts and issues associated with the reasoning of 
informal statistical inference. I focus on key ideas of inference that I think all students 
should learn, including at secondary level as well as tertiary. I argue that a 
fundamental component of inference is to go beyond the data at hand, and I propose 
that statistical inference requires basing the inference on a probability model. I 
present several examples using randomization tests for connecting the randomness 
used in collecting data to the inference to be drawn. I also mention some related 
points from psychology and indicate some points of contention among statisticians, 
which I hope will clarify rather than obscure issues. 
 
Keywords: Statistical reasoning; Statistical significance; Randomization tests 
 

1. PRELIMINARY DEFINITIONS 
 
In preparing these comments I began by consulting an online dictionary 

(dictionary.com), where I found two definitions of “infer” that seem especially relevant to 
statistical inference: 

1. to derive by reasoning; conclude or judge by premises or evidence; 
2. to draw a conclusion, as by reasoning. 

Similarly, the following two definitions of “informal” struck me as appropriate for this 
discussion: 

1. without formality or ceremony, casual; 
2. not according to the prescribed, official, or customary way or manner; 

irregular; unofficial. 
I also consulted a statistics textbook, The Statistical Sleuth (Ramsey & Schafer, 2002), in 
which I read the following definitions: 

1. An inference is a conclusion that patterns in the data are present in some 
broader context. 

2. A statistical inference is an inference justified by a probability model linking 
the data to a broader context. 

Informed by these definitions, I suggest that inference requires going beyond the data 
at hand, either by generalizing the observed results to a larger group (i.e., population) or 
by drawing a more profound conclusion about the relationship between the variables (e.g., 
that the explanatory variable causes a change in the response). 

Statistical inference has traditionally been the focus of introductory courses at the 
tertiary level, and this topic has become more prevalent in the K-12 curriculum. For 
example, the K-12 GAISE (Guidelines for Assessment and Instruction on Statistics 
Education) report endorsed by the American Statistical Association (Franklin et al., 2005) 
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argues that by the end of their secondary schooling, students should learn to “look beyond 
the data.” This GAISE report also emphasizes that these students should understand the 
nature of “chance variability.” 

This notion of chance variability is fundamental to drawing statistical inferences. 
Statisticians deliberately introduce randomness into the process of collecting data, in large 
part to enable inferences to be made on a probabilistic justification. This randomness 
takes one of two forms (or both), depending on the research question being addressed: 

1. Random sampling from a population enables results about the sample to be 
generalized to the larger population. 

2. Random assignment of units to treatment groups allows for cause-and-effect 
conclusions to be drawn about the relationship of the explanatory and 
response variables. 

Figure 1, taken from The Statistical Sleuth, summarizes these points. 
 

 
 

Figure 1. Statistical inferences permitted by study designs  
from Ramsey and Shafer (2002) 

 
2. AN EXAMPLE OF INTUITIVE INFERENTIAL REASONING 

 
Example 0: Funny Dice Beth Chance, inspired by Jeff Witmer, introduced me to the 

following activity for introducing students to the reasoning of statistical significance. 
Take to class a pair of dice that appear to be fair and ordinary but are actually not: One of 
the dice contains only fives on its faces and the other has half twos and half sixes. The 
dice will therefore produce sums of only seven and eleven. (An internet search for “7 11 
dice” will reveal many places to purchase such dice.) Roll the dice, or better yet ask a 
student to roll them, and call out the sum. Do this repeatedly, and observe the reactions of 
students in the class as the sevens and elevens accumulate.  
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Students generally have no reactions to the first two or three rolls. By the time they 
see a seven or eleven for the fourth or fifth time, some start to snicker or otherwise 
indicate that the results seem suspicious. By the sixth or seventh roll, many in the class 
openly voice conviction that the dice are not fair. After the tenth roll, almost all students 
in the class are convinced (without looking at the faces of the dice) that the dice are not 
fair. Most students provide a good account of their reasoning process, explaining that it 
would be extremely unlikely to observe so many results of seven or eleven if the dice 
were truly fair. 

This reasoning process, which seems to come very naturally for students, is a classic 
example of Fisherian inductive reasoning. Students are assessing the strength of evidence 
against a claim. They do this by determining how unlikely the observed result would be, 
if in fact the claim being tested were true. Of course, all of this happens not just 
informally but intuitively. If I impose more structure here, I assert that students’ intuitive 
reasoning process in this example involves: 

• Starting with an unspoken belief that the dice are fair (we could call this the null 
model or null hypothesis); 

• Evaluating that the observed data (nothing but sevens and elevens) would have 
been very unlikely if that belief (null model) were true (intuitively calculating a 
p-value); 

• Rejecting the initial belief (null model) based on the very small p-value, rather 
than believe that a very rare event has occurred by chance alone.  

 
3. AN EXAMPLE OF INFORMAL INFERENTIAL REASONING 

 
Example 1: Toy Preference A recent study (Hamlin, Wynn, & Bloom, 2007) 

investigated whether infants take into account an individual’s actions towards others in 
evaluating that individual as appealing or aversive, perhaps laying the foundation for 
social interaction. In one component of the study, 10-month-old infants were shown a 
“climber” character (a piece of wood with “google” eyes glued onto it) that could not 
make it up a hill in two tries. Then they were shown two scenarios for the climber’s next 
try, one where the climber was pushed to the top of the hill by another character 
(“helper”) and one where the climber was pushed back down the hill by another character 
(“hinderer”). Each infant was alternately shown these two scenarios several times. Then 
the child was presented with both pieces of wood (the helper and the hinderer) and asked 
to pick one to play with. Preferences were recorded for a sample of 16 infants, with 14 
choosing the helper toy. 

Clearly more than half of these infants chose the helper toy, but the inferential 
question is whether this result provides evidence of a genuine preference, either among a 
larger population of infants or among these same 16 infants if they were to be tested 
repeatedly. When asked for their initial impressions, students give widely varying 
reactions. Some are willing to conclude a genuine preference merely because more than 
half chose the helper; others argue that they would remain unconvinced about a genuine 
preference even if all 16 chose the helper toy because of what they perceive as a 
prohibitively small sample size. 

Making a statistical inference requires a probability model. Fortunately, a simple 
model presents itself, one that is both familiar and understandable at the school level. 
Under the null model that infants have no genuine preference, we can model their 
selections as flips of a fair coin. In this manner we can simulate the selections by 16 
infants over and over again, in order to assess how surprising it would be to obtain 14 or 
more of them choosing the helper in a sample of 16 infants if there were, in fact, no 



8 
 

 

genuine preference. Asking students in a class to conduct 16 coin flips and count the 
number of heads, we quickly find that it is quite unusual to obtain 14 or more heads. 
Repeating this process 1000 times produces results like those in Figure 2. 
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Figure 2. Simulation results for helper toy study 
 

Notice that 14 chose the helper toy in 2 of these 1000 simulated repetitions. This 
graph therefore reveals that it is not impossible to find 14 or more choosing the helper toy 
even when there is no genuine preference, but such a result is very unlikely. Accordingly, 
we have strong evidence that infants genuinely do tend to prefer the helper toy over the 
hinderer. 

This reasoning process is identical to that with the 7/11 dice, but it does not come as 
naturally to students. With the dice, intuition correctly tells us that it is very unlikely to 
get a string of exclusively sevens and elevens with fair dice. But our intuition is much less 
reliable for knowing the distribution of coin flip results. Simulation enables us to estimate 
the probability distribution and the p-value from this study. This activity and analysis are 
amenable to use with schoolchildren as well as college students. 

But is this inferential analysis informal? I contend that it is. We are not doing a formal 
calculation of an exact p-value, which we could do using the binomial distribution. We 
are also not calculating a test statistic or approximate p-value based on a normal 
distribution. But we are using a reasonable process, based on a probability model, to draw 
an inference beyond the data at hand. 

What other reasoning would I like students to think about, and begin to learn about in 
this context? Three issues, in order of increasing conceptual difficulty: 

1. Students should recognize the key role that the sample proportion of successes 
plays in this inferential reasoning process. For example, if only 10 of the 16 
infants had chosen the helper toy, this would provide much weaker support for 
concluding that infants have a genuine preference for the helper. Why? Because a 
result as extreme as 10 or more successes would not be at all surprising under the 
null model of no genuine preference (as the above histogram shows). 

2. Students should come to appreciate the important role played by sample size. Ask 
about a different (hypothetical) study in which 100% choose the helper toy: Does 
that provide strong evidence of a genuine preference? Well, not if the study only 
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involved two infants. What if 60% choose the helper- is that statistically 
significant? Not if the study involved 10 infants, but yes if the study involved 100 
infants. 

3. Students should eventually learn to use the same reasoning process to investigate 
claims beyond a 50/50 null model. For example, do the study results provide 
evidence that infants actually prefer the helper by more than a 2-to-1 ratio over 
the hinderer? The reasoning process is the same, but the simulation needs to use a 
2/3 probability of each infant’s choosing the helper.  

 
4. INFORMAL INFERENCE WITH RANDOMIZATION TESTS 

 
Example 2: Dolphin Therapy Swimming with dolphins can certainly be fun, but is it 

also therapeutic for patients suffering from clinical depression? To investigate this 
possibility, researchers recruited 30 subjects aged 18-65 with a clinical diagnosis of mild 
to moderate depression (Antonioli & Reveley, 2005). Subjects were required to 
discontinue use of any antidepressant drugs or psychotherapy four weeks prior to the 
experiment, and throughout the experiment. These 30 subjects went to an island off the 
coast of Honduras, where they were randomly assigned to one of two treatment groups. 
Both groups engaged in the same amount of swimming and snorkeling each day, but one 
group did so in the presence of bottlenose dolphins and the other group (outdoor nature 
program) did not. At the end of two weeks, each subjects’ level of depression was 
evaluated, as it had been at the beginning of the study. The results are summarized in 
Table 1 and Figure 3. 
 

Table 1. Results of dolphin therapy experiment 
 

 Dolphin therapy Control group Total 
Showed substantial improvement 10   3 13 
Did not show substantial improvement  5 12 17 
Total 15 15 30 
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Figure 3. Results of dolphin therapy experiment 
 
Clearly the dolphin therapy group had a larger success rate than the control group (66.7% 
vs. 20.0%). Can we reasonably infer that the dolphin therapy really is more effective than 
the control? To address this key question we must consider the role of chance variability. 
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The randomness in this study arises from researchers randomly assigning the 30 subjects 
to one of the treatment groups. Is it possible that this randomization process alone, even if 
dolphin therapy were no more effective than the control, would have produced results as 
extreme as the researchers found? Sure, it’s possible. But is that possibility so unlikely 
that it discredits that explanation? 

We could proceed directly to a probability calculation to assess this unlikeliness. But 
with introductory students I recommend investigating this with simulation. Students can 
simulate this randomization process by taking 30 playing cards, marking 13 to represent 
those who showed substantial improvement and the other 17 to represent those who did 
not improve substantially. Then shuffle the cards and randomly deal out 15 to be in the 
dolphin therapy group with the other 15 in the control group. Note that this 
shuffling/dealing process simulates the random assignment process actually used by the 
researchers to put subjects in treatment groups. Also note that this simulation process 
assumes that there is really no benefit of the dolphin therapy, because it assumes that the 
13 subjects who improved were going to improve regardless of which group they were 
assigned to. Then observe the results of the simulated random assignment, either by 
calculating the difference in success proportions between the two groups or simply by 
noting the number of “successes” in the dolphin therapy group. Figure 4 shows the results 
of 1000 simulated random assignments. 
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Figure 4. Simulation results from dolphin therapy experiment 
 

In only 13 of the 1000 random assignments did the simulated result turn out to be as 
extreme as the actual experimental result (10 or more successes in the dolphin therapy 
group). So, it is indeed possible to have obtained such an extreme result by chance alone, 
even if the dolphin therapy had no effect, but this simulation reveals that this possibility is 
fairly unlikely. We therefore conclude that the experimental data provide fairly strong 
evidence that dolphin therapy really is more effective than the control. 

The exact probability can be calculated to be 0.0127, to four decimal places. This 
procedure is known as Fisher’s Exact Test. This is an example of a type of inference 
procedure called a randomization test. One advantage of this procedure for introducing 
introductory students to the reasoning process of statistical inference is that it makes clear 
the connection between the random assignment in the design of the study and the 
inference procedure. It also helps to emphasize the interpretation of a p-value as the long-
term proportion of times that a result at least as extreme as in the actual data would have 
occurred by chance alone under the null model. For an overview of randomization tests, 
see Ernst (2004). 
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Notice that the reasoning process here is again the same as with the 7-11 dice, and 
also as with the helper/hinderer toy. But students seem to struggle more to understand it 
in this context. There are two possibilities (dolphin therapy is more effective than control, 
or it is not). The experimental data would be very unlikely to occur if dolphin therapy was 
not more effective, so we have strong evidence to reject that explanation and conclude 
that dolphin therapy really is more effective than the control. But of course this 
conclusion is not definitive, and there remains a possibility that dolphin therapy is not 
more effective and the researchers just happened to witness a rare event. Many students 
seem to be troubled by this lack of certainty in their conclusion, more so than with the 7-
11 dice. 

What else do I want students to learn about the reasoning of statistical inference in 
such settings? Similar to my list following Example 1, I want students to appreciate and 
understand the importance of how different the success rates are between the two groups, 
and also the importance of the numbers of subjects in the two groups. 

 
Example 3: Murderous Nurse For several years in the 1990s, Kristen Gilbert worked 

as a nurse in the intensive care unit (ICU) of the Veteran’s Administration hospital in 
Northampton, Massachusetts. Over the course of her time there, other nurses came to 
suspect that she was killing patients by injecting them with the heart stimulant 
epinephrine. Part of the evidence against Gilbert was a statistical analysis of more than 
one thousand 8-hour shifts during the time Gilbert worked in the ICU (Cobb & Gelbach, 
2005). Table 2 and Figure 5 display the data. 

 
Table 2. Data from Kristen Gilbert trial 

 
 Gilbert working 

on shift 
Gilbert not 

working on shift Total 

Death occurred on shift 40 34 74  
Death did not occur on shift 217 1350 1567 
Total 257 1384 1641 
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Figure 5. Results from Kristen Gilbert trial 
 

As with the previous two examples, this study involves comparing two groups, with 
data presented in a 2×2 table, and investigating a conjecture that one group would “do 
better” on the response than the other. But a big difference is that, unlike the dolphin 
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therapy experiment, this is an observational study in which no random assignment 
occurred. With this lack of randomness in the data production phase, some statisticians 
would argue that no randomization test should be performed here. But others would 
contend that we can still conduct a randomization test to assess whether the observed 
difference in death proportions (0.156 on a Gilbert shift vs. 0.025 otherwise) is large 
enough to infer that random variation is not a reasonable explanation. The p-value turns 
out to be less than 1 in a trillion, which effectively rules out “luck of the draw” as an 
argument for Gilbert’s defense.  

Because this is an observational study, however, we cannot conclude that Gilbert’s 
presence on the shift is the cause of the higher death rate. The significance test does not 
rule out the possibility that other (confounding) variables may have differed between 
Gilbert shifts and no-Gilbert shifts. For example, without examining more detailed data, it 
is possible that Gilbert might have worked shifts during a particular time of day when 
deaths were more likely to occur.  

This distinction in scope of conclusions that can be drawn from randomized 
experiments as opposed to observational studies is a key aspect of inference that I expect 
all students to learn. The GAISE guidelines for the K-12 curriculum include this 
distinction for secondary students.  

 
5. SOME CONSIDERATIONS FROM PSYCHOLOGY 

 
Why is this reasoning process difficult for many people (including, of course, 

students)? Part of the answer surely rests in all of the research that has shown how 
difficult probabilistic reasoning is for people (Nickerson, 2004). I particularly like how 
Keith Stanovich phrases this issue in his book How to Think Straight About Psychology 
(2007). Stanovich refers to probabilistic reasoning as the “Achilles heel of human 
cognition.” One example is that the concept of a statistical tendency is much more 
difficult for people to grasp than a deterministic relationship. Also, human beings are 
generally not comfortable with “luck of the draw” as an explanation; we tend to ascribe 
deterministic explanations to chance phenomena and tend not to consider variability in 
general, and chance variation in particular. 

Notice also that the reasoning process of Fisherian inductive inference is related to a 
modus tollens argument in logic, but with a probabilistic aspect thrown in for good 
measure. Rethinking the “7/11 dice” example in these terms, we reason as follows: 

1. If the dice were fair, it would be extremely surprising to observe a long string of 
sevens and elevens. 

2. We observe a long string of sevens and elevens. 
3. Therefore, we have extremely strong evidence that the dice are not fair. 

In this particular context students seem to apply the reasoning process effectively and 
intuitively. But they often struggle to apply the reasoning process in less familiar 
contexts, and they often struggle mightily to understand it in the abstract. This bears many 
similarities to the well-known logic problem known as the Wason selection task (Wason 
& Johnson Laird, 1972). 

The abstract version of the Wason task presents subjects with four cards that have a 
letter on one side and a number on the other. Subjects are then told the following rule: 
Every card with a vowel on one side has an even number on the other side. The four cards 
shown reveal an A, a B, a six, and a seven. Subjects are then asked which cards should be 
turned over in order to detect whether the rule has been violated. Studies show that a 
small percentage of people choose the correct answer, which is to turn over the A and the 
seven cards (Wason & Johnson Laird, 1972). Most people select the six rather than the 
seven card, failing to realize that the rule will be violated if the seven reveals a vowel on 
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the other side (by a modus tollens argument). But when this same task is presented in 
concrete terms that are familiar to the subject, most people do indeed answer correctly. 
For example, suppose the rule is that all people who drink alcohol must be at least 21 
years old. Consider four people: a 30-year-old, an 18-year-old, a beer drinker, and a soda 
drinker. Most subjects have no difficulty in realizing that they should check on how old 
the beer drinker is and on what the 18-year-old is drinking. The logical structure of this 
problem is identical to that with the cards, but the concreteness and familiarity make it 
much easier to solve correctly. 

One of my points in mentioning the Wason task is that a modus tollens argument is 
hard for people to make intuitively, so the reasoning of statistical significance, which 
invokes a modus tollens-like argument with uncertainty thrown in, is all the more 
daunting. But my larger point is that students can apply this reasoning process for 
themselves if we start with concrete examples in a familiar setting. 

 
6. COBB’S 3Rs 

 
George Cobb (2007) refers to the randomization test approach to statistical inference 

as the 3Rs: 
• Randomize data production. 
• Repeat by simulation to see what’s typical (and what’s not). 
• Reject any model that puts your data in its tail. 

Cobb argues that introductory statistics students have a better chance of understanding the 
core logic of inference if it is presented in this manner as opposed to a more conventional 
approach based on calculations from normal-based probability distributions. Cobb writes: 
“Our curriculum is needlessly complicated because we put the normal distribution, as an 
approximate sampling distribution for the mean, at the center of our curriculum, instead 
of putting the core logic of inference at the center.” While Cobb is referring to the 
introductory curriculum at the tertiary level, Scheaffer and Tabor (2008) advocate 
teaching statistical inference at the secondary level through this process of simulating 
randomization tests. Chance and Rossman (2006) adopt this approach in a tertiary course 
for mathematically inclined students. 

The three examples discussed above have all involved categorical variables, but this 
3Rs approach to statistical inference can also be applied with a quantitative response 
variable. Scheaffer and Tabor (2008) include such an example, as do Ernst (2004) and 
Cobb (2007). I prefer giving students experience with a categorical response variable 
first, because the quantitative response involves several complicating factors. One is that 
summarizing the difference between the groups is less straightforward; for example, you 
could use the difference in group means, or the difference in group medians, or some 
other statistic. Another complication is summarized by Wild (2006), who writes: 
“Assessment of ‘significance’ balances three factors—effect size, variability and sample 
size—in a very complicated way.” By starting with categorical variables, we eliminate the 
variability issue because effect size and sample size are the only relevant factors. 
 

7. POINTS OF CONTENTION, ALTERNATIVE APPROACHES 
 

I should admit that the examples above involve some thorny issues on which 
statisticians disagree. In Example 2 about dolphin therapy, one question is why keep both 
margins (not only the number of subjects in each group but also the number who 
improved and did not improve) fixed when conducting the simulation. Lehmann (1993) 
points out that, although Fisher favored this analysis, others have criticized this procedure 
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for being too conservative and having low power. Another tricky question is why to 
calculate the p-value by considering results more extreme than the actual results when 
calculating the p-value. The common answer is that with a large sample size, any one 
particular outcome is bound to have a small probability. (Imagine flipping a fair coin 
10,000 times; obtaining 5000 heads is the most likely result but has probability only 
0.008.) Bayesian statisticians do not accept this practice, however; a Bayesian analysis 
(discussed below) conditions on the data observed, not on data that were not observed. 

The examples above all illustrate the Fisherian approach to statistical inference (1925, 
1935a, 1935b). Fisher’s approach emphasizes the strength of evidence provided by 
observed data against a null model. This strength of evidence is captured in the p-value, 
which measures the probability of having obtained such an extreme result (or more 
extreme) if the null model were true.  

An alternative approach associated with Neyman (1935, 1955) adopts a more 
mathematical viewpoint. This view regards statistical inference as principally concerned 
with making a decision between competing hypotheses. The decision procedure is chosen 
optimally by specifying some condition on the two error probabilities. Typically this 
condition is to set the desired probability of type I error (rejecting a true null hypothesis), 
universally denoted by α. 

Table 3 summarizes the different perspectives and emphases of the Fisher and 
Neyman approaches to statistical inference. In the last row of this table I suggest that the 
Fisherian approach is closer to informal inference and Neyman’s to formal inference. As 
my earlier examples attest, I favor introducing students to the Fisherian approach. 

 
Table 3. Comparing Fisher’s and Neyman’s perspectives on statistical testing 
 

Fisher Neyman 
Significance testing Hypothesis testing 
Null model Competing hypotheses 
Strength of evidence Error probabilities 
Inductive inference Inductive decision 
p-value α-level 
Data-based Mathematics-based 
Informal inference? Formal inference? 

 
Are there implications of this contention for introductory teaching and learning? 

Hubbard and Bayarri (2003) contend that many teachers, authors, and researchers do not 
recognize and appreciate the differences between these approaches. They write: “Because 
statistics textbooks tend to anonymously cobble together elements from both schools of 
thought, however, confusion over the reporting and interpretation of statistical tests is 
inevitable.” In his discussion of this article, Carlton (2003) argues that students “can 
handle both approaches” and suggests that α levels be introduced as prespecified 
thresholds for determining whether a p-value is small enough to constitute convincing 
evidence against the null model. Lehmann (1993) offers that the Fisher and Neyman 
perspectives are more compatible than others have realized. See Salsburg (2001) and 
Lehmann (2008) for readable accounts of the Fisher-Neyman dispute. 

A third perspective takes a very different approach to statistical inference. All of the 
examples and discussion above, including both the Fisher and Neyman perspectives, 
adopt the classical (sometimes called frequentist) approach to statistical inference. 
Adherents of the Bayesian viewpoint adopt a subjectivist view of probability as 
measuring personal degree of belief in the proposition being considered. In the 7/11 dice 
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example, a Bayesian would start with a prior probability that the dice are fair, before they 
are even rolled. Then the Bayesian updates this probability as the dice rolls are observed, 
using Bayes’ Theorem as the mechanism. The result then is a conditional probability, 
given the observed data, that the dice are fair.  

For example, suppose that you start by believing very strongly that the dice are fair, 
let’s say with a probability of 0.99 (and with a very small 0.01 prior probability that the 
dice produce only sevens and elevens). Then after five consecutive rolls resulting in seven 
or eleven, Bayes’ Theorem calculates that the updated (conditional) probability that the 
dice are fair becomes 0.051. In other words, those five rolls serve to reduce your belief 
that the dice are fair from a prior probability of 0.99 to a new probability of 0.051. After 
eight rolls of seven or eleven, your probability that the dice are fair drops to 0.0006. 
These are based on starting with a very high prior probability (0.99) that the dice are fair. 
But if instead you start with only a 0.5 probability that the dice are fair (so prior to seeing 
any rolls you think it’s equally likely that the dice are fair or not), then the updated 
probability that the dice are fair drops to 0.0005 after five rolls of seven or eleven, and 
this probability falls all the way to 0.0000006 after eight such rolls. 

Bayesians contend that talking of the probability that the dice are fair is very natural 
and interesting, yet this probability is nonsensical to a classical statistician: The dice are 
either fair or not; there’s nothing random about that, so the classical statistician cannot 
assign a probability to that proposition. The only probability that can be determined by a 
classical statistician is the probability of obtaining such extreme results if a pair of fair 
dice are rolled repeatedly. 

Proponents of the Bayesian approach cite many advantages for it. One is that it seems 
to correspond with how people actually reason. Another is that it results in probability 
statements about the null model being tested and for the parameter being estimated. 
Instructors of introductory statistics cringe when students interpret a p-value as a 
probability that the null model is true, or interpret a confidence interval by saying that 
there is a 95% chance that the parameter is within the interval. These statements are not 
only wrong but nonsensical from a classical approach, but they are quite appropriate and 
accurate from a Bayesian perspective.  

A third advantage is that in many cases there truly is prior information that is relevant 
to making an inference. For example, suppose I tell you that I observed 8 members of a 
profession and saw that 4 were men and 4 were women. What would you infer about the 
overall proportion of women in that profession, if I tell you nothing else? But then what if 
I tell you that I am talking about mechanical engineers—would this information, and your 
prior knowledge about the relatively small proportion of engineers who are women, affect 
your inference? Or what if you learn that the occupation in question is pilots, or flight 
attendants? I suspect that you would draw quite different inferences from the same data in 
these situations, and quite appropriately so, based on your prior knowledge, or at least 
impressions, of the proportion of women in those various professions.  

Another point of contention has emerged in the past decade, with a growing 
movement arguing that significance testing has been overused and misused, often serving 
as a substitute for thoughtful analysis, particularly in the social sciences. Harlow, Mulaik, 
and Steiger (1997) edited a collection of essays with the provocative title What if There 
Were No Significance Tests? A new book by economists Ziliak and McCloskey (2008) 
has the even more provocative title The Cult of Statistical Significance: How the Standard 
Error Costs Us Jobs, Justice, and Lives. Two of the principal complaints lodged against 
significance testing are that with a large enough sample size, nearly all null models are 
rejected, and statistical significance does not necessarily imply practical significance. 
These critics often recommend estimating effect sizes as a replacement for assessing 
statistical significance. 
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Even proponents of significance testing admit the importance of the other major 
concept of statistical inference: estimating with confidence. The next section addresses 
this aspect of statistical inference. 
 

8. INFORMAL REASONING ABOUT INTERVAL ESTIMATION 
 

Example 4: Kissing couples Most people are right-handed and even the right eye is 
dominant for most people. Molecular biologists have suggested that late-stage human 
embryos tend to turn their heads to the right. German bio-psychologist Onur Güntürkün 
(2003) conjectured that this tendency to turn to the right manifests itself in other ways as 
well, so he studied kissing couples to see if they tended to lean their heads to the right 
while kissing. He and his researchers observed couples in public places such as airports, 
train stations, beaches, and parks. They were careful not to include couples who were 
holding objects such as luggage that might have affected which direction they turned. For 
each couple observed, the researchers noted whether the couple leaned their heads to the 
right or to the left. Of the 124 couples observed, 80 leaned to the right. Does this sample 
provide evidence that more than half of all kissing couples lean to the right? In light of the 
sample data, what proportion of the population might lean to the right? 

We’ll treat this sample as if it were a random one from the population of all kissing 
couples. As with the helper/hinderer study, we’ll simulate 1000 repetitions of 124 couples 
that are equally likely to lean right or left. Figure 6 displays the results of one such 
simulation. 
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Figure 6. Simulation results for the kissing study 
 
Notice that the observed result (80 couples who lean to the right) is way out in the tail of 
this empirical sampling distribution. The sample data therefore provide very strong 
evidence to reject that couples are equally likely to lean to the right or left. We have very 
strong evidence that kissing couples do indeed tend to lean to the right. 

But the natural follow-up question is: How much more than half lean to the right? In 
other words, what proportion of the population of all kissing couples leans to the right? 
We can investigate the plausibility of values other than 0.5 by repeating the simulation 
analysis with those values. Our strategy remains the same: Reject any value of the 
population proportion that puts the observed data in the tail of its sampling distribution. 
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Figure 7 displays the results from six different simulations of 1000 repetitions each, 
changing the value of the population proportion each time. 
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Figure 7. Comparing multiple models via simulation for the kissing study 

 
Notice that the observed result (80 of 124 couples leaning to the right) is surprising 

(in the tail of the distribution) when the population proportion equals 0.5, 0.55, and 0.75, 
but not surprising when it equals 0.6, 0.65, and 0.7. Therefore, we include the values 0.6, 
0.65, and 0.7 as plausible values of the population proportion who lean to the right. A 
more thorough analysis reveals an interval of plausible values (using a 5% level of 
significance) to be from about 0.56 to 0.73. This Fisherian approach to interval estimation 
is very different from calculating a confidence interval with a formula based on the 
normal distribution, such as: ( ) nppp /ˆ1ˆ96.1ˆ −± . This simulation approach strikes me 
as a more informal method that is likely to involve and increase students’ reasoning 
abilities.  
 

9. CONCLUSION 
 

I suggest that simulation of randomization tests provides an informal and effective 
way to introduce students to the logic of statistical inference. One advantage of this 
strategy is that it emphasizes the key role played by chance variation in statistical 
inference. During the SRTL-5 conference, Tim Erickson observed that asking this “what 
could have happened if the experiment/sampling had been repeated?” question is 
paramount in statistical inference. Harradine (2008) provided similar ideas and activities 
for introducing students to this issue. As the GAISE report suggests, understanding this 
reasoning process should be attainable by students at the secondary as well as tertiary 
levels. 
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I have emphasized categorical variables in the examples, in part because I think such 
variables provide a simpler context in which students can focus on key ideas of inference. 
I also suggest that the secondary curriculum often underutilizes categorical variables. I 
also worry that the secondary curriculum pays far more attention to sampling contexts 
rather than experimental studies, and I propose that more should be done with 
experimental studies and activities at this level. 
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