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Statistics 120
Displaying Time Series Data



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Time Series

• A time seriesis a set of observations made at equally
spaced points in time.

• Time series observations are usually numerical
measurements, but occasionally categorical time series
are encountered.

• Time series observations are typically not (statistically)
independent.

• This means that the time order the observations is
crucial to their analysis.
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Average Monthly Temperature in Auckland
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Average Monthly Rainfall in Auckland

Time

m
m

1995 1996 1997 1998 1999 2000 2001

0
50

10
0

15
0

20
0

25
0

30
0

35
0



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Average Monthly Temperature in Auckland
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The NZ Dollar in Australian Dollars
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Time Series in R

• The functionts can be used to turn an ordinary vector
into a special time series object.

• It does this by specifying parameters which describe
when the observations were made.

• The parameterfrequency describes how many
observations are made per unit time.

• The parameterstart describes when sampling started.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Example – Creating the Rain Series

• Suppose that the Auckland rainfall values have been
read into a vector calledrainvalues.

• The values are monthly values with the first value
sampled in January 1949.

> rain = ts(rainvalues, frequency = 12,
start = c(1949, 1))

• R interprets the value 1949 as “the start of 1949” so we
could use the simpler form.

> rain = ts(rainvalues, frequency = 12,
start = 1949)
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Simple Operations on Time Series

• Arithmetic operations can be carried out on time series
just as you might expect.

> lograin = log(rain)

• Subsetting is done by focusing on the values of a time
series which fall within a given timewindow.

> rain2000 = window(rain,
start = c(2000, 1),
end = c(2000, 12))
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Printing Time Series

• Time series are printed in a special way.

> window(rain, start = c(1999, 1),
end = c(2000, 12))

Jan Feb Mar Apr May Jun
1999 103.8 57.7 72.9 165.7 55.2 110.2
2000 86.2 9.2 51.2 128.4 118.1 203.4

Jul Aug Sep Oct Nov Dec
1999 130.7 113.2 69.6 96.6 172.5 42.8
2000 173.2 84.2 72.2 65.5 74.8 63.4

• The frequency values 12 and 4 are recognised as special
and taken to correspond to monthly and quarterly
observations.
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Time Series Plots

• The plot function recognises time series and plots them
in an appropriate way.

• The default plotting method is to “join up the dots,” but
this and other aspects of the plot can be customised.

> recent = window(rain, start = c(1995, 1),
end = c(2000, 12))

> plot(recent)
> plot(recent, type = "h")
> plot(recent, type = "o", pch=20)
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The Default Time Series Plot
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Time Series Plots

• We saw earlier in the course that it is easy to produce
filled time series plots usingpolygon.

> plot.new()
> plot.window(c(1995, 2001), xaxs = "i",

c(0,400), yaxs = "i")
> x = c(1995, time(recent), 2001)
> y = c(0, recent, 0)
> polygon(x, y, col = "lightblue")
> axis(1); axis(2); box()
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A Horizon Effect?

• There appears to be a difference between these two
plots.

• My conjecture is that there is wiring in the brain which
means that we notice peaks rather than troughs in plots.

• This is especially true for plots which are divided
horizontally by a colour horizon.

• Because of this effect, my recommendation is that you
avoid this kind of plot.
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Example: Stock Prices

• In this example we will look at the closing price for
IBM stock, daily from Jan 1, 1980 to Oct. 8, 1992.

• This is a typical pattern for any stock.

> plot(ibm)
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Stock Prices and Efficient Markets

• Theory says that in an efficient market stock prices
should behave as random walks.

• This means that on any given day the price of a stock
will go up or down with equal probability.

• There are a variety of reasons why the New Zealand
market cannot be considered efficient.

• We can check the theory with the IBM stock by
examining the first differences in the series – i.e. each
day’s value minus the day before.

> plot(diff(ibm))
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Time Series Decomposition

• It can useful to regard many real world series as being
composed of several independent components.

• A particularly useful model is the trend plus seasonal
plus irregular component model.

xt = Tt +St + It

where

Tt = a slowly varying trend model
St = a periodic seasonal component
It = a set of random irregular “shocks”
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Example – U.S. Housing Starts

• The number of housing starts in any given month is an
important leading economic indicator.

• Houses are only built when there are clearly economic
“good times” ahead.

• This example shows the United States housing start
series from 1966 to 1974.
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Monthly U.S. Housing Starts 1966−1974
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Interpretation

• The series clearly shows:

– a regular seasonal variation with a peak in housing
starts in summer and a trough in winter.

– a long term (cyclical) trend.

– short term irregularities which are not explained
by the other two components.

• This is typical of monthly or quarterly economic series.
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Seasonal Decomposition

• There are statistical techniques which can be used to
decompose a time series into trend plus seasonal plus
irregular components.

• We will use a technique called STL which uses the
lowess smoother as follows.

– A long term trend is estimated using a lowess
smooth and then subtracted from the series.

– Each month (or quarter) is smoothed separately
and this seasonal effect is subtracted.

– The remainder of the series is taken to be the
irregular component.
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Seasonal Decomposition in R

• Assuming that we have the housing start series stored in
hstart, here is how we carry out a seasonal
decomposition and display the result graphically.

> library(ts)
> sd = stl(hstart, s.window=10, t.window=10)
> plot(sd)

• The STL procedure can be tuned in a variety of ways.

• The values ofs.window andt.window determine the
amount of smoothing used to determine the seasonal
pattern and the trend (larger values produce more
smoothing).
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Interpretation

• The procedure has done a god job of decomposing the
original series into interpretable subseries.

• The seasonal subseries is remarkably stable over time.

• The irregular component is far from being a “random”
series.
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Seasonal Adjustment
• Seasonal effects ten to obscure the trends and short term

variation present in a time series.

• A technique called seasonal adjustment is used to
remove seasonal variation from a time series.

• A seasonally adjusted series can be obtained from the
results produced bystl, by adding the trend and
irregular components.

> plot(sd$time.series[,2]+sd$time.series[,3]
main="Seasonally Adjusted Housing Starts",
ylab="Housing Starts (Thousands)")

> monthplot(sd$time.series[,1],
ylab="Seasonal Effect")
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Seasonally Adjusted Housing Starts
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