
Back to the Future: Lisp as a Base for a
Statistical Computing System

Ross Ihaka1

Duncan Temple Lang2

1 University of Auckland, New Zealand
2 University of California, Davis, USA

Abstract. The application of cutting-edge statistical methodology is limited by
the capabilities of the systems in which it is implemented. In particular, the lim-
itations of R mean that applications developed there do not scale to the larger
problems of interest in practice. We identify some of the limitations of the com-
putational model of the R language that reduces its effectiveness for dealing with
large data efficiently in the modern era.

We propose developing an R-like language on top of a Lisp-based engine for
statistical computing that provides a paradigm for modern challenges and which
leverages the work of a wider community. At its simplest, this provides a convenient,
high-level language with support for compiling code to machine instructions for very
significant improvements in computational performance. But we also propose to
provide a framework which supports more computationally intensive approaches for
dealing with large datasets and position ourselves for dealing with future directions
in high-performance computing.

We discuss some of the trade-offs and describe our efforts to realizing this ap-
proach. More abstractly, we feel that it is important that our community explore
more ambitious, experimental and risky research to explore computational innova-
tion for modern data analyses.

Keywords: Lisp, Optional Typing, Performance

1 Background

The growth in popularity of R over the last decade has been impressive and
has had a significant impact on the practice and research of statistics. While
the technical achievements have been significant, the fostering of a community
which has continued the development of R and the myriad of packages that
provide cutting-edge statistical methodology is perhaps the most significant
achievement of the R project.

R is not unlike the S language that was developed at Bell Labs over the last
3 decades of the last century. At that time, S was revolutionary in concept and
enabled a different approach to data analysis that continues today. A similar
change in the way we do data analysis and statistical computing is needed
again. This is no small part due to the changing nature of scientific computing



(parallel and distributed computing, Web-based data access and computing,
massive data sets, computationally intensive methods). But also, we need
to be undertaking bold research that involves experimenting with these new
technologies and guiding statisticians to new computational paradigms rather
than focusing mostly on making the existing, familiar facilities easier to use
and implementing ideas available in numerous other programming languages.

It is important that the statistical community recognize the impact that
R has had and not assume that it is sufficient for the long-term or that new
developments will simply happen. Rather, they must encourage, support and
participate in the development of new ideas and infrastructure.

In part, due to the success and popularity of R, it is no longer a research
vehicle for more ambitious experiments. The focus of R development has
changed gradually to be one of adding important usability features found
in other languages, e.g. graphical user interfaces, support for Unicode and
internationalisation, and improving portability and ease of use. People want-
ing to pursue more experimental research projects have been faced with the
“nobody will use it” issue as there is a single, “official” R. Simply put, the
phrase “the good is the enemy of the better” expresses well the sentiment
that R has proven to be good enough for our needs and that an incremental,
more localized mindset has developed and has made development of R some-
what conservative. This has inhibited significant changes in direction and has
encouraged the more incremental, short term developments rather than a big
picture research oriented view of statistical computing. Unfortunately, this
has become dominant within the statistics community and journals, and we
are now focused more on implementations of existing algorithms than novel
new paradigms. To encourage and retain good minds in this field, we need
to provide a more significant innovative and exciting research environment
where concepts not code are the topics discussed and we are working on large
problems, not just details of smaller issues.

2 Issues with R

Before commenting on any of R’s deficiencies, we should note that R has
been and continues to very effective and successful and there have been nu-
merous significant developments within its history. However, modern data
analysis and statistical and scientific computing are continuing to change at
a dramatic rate and the essential computational model underlying R is tied
to that of the early S systems from 20 to 30 years ago. We outline some of
the issues below and note that they refer to efficiency of code execution and
support for better programming practices with type specification.

Copying: R uses a pass-by-value semantic for function calls. This means that
when a function modifies the contents of one of its arguments, it is a local
copy of the value which is changed, not the original value. This has many



desirable properties, including aiding reasoning about and debugging code,
and ensuring precious data is not corrupted. However, it is very expensive
as many more computations need to be done to copy the data, and many
computations require excessive memory due to the large number of copies
needed to guarantee these semantics.

Whole-Object and Vectorized Computations versus Scalar Operations: There
is a significant benefit to using vectorized functions that perform operations
on the whole object rather than writing code that processes elements indi-
vidually. However, many operations are hard to vectorise and operations that
need to “unbox” individual values are extremely expensive. (See section 4 for
timing results.)

Compiled Native Code: To obtain efficient code, it is quite common to move
important code to C and access that from R. While this is not very difficult, it
does pose a challenge to many users and requires knowledge of an additional
programming language. Further, it make the resulting software less amenable
to extensions by others, and involves significantly more work by the author
to bridge the interface between the two languages, and especially debugging
the two separate pieces of code.

Software and Type checking: Like many high-level programming languages, R
does not require or support declarations and type specification for variables.
This is very useful for rapid, interactive programming and prototyping. How-
ever, when developing larger systems or software for others to use, being
able to annotate code with type information and have the system enforce it
is an important productivity gain and produces more robust and reflective
software.

These are issues with the language, not the implementation. They reflect
sensible decisions that we need to reevaluate in the face of significant changes
to computing and data analysis over the last and next decade.

3 Common Lisp

The R engine began life as a very simple Lisp interpreter. The similarities
between S and Lisp made it easy to impose an S-like syntax on the inter-
preter and produce a result which looked very much like S. The fact that
this approach has succeeded once raises the question of whether it might
be possible to do even better by building a statistical language over a more
robust, high-performance Lisp. There are both pluses and minus to taking
this approach. On the minus side, “we” will no longer own the implementa-
tion details of all aspects of our computing environment. This reduces our
independence to enact our own modifications. On the plus side, we gain the
experience and effort of an entirely different and broader community in the



implementation of an engine. This means that there is no necessity to add
features like namespaces, conditions/exceptions and an object system to the
language. They are already present. One of the most important benefits of
the approach is that we can use a version of Lisp that compiles to machine
code and get significantly improved performance for general code via optional
specification of the data types. This raises the possibility of greatly improving
the performance of our statistical systems.

Common Lisp is a natural choice of Lisp for building large software sys-
tems. It is a formally standardized specification with many implementations
– both open source and commercial. The implementations of interest to us
provide various different types of small and very large number types (in-
cluding rationals); language macros; lexical scoping/closures; dynamic scop-
ing; optional type declarations; machine-code compilation; name spaces; a
basic package mechanism; extensible I/O types via connections/streams; for-
eign function interface (FFI); thread support; reflection and programming
on the language; additional user-level data structures (e.g. general hash ta-
bles, linked lists); unicode; reference semantics; destructive in-situ operations;
error handling system (conditions and exceptions); profiling and debugging
tools; interfaces for Emacs; IDEs for commercial versions of Lisp and an ob-
ject/class system similar but richer than the S4 system in R. It is one of
the few languages that is both high-level (interactive) and low-level & effi-
cient (compiled to machine code) and offers features similar to those that
have proven effective in statistics, with more idealized semantics for statis-
tical computing. The syntax is quirky, but a thin layer on top of this that
provides a more familiar form (see section 6) makes Lisp an extremely at-
tractive candidate for moving forward in statistical computing practice and
research.

Using Common Lisp provides significant advantages. It would free up
the limited and valuable resources that the statistical computing commu-
nity invests in maintaining, extending and innovating its own language and
interpreter when a better one is already available to us. We do lose some
control over aspects of the software environment, but the similarities of R
and Lisp are such that this does not seem of any consequence. We can con-
tribute changes to Open Source Lisp implementations (e.g. SBCL) or even
fork development if we truly need such autonomy. But with the resources
not tied to porting new features already existing in Lisp – both now and in
the future – we can focus on innovations in statistical computing rather than
computer science and information technology.

If we are willing to embark on building a new statistical computing en-
vironment, we need to consider all possible languages that might serve as a
good base, and not just Lisp. We discuss other candidates in section 8.



4 Speed, compilation & timings

As mentioned previously, many R packages use compiled C/FORTRAN code
in order to gain efficiency. As a result, R is a good prototyping environment
but requires low-level programming for computationally intensive methods.
And this has led people to disregard it for use in large-scale, high perfor-
mance computing tasks. We want to reduce the gap between programming
in the high-level language (R) and making things efficient in the system-level
language (C), and also to allow methodology developed and implemented by
statisticians to be used in real, industrial-strength applications. We believe
that the optional type declaration and machine-code compiler provided by
implementations of Lisp achieves this.

Let’s consider a basic and overly simple example in which we implement
the sum function directly within a high-level language. The following are
obvious implementations of this in both R and Python1, also a dynamic,
interpreted language without type specification but with byte-code compila-
tion.

R Python

Sum =
function(x) {
ans = 0
for(e in x)
ans = ans + e

ans
}

def Sum(x):
ans = 0.0
for i in x:

ans = ans + i
return ans

We are ignoring issues such as missing values (NAs), and of course, both
systems provide built-in, compiled versions of the sum function. However,
we are interested in using this elementary example that focuses on scalar
computations to compare the performance of our implementations written in
the language with a similar implementation in Lisp.

We used a vector of length 100, 000 and computed its sum 10, 000 times to
compare the relative performances of our two implementations above with the
built-in ones and also a similar implementation Lisp. We also implemented
and measured equivalent code in Java and C and explored different ways to
compute the result in both Lisp and Python, i.e. using the general reduce
function in both systems. The example is sufficiently small and we want to
compare the näıve, obvious implementations, so we did not spend much time
optimizing the code. The results are given in Table 1

Python’s built-in sum is much slower than R’s built-in function because,
while both are written in C, the Python code accepts generic, extensible
Python sequences and must use generic dispatch (at the C-level or perhaps

1 A potential point of confusion is that the compiler module within CMU Common
Lisp is called Python and predates the programming language Python.



Implementation Time Performance factor relative to slowest

R interpreted 945.71 1
Python interpreted 385.19 2.50
Python reduce() function 122.10 7.75
Lisp no type declarations 65.99 14.33
Python built-in sum() 49.26 19.20
R built-in sum() 11.2 84.40
Lisp with type declarations∗ 2.49 379.80
Java 1.66 569.70
C 1.66 569.70

Table 1. Execution time (in seconds) of the summation of a vector of size 100, 000
repeated 10, 000 times. In all but the case of the call to R’s built-in sum() function,
there is no test for NAs. These measurements were taken on a Linux machine with a
2.4Ghz AMD 64 bit chip and 32 GB of RAM. ∗We also performed the experiments
on an Intel Mac (2.33Ghz, 3Gb RAM) and the results were similar, but the actual
values were quite different for some situations. The built-in R sum() took only
2.68 seconds and so is much more similar to Lisp which took 1.85 seconds on that
machine. The Java code was 3 times slower than the C code.

to a Python function) to fetch the next element of the sequence and then
similarly for adding the number to the total. While it is reasonable to point
out that both the Python and R built-in functions are more general than
the compiled lisp function in that they can handle arbitrary sequences and
numeric and integer vectors respectively, this objection has one serious flaw.
While the Lisp function has been limited to vectors of double-float elements,
Lisp allows us to declare these limitations; R and Python do not. We can
easily create a collection of specialized, fast sum functions for other data
types in Lisp, but we cannot in R and Python. This optimization is not
available to us in R and Python.

The timings show that the simple implementation entirely within Lisp is
essentially as fast as R’s C routine, taking into account that the latter tests
for NAs. What is also informative is the factor of 35 between the Lisp code
that has just two type declarations and the version that has none; optional
type declarations are effective. But the important comparison is between the
type-declared Lisp version and the equivalent version written entirely in both
R and Python. Here we see that the Lisp version is 380 times faster than R
and 150 times faster than Python.

Over the last several years, Luke Tierney has been making progress on
byte-code compilation of R code. His results indicate an improvement of a
factor between 2 and 5 (Tierney (2001)). Luke Tierney has also been exper-
imenting with using multiple processors within the internal numerical com-
putations done by R. This has the potential to speed up the code, but will
yield, at best, a factor given by the number of available processors. Further,



this work would need to be done manually for all functions and would not
directly apply to user-level code.

The timing results illustrate that the optimized Lisp code runs about 30%
slower than optimized C code. Clearly, if the majority of the computations
in the high-level language amount to calling primitives written efficiently
in C, then this 30% slow-down will lead to an overall slow-down and the
resulting system will be a potential step-backwards. However, we can of course
implement such primitives ourselves in C and use them from within Lisp. But
more importantly, we do not believe that these primitives form the majority
of the operations, and further that copying objects is a large contributor
to performance issues in R. While vectorized operations are fundamental,
they are not relevant to the many common computations which cannot be
readily vectorized. And the primary message from this section is that when we
implement an algorithm that deals with individual elements of a vector in the
high-level language, the gains in the Lisp approach are immense. Some Lisp
implementations are not slow and the language is viable for high-performance
computing. Furthermore, the gains in speed are available incrementally along
a continuum ranging from an initial version that is subsequently annotated
with increasing amount of information about the types of the data/variables.
So the improvement in run-time will also be frequently accompanied by gains
in development time as we don’t have to switch to another language (e.g. C)
to obtain the necessary performance improvements.

5 Actual examples

5.1 Reinforced random walk

Motivated by a research problem of a colleague, we simulated a simple discrete
two dimensional reinforced random walk. This is a random walk in which
the transition probabilities of moving North, South, East or West from the
current position are a function of the number of times the walk has previously
visited the current spot. In our simulation, the probability of moving East if
this was the second or greater time we had visited the current location is (1+
β)/4 and the probability of moving West is (1− β)/4; all other probabilities
are 1/4.

This is a potentially expensive simulation as we must keep a record of how
often each location has been visited, and further we need to be able to quickly
determine the number of times we have visited the a particular position. The
choice of data structure and algorithm for computing this is important for
the efficiency of this algorithm. We use a hash table with the location as
a key (in Lisp the object can be used directly, but in R, we must create a
string from the x, y pair). Furthermore, since this is a Markov process, it is
not readily vectorized.

We implemented the algorithm in both R and Lisp using the same al-
gorithm. With β = .5, we ran 100, 000 steps of the random walk on several



different machines. The execution times for 3 different machines are given
below. (the times are in seconds).

Lisp R Machine characteristics
0.215 6.572 2.33Ghz/3GB Intel, Mac OS X
0.279 7.513 2.4Ghz/32GB AMD Opteron, Linux
0.488 8.304 1Ghz/2GB AMD Athlon, Linux

So we see a significant benefit from using Lisp, with a speedup of a factor
ranging from 17 to 30.

The person interested in doing these simulations proposed looking at 50
different values of β and performing 10, 000 random walks, each of length
10, 000. The goal is to look at the distributions of both the drift and the
standard deviation of the walk. On the Intel Mac laptop, the R version takes
.75 seconds for 10, 000 iterations. 50 replications of this takes 39.912 seconds,
and 100 takes 80.213 seconds. So this is close to linear and 10, 000 replications
of 10, 000 iterations would take at least 133 minutes. And to do this for 50
values of beta would take at least 4 1

2 days! This assumes that the computation
will complete and not run out of memory.

The Lisp version takes 212.9 seconds for 10, 000 iterations of 10, 000 steps
for a given β. So for 50 values of β, the expected completion time is 3 hours
in total.

5.2 Biham-Middleton-Levine traffic model

We also implemented Biham-Middleton-Levine traffic model in both R, with
computationally intensive parts written in C code that are called from R
and in pure, type declared Lisp code. The results again indicate that the
Lisp code out-performed the combination of R and C code. While both R
implementation could be further optimized, a reasonable amount was done
using profiling in R and then recoding the bottlenecks in C.

6 Syntax

Lisp is a powerful computing language which provides a rich set of resources
for programmers. Despite this, many programmers have difficulty with it
because of its syntax. The S expression

sum(x)/length(x)

is represented in Lisp by the “s-expression”

(/ (sum x) (length x))

It is our intent to provide a thin layer of syntax over Lisp to provide a
comfortable environment for carrying out data analysis. Although we intend



to change the appearance of Lisp, it is important that the layer which does
this be as thin as possible. This would make it possible for users to work in
Lisp, should they choose to do so. This would make the applications developed
in the framework useful to the Lisp community as well as to statisticians.

There are a number of ways in which the syntax layer could be imple-
mented. A standard LALR parser generator is available and this could be
used to translate an S-like syntax into Lisp. As an alternative, we (together
with Brendan McArdle of the University of Auckland) are examining the use
of a PEG (parsing expression grammar) based parser. Such parsers provide
the ability to extend the grammar at run-time which is useful for experimen-
tation.

The syntax of the language is not yet finalised, but we would expect
that a simple function definition such as the one below on the left would be
translated to a Lisp form given on the right.

defun sum(x)
{
local s = 0
do i = 1, n {
s = s + x[i]

}
s

}

(defun sum (x)
(let ((s 0))

(doloop (i 1 (length x))
(setf s (+ s (elt x i))))

s))

Here, doloop and elt are Lisp macros which implement a Fortran-style
do-loop and 1-based element access for vectors.

Adding declarations to the original code would simply add corresponding
declarations to the Lisp code. The annotated version of sum function above
is given below on the left and the Lisp translation on the right.

defun sum(double[*] x)
{
local double s = 0
do i = 1, n {
s = s + x[i]

}
s

}

(defun sum (x)
(declare
(type (simple-array double (*))

x))
(let ((s 0))

(declare (type double s))
(doloop (i 1 (length x))
(setf s (+ s (elt x i))))

s))

In fact, we will probably use macros to provide specialized versions for
the different data types from a single “template”.



7 Other issues

Memory consumption & copying: As we have mentioned, the pass-by-value
semantics of R impose a significant performance penalty. Moving to a pass-
by-reference approach would avoid this but involve a very different style of
programming. For common, interactive use this may not be desirable, but
also would not be a significant issue. For more computationally intensive
tasks and “production analyses”, the approach may be very beneficial. So
too would be a computational model that facilitated working on data sets
record at a time or in blocks. This approach has been used very effectively
in SAS, for example. We plan on making streaming data and out-of-memory
computations a significant part of the fundamental framework. By combining
pass-by-reference with a flexible, fast programming language and data deliv-
ery mechanism for streaming data, we expect that statisticians and others can
use the same tools for interactive, exploratory data analysis and intensive,
production-level data processing and mining tasks.

Parallel computing: Parallel computing using multiple cores executing code
concurrently with shared memory is becoming increasingly important. Many
statistical methods are “embarrassingly parallel” and will benefit greatly from
such facilities. Thus, we want to be able use a high-level language to express
parallel algorithms. Progress on this front has been slow in R for various rea-
sons. By adopting another community’s engine, i.e. SBCL or Allegro Lisp, we
inherit much of the work that is already done to provide user-level parallel fa-
cilities which are close to completion for the different platforms. Additionally,
some of the commercial vendors of Lisp platforms have rich thread support.
Further, we expect that there will be advances in compiler technology in
general, and implemented in Lisp systems, for identifying and automating
aspects of parallelism that we are unlikely to achieve within the statistical
community alone.

Backward compatibility?: The R community is already large and growing.
There are over 1000 contributed R packages on CRAN (www.r-project.org),
150 from BioConductor (www.bioconductor.org) and 40 from Omegahat
(www.omegahat.org). It is a not a trivial decision to embark on building a
new system and losing access to this code. So backward-compatibility is an
important early decision. We could attempt to re-implement R on a Lisp
foundation and this would likely lead to improvements in performance. How-
ever, we feel that it is better to move to a new computational model. But,
we might still implement a Lisp-based R interpreter that can run concur-
rently within the Lisp session and can interpret R code. Alternatively, we
can develop a translator that converts R code to a Lisp equivalent. And an
additional approach is to embed R within Lisp so that we can call R functions
directly from within Lisp or our new language. rsbcl (Harmon (2007)) already



provides this interface and allows us access to arbitrary R functionality. We
are exploring these different approaches to reusing R code.

Extensibility: The R interpreter is written in C and there is sharp divide
between R-language code, interpreted code and the system itself. The funda-
mental internal data structures are compiled and fixed. With a system written
using Lisp, however, we are working in a language that performs run-time
compilation to machine code. There is no divide between the “interpreter”
and the user-level language. This means that users can introduce new “core”
data types within their code and they can be used in the same manner as the
core data types provided by our “new” environment. This extensibility allows
others outside of the language developers to perform new experiments on the
system itself and to disseminate them to others without needing to alter the
system. This gives us a great deal of flexibility to handle new tasks and ex-
plore alternative approaches to computing. This is also important if we are to
foster research on the topic of statistical computing environments themselves,
which is necessary if statistical computing is to continue to evolve.

8 Alternative systems

If we are prepared to build a new system, an obvious question is why choose
Lisp as the underlying language/environment. Python is becoming increas-
ingly widely used and supported. There is a great deal of advanced design
in the upcoming Perl 6/Parrot environment. And each of Perl, Python and
Java have extensive add-on modules that are of interest to the scientific and
statistical communities.

Each of these systems is a worthy choice on which to build a new system.
All are compiled languages in the sense of creating byte-code that is executed
on a virtual machine. Java has just-in-time compilation (JIT) which gives
it performance comparable to code compiled to machine-instructions. But
this is what Lisp provides transparently. And Lisp provides optional type
checking, whereas Java requires type specification and Python and Perl do no
permit type specification (in the standard language). While Java is potentially
very fast, its focus on secure code execution and hence array-bound checking
introduces a significant overhead for scientific/numerical computing.

The timing results in section 4 indicate that a good Lisp implementation
outperforms each of these other higher-level languages. While most of these
are more popular than Lisp, we think it is important to engage in ambi-
tious work with greater potential to improve statistical computing and its
availability for, and impact on, scientific computing.

We could use a low-level language such as C++ and this would provide us
with a potentially better foundation than we currently have in the C-based
code underlying R. However, we would still be in the situation of owning
our own interpreter and so be responsible for every detail, both now and



in the future. We could build on top of projects such as Root (Brun and
Rademakers (1997)), which provides an interactive C++-like language that
provides direct access to C++ libraries but we believe that there is a greater
benefit to using a rich high-level language which is compiled to machine code
rather than an interactive, interpreted C-based language.

Having chosen Lisp, we could elect to use one of the existing statistical
systems based on Lisp, i.e. XLisp-Stat, Quail. The choice of Common Lisp will
allow us to run the code on any of the standard Common Lisp implementa-
tions. For us, the main attraction is the presence of a good, high-performance
machine-code compiler. If the code for these systems can be deployed on such
a Common Lisp implementation and is not tied to a particular implementa-
tion of Lisp, then we will use it (license permitting). Otherwise, it is opportune
to design the environment anew with fundamental support for more modern
advanced data analysis, e.g. streaming data with out-of-memory algorithms.

9 Conclusion

The statistics community needs to engage in developing computing infras-
tructure for the modern and future challenges in computationally inten-
sive, data rich analyses. The combination of run- and development-time
speed and memory usage is important, and a language that supports op-
tional/incremental type specification helps in both compilation and good
programming, while enabling interactive use. We are pursuing Common Lisp,
with its several high-performance implementations to develop a framework on
which to implement a new statistical computing environment. And in this new
development, we are seeking to build in at a fundamental level different, mod-
ern computing paradigms (e.g. streaming data and out-of-memory/record-at-
a-time algorithms).

Starting the development of a new computing environment using Lisp is
not a guaranteed success. Lisp is not a widely used language within the statis-
tics community. And to a large extent, many people are content with their
existing environments. This is a long-term project and we are also hoping to
engage new and different additional communities and to benefit from their
knowledge and activity.

By putting an R-like syntax on Lisp, we feel that the obvious benefits
of Lisp can become accessible to a community in need of them, and allow
software developed by statisticians to be used in real, high-performance ap-
plications.

References

BRUN, R. and RADEMAKERS, F. (1997): ROOT - An Object Oriented Data
Analysis Framework, Nucl. Inst. & Meth. in Phys. Res. A, 389, 81–86. (Pro-
ceedings AIHENP ’96 Workshop.)



HARMON, C (2007): rsbcl - An Interface Between R and Steel Bank Common
Lisp. Personal communication.

TIERNEY, L. (2001): Compiling R: A Preliminary Report, DSC 2001 Proceedings
of the 2nd International Workshop on Distributed Statistical Computing.


