
R : Past and Future History
A Draft of a Paper for Interface ’98

Ross Ihaka
Statistics Department

The University of Auckland
Auckland, New Zealand

Abstract

R began as an experiment in trying to use the meth-
ods of Lisp implementors to build a small testbed which
could be used to trial some ideas on how a statistical
environment might be built. Early on, the decision was
made to use an S-like syntax. Once that decision was
made, the move toward being more and more like S has
been irresistible.

R has now outgrown its origins and its development is
now a collaborative effort undertaken using the Internet
to exchange ideas and distribute the results. The focus
is now on how the initial experiment can be turned into
a viable piece of free software.

This paper reviews the past and present status of R
and takes a brief look at where future development might
lead.

1 Genesis

A long time ago I discovered a wonderful book by Hal
Abelson and Gerald Sussman called The Structure and
Interpretation of Computer Programs. The book aims to
introduce engineering students to computing using the
Scheme programming language. It presents a wonderful
view of programming; investigating a wide variety of in-
teresting and practical examples, and even showing how
a language like Scheme can be implemented.

At about the same I obtained access to one of the
first releases of Rick Becker and John Chambers’ New
S language. I remember noticing both similarities and
differences between S and Scheme. In particular, I re-
member that one day I wanted to show Alan Zaslavsky
how you could use lexical scope to obtain own variables.
I didn’t have a copy of Scheme handy, so I tried to show
him using S. My demonstration failed because of the dif-
ferences in the scoping rules of S and Scheme. It left me

thinking that there were useful additions which could be
made to S.

Rather later, Robert Gentleman and I became col-
leagues at The University of Auckland. We both had
an interest in statistical computing and saw a common
need for a better software environment in our Macin-
tosh teaching laboratory. We saw no suitable commer-
cial environment and we began to experiment to see what
might be involved in developing one ourselves.

It seemed most natural to start our investigation by
working with a small Scheme-like interpreter. Because
it was clear that we would probably need to make sub-
stantial internal changes to the interpreter we decided
to write our own, rather than adopt one the many free
Scheme interpreters available at the time. This is not
quite as daunting a task as it might seem. The process
is well mapped out in books such as that of Abelson-
Sussman and that of Kamin. Having access to the source
code of a number Scheme interpreters also helped with
some of the concrete implementation details.

Our initial interpreter consisted of about 1000 lines of
C code and provided a good deal of the language func-
tionality found in the present version of R. To make the
interpreter useful, we had to add data structures to sup-
port statistical work and to choose a user interface. We
wanted a command driven interface and, since we were
both very familiar with S, it seemed natural to use an
S-like syntax.

This decision, more than anything else, has driven the
direction that R development has taken. As noted above,
there are quite strong similarities between Scheme and
S, and the adoption of the S syntax for our interpreter
produced something which “felt” remarkably close to S.
Having taking this first step we found ourselves adopting
more and more features from S.

Despite the similarity between R and S, there remain
number of key differences. The two fundamental differ-



> total <- 10
> make.counter <-
+ function(total = 0)
+ function() {
+ total <<- total + 1
+ total
+ }
> counter <- make.counter()
> counter()
[1] 1
> counter()
[1] 2
> counter()
[1] 3

Figure 1: A simple function demonstrating how the scoping rules in R differ from those of S.

ences result from R’s Scheme heritage.

• Memory Management: In R, we allocate a fixed
amount of memory at startup and manage it with
an on-the-fly garbage collector. This means that
there is very little heap growth and as a result there
are fewer paging problems than are seen in S.

• Scoping: In S, variables in functions are either lo-
cal or global. In R we allow functions to access to
the variables which were in effect when the function
was defined; an idea which dates back to Algol 60
and found in Scheme and other lexically scoped lan-
guages. Consider the function definition in figure 1.
The function make.counter returns a value which is
itself a function. This “inner function” increments
the value of the variable total, and then returns
the value of that variable. In S, the variable being
manipulated is global. In R, it is the one which is
in effect when the function is defined; i.e. it is the
argument to make.counter. The effect is to create
a variable which only the inner function can see and
manipulate.

Generally, the scoping rules used in R have met with
approval because they promote a very clean pro-
gramming style. We have retained them despite the
fact that they complicate the implementation of the
interpreter.

The two differences noted above are of a very basic na-
ture. In addition, we have experimented with a number
of other features in R. A good deal of the experimenta-
tion has been with the graphics system (which is quite
similar to that of S). Here is a brief summary of some of
these experiments.

• Colour Model: R uses a device independent 24-bit
model for colour graphics. Colours can be specified
in a number of ways.

1. By specifying the levels of red, green and blue
primaries which make up the Colour. For ex-
ample, the string "#FFFF00" indicates full in-
tensity for red and green with no blue; produc-
ing yellow.

2. By giving a colour name. R uses the
colour naming system of the X Window Sys-
tem to provide about 650 standard colour
names, ranging from the plain "red", "green"
and "blue" to the more exotic "light
goldenrod", and "medium orchid 4".

3. As a index into a user settable colour table.
This provides compatibility with the S graphics
system.

• Line Texture Description: Line textures can also
be specified in a flexible fashion. The specification
can be:

1. A texture name (e.g. "dotted").

2. A string containing the lengths for the pen
up/down segments which compose a line. For
example, the specification "52" indicates 5
points (or pixels) with “pen down” followed by
2 with “pen up”, with the pattern replicated
for the length of the line.

3. An index into a fixed set of line types, again
providing compatibility with S.

• Mathematical Annotation: Paul Murrell and I
have been working on a simple way of producing

2



0.0 0.1 0.2 0.3 0.4 0.5

–4
–3

–2
–1

0
1

2

Frequency λ

lo
g 10

 I
(T

)
X

X
(λ

)

Figure 2: A plot of the periodogram of a white-noise time series, showing the use of mathematical annotation.

mathematical annotation in plots. Mathematical
annotation is produced by specifying an unevalu-
ated R expression instead of a character string. For
example,

expression(x^2+1)

can be used to produce the mathematical expression

x2 + 1

as annotation in a plot.

The annotation system is relatively simple, and not
designed to have the full capabilities of a system
such as TEX. Even so, it can produce quite nice
results. Figure 2 shows a simple example of a time
series periodogram plot produced in R. The plot
was produced with a single R command which used
expression to describe the labels.

• Flexible Plot Layouts: A part of his PhD re-
search, Paul Murrell has been looking at a scheme
for specifying plot layouts. The scheme provides
a simple way of specifying how the surface of the
graphs device should be divided up into a number

of rectangular plotting regions. The regions can be
constrained in a variety of ways. Paul’s original
work was in Lisp, but he has implemented a use-
ful subset to R.

These graphical experiments were carried out at Auck-
land, but others have also bound R to be an environment
which can be used as a base for experimentation.

• Compilation: Luke Tierney has performed some
experiments to see what kind of performance gains
could be obtained by using byte-code compilation of
R. His experiments indicated that a speed-up by a
factor of 20 might be possible for some interpreted
code. As yet, the internal data structures in R are
probably not stable enough to make it worthwhile
to follow up on this work.

• WWW Interface: Jeff Banfield has developed
RWeb, which is a WWW based interface to R.

• Tcl/Tk Interface: Very recently Balasubrama-
nian Narasimhan has begun looking into how
Tcl/Tk might be used to add a fully graphical user
interface to R.

3



2 A Free Software Project

2.1 A Brief History

The initial work on R by Robert Gentleman and I pro-
duced what looked like a potentially useful piece of soft-
ware and we began preparing it for use in our teaching
laboratory. We were heartened enough by our progress
to place some binary copies of R at Statlib and make a
small announcement on the s–news mailing list in Au-
gust of 1993.

A number of people picked up our binaries and of-
fered feedback. The most persistent of these was Martin
Mächler of ETH Zurich, who encouraged us to release
the R source code as “free software”.

We had some initial doubts about doing this, but Mar-
tin’s arguments were persuasive, and we agreed to make
the source code available by ftp under the terms of the
Free Software Foundation’s GNU general license. This
happened in June of 1995.

At this point, the development of R was a relatively
closed process. Robert and I (soon joined by Martin)
would get bug reports by e-mail and from time-to-time
release updated versions of R. We quickly noticed that
there was no real forum for users to discuss R with each
other and so we began maintaining a small mailing list.

As interest in R grew (mostly by word of mouth) it
became clear that manually maintaining the mailing list
was not an effective option. Worse than that, at Auck-
land we were paying for e-mail, and the cost was be-
ginning to become noticeable. Eventually Martin vol-
unteered the use of facilities at ETH Zurich to establish
automated mailing lists to carry discussions about R and
R development. In March of 1996 the r–testers mailing
list was started. Roughly a year later this was replaced
with three newsgroups: r–announce, r–help and r–devel.

As R developed and people began porting applications
to it, it became clear that we needed a better distribu-
tion mechanism. After some discussion it was decided a
formal archive mechanism was desirable. Kurt Hornik of
TU Wien took on the task of establishing the archive. In
addition to the master site in Austria there are a number
of mirror sites, including StatLib.

With the introduction of the mailing lists, develop-
ment on R accelerated. This was partly because we ob-
tained many more reports and suggestions and partly
because we also began to receive patches and code con-
tributions. The contributions ranged from fixes for typos
through to changes which provided substantial increases
in functionality and performance.

The level of contribution was such that Robert, Mar-
tin and I couldn’t always make changes at a rate which
was satisfactory to those asking for changes. As a re-

sult, in mid-1997 we established a larger “core group”
who can make changes to the source code CVS archive.
This group currently consists of:

Doug Bates, Peter Dalgaard,
Robert Gentleman, Kurt Hornik,
Ross Ihaka, Friedrich Leisch,
Thomas Lumley, Martin Mächler,
Paul Murrell, Heiner Schwarte,
and Luke Tierney.

Since all work on R is strictly of a voluntary nature, the
organisation is very loose, with members contributing
when and as they can.

2.2 Contributors

When Robert and I started work on R, we were hopeful
that we might be able to produce something we could use
to teach our introductory data analysis courses. Had we
continued to work strictly on own it is likely that this is
precisely what we would have achieved.

The decision to make R free software has enabled us to
set rather higher goals, because it has given us access to
a large pool of very talented individuals who have been
willing to invest significant effort in the project. Indeed,
one of the very best things about having worked on R
has been the chance to work with such a great group of
people.

In addition to the core group listed above, I would
like to acknowledge the following individuals who have
made significant contributions to R.

Valerio Aimale, Ben Bolker,
John Chambers, Simon Davies,
Paul Gilbert, Arne Kovac,
Philippe Lambert, Alan Lee,
Jim Lindsey, Patrick Lindsey,
Mike Meyer, Martyn Plummer,
Anthony Rossini, Bill Venables,
Gregory Warnes, and
mward@wolf.hip.berkeley.edu

(I apologise for omissions here. Our record keeping has
not been all that it could be).

In addition a host of other individuals have made con-
tributions.

2.3 Present Status

R is still under active development and there is still
some work needed before it can be considered ready
for widespread use. In particular, some changes will be
required to support moderate to large-sized data sets.

4



More importantly, there is an almost complete lack of
introductory documentation, although much of what has
been written about S directly applicable to R.

Despite this, it seems that R is beginning to reach the
point where it is stable enough for regular use (at least
under Unix). I am hopeful that during the next year we
can release a complete R version 1.0 package as part of
the Free Software Foundation’s GNU suite of software.

3 The Future

3.1 R

It is the present aim of the R project to produce a free
implementation of something “close to” version 3 of the
S language and to provide ongoing support and mainte-
nance for the resulting software. Some members of the
R core have proposed that future developments in S ver-
sion 4 should be also tracked. At this point it is unclear
whether this will happen.

One development which would help R a good deal
would be the development of an integrated graphical user
interface. Some initial work has begun on this and I be-
lieve that it is something which will come quite quickly.

My personal future interest in R is mainly as a user.
Given the investment I have made in it, I hope that I
will be able to get substantial use out of R for statistical
work and teaching.

3.2 Related Work

Working on R has shown me that there a number of
interesting questions related to building statistical soft-
ware. My own conclusion has been that it is important
to pursue efficiency issues, and in particular, speed.

As noted in section 1, Luke Tierney performed some
experiments with R to see what kind of speed increase
could be obtained using byte-code compilation; the in-
dications were that a speedup by a factor of 20 might be
possible for some computations.

There is other evidence that a factor of 100 (roughly
the speed of unoptimised C) might be possible with com-
pilation to native machine code. With this level of per-
formance, there would be no need for any foreign func-
tion interface and all computations could take place in
a single language environment.

I am intrigued by what such an environment might
offer. An increase in performance of this magnitude is
likely to produce a qualitative change in the use it gets
puts to.

The difficulty is that the creation of such a compiled
environment requires the hand of an expert in compila-

tion. There is a real problem in finding such an expert
who is also aware of the type of problems which statis-
ticians handle.

4 Acknowledgements

It goes without saying that R would not exist without
the pioneering work of John Chambers and his AT&T
collaborators. John has changed the way that many of
us think about statistical computing and the fact that
R has evolved to resemble S as closely as it does is is
a testimony to the extent that people enjoy doing data
analysis with S.

The Free Software Movement (or movements perhaps)
has been another major source or ideas and influence on
R. I do my development work on a workstation which
runs the FreeBSD operating system and is equipped with
a rich set of development tools from the Free Software
Foundation. Hopefully, R represents some pay back to
the free software community for what they have provided
to me and the other R developers.

Finally, I’d like to acknowledge my partner-in-crime;
Robert Gentleman. During our work on R we have prac-
tically lived in one another’s back pockets. It speaks vol-
umes that, not only are we still on speaking terms, but
we still go out for beer together on Friday evenings.

References

Abelson, H. and G. J. Sussman, with J. Sussman (1985).
Structure and Interpretation of Computer Programs.
Cambridge MA: MIT Press.

Becker, R. A., Chambers, J. M. and Wilks, A. R.
(1986). The new S Language: A programming environ-
ment for data analysis and graphics. Pacific Grove, CA:
Wadsworth & Brooks/Cole.

Chambers, J. M. and T. J. Hastie, Eds. (1991). Sta-
tistical Models in S. Pacific Grove, CA: Wadsworth &
Brooks/Cole.

R. Gentleman and R. Ihaka (1997). “The R language”,
In Proceedings of the 28th Symposium on the Interface,
L. Billard and N. Fisher Eds. The Interface Foundation
of North America.

Ihaka, R. and R. Gentleman (1996). “R: A language for
data analysis and graphics,” Journal of Computational
and Graphical Statistics, 5, 299–314.

Kamin, S. N. (1990). Programming languages. Addison
Wesley.

5


