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Outline

• How we got to where we are

• Where we need to be

• Future directions for research

• Some current meta-issues



Early R

• R did not always look like an alternative
implementation of the S language.

• It started as a small Scheme-like interpreter (loosely
based on work by Sam Kamin and David Betz).

• This provided a platform for experimentation and
extension.



R Version GC-13

> (define square (lambda (x) (* x x)))
square

> (define v 10)
v

> (square v)
100



Present R

• The S-like appearance of R was added incrementally.

• Similarity to S was driven by the desire to access
already existing programming expertise and code.

• As R became more S-like the move towards making it
S compatible became irresistible.

• This ultimately produced the present mature and
widely-used system.

• Because R now has a large number of users who require
a stable platform for getting work done, it is no longer
suitable as a base for experimentation and development.



What R Provides

• An interactive, extensible, vectorised language.

• A large run-time environment which provides a good
deal of statistical functionality.

• Good (static) graphics capabilities.

• Community support mechanisms.

• The freedom to inspect, modify and redistribute the
source code.



R’s Limitations

• R is not very good at handling large-scale problems.

• The following present particular difficulties.

– Execution of large amounts of R code.

– Scalar (element-by-element) computations.

– Computations on large volumes of data.

• Some computational problems involve a mix of all of
these.



An Example - Updating a Data Frame

• A problem encountered by a colleage required updates
to corresponding elements of a collection of vectors.

• A natural way to do this was to store the variables in a
data frame and to update the rows of the data frame.

df[i,] = new.row

• The computation was running very slowly.



Row-Wise Dataframe Updates

Hold the variables to be updated in a data frame.

n = 60000
r = 10000
d = data.frame(w = numeric(n), x = numeric(n),

y = numeric(n), z = numeric(n))
value = c(1, 2, 3, 4)

system.time({
for(i in 1:r) {

j = sample(n, 1)
d[j,] = value

}
})

Run time: 100 seconds.



Multiple Vector Updates

Update the variables individually.

n = 60000
r = 10000
w = x = y = z = numeric(n)
value = c(1, 2, 3, 4)

system.time({
for(i in 1:r) {

j = sample(n, 1)
w[j] = value[1]; x[j] = value[2]
y[j] = value[3]; z[j] = value[4]

}
})

Run time: .2 seconds
(500 times faster than for the dataframe.)



What We (Will) Need To Deal With

• Multi-gigabyte data sets are now commonplace.

• Terabyte data sets are seen with increasing frequency.

• Petabye data sets are now beginning to appear.

• Statistical techniques are increasingly computationally
intensive.

• To handle this we will need orders of magnitude
increases in performance over what R (and other
interpreters) can provide.



What Can We Do?

• Wait for faster machines.

• Introduce more vectorisation and take advantage of
multicores.

• Make changes to R to eliminate bottlenecks.

– Compilation.

– Use non-copying semantics.

• Sweep the page clean and look at designs for new
languages.

• Duncan Temple Lang, Brendan McArdle and I have
begun examining what such new languages might look
like.



Basic Language Speed I, Compilation

• R is an interpreted language.

• Using compilation into bytecode or machine code
should speed up the language.

• A guess at how much the speed up will be is somewhere
between a small multiple and an order of magnitude.

• Certain R language elements (eval, get, assign, rm
and scoping) work against obtaining efficiency gains
through compilation.

• Cleaning up (i.e. changing) language semantics should
make it possible to get closer to the order of magnitude
value.



Basic Language Speed II, Scalar Types

• R is very slow at scalar computations.

• This produces limitations on the type of computations R
is useful for.

• Example: Simulation of Markov chains and AR
processes is inefficient because it cannot be vectorised.

• The limitation could perhaps be eliminated by
introducing scalar data types.

• This would avoid the boxing and unboxing costs
associated with using aggregate types (e.g. vectors) for
scalar computations.



Basic Language Speed III, Avoiding Copying

• R uses pass-by-value semantics.

• This means that functions do not operate directly on
their arguments, but rather on copies of the arguments.

• This can be very inefficient (e.g. model matrix copying
in lm etc).

• This is one reason that the row-wise dataframe update
process is so slow.

• Moving to pass-by-reference semantics should produce
efficiency gains and make it possible to handle much
larger problems.



Compiler Smarts I, Type Declarations

• Compiler performance can be boosted by the
introduction of (optional) type declarations.

• Performance analysis often makes it possible to
determine a few program locations which have a big
impact on performance.

• By giving the compiler information about the types of
variables in these locations it is often possible to
eliminate the bottlenecks.

• In particular, it should be possible to eliminate method
dispatch for common cases (like scalar arithmetic) in
simple cases, making performance comparable with C
and Fortran.



Compiler Smarts II, Code Transformation

• Naive evaluation vector expression like x+y+z creates a
vector intermediate x+y which is discarded immediately
x+y+z is formed.

• Transforming this into an iteration over vector elements
makes it possible to store intermediate values in
machine registers avoiding the allocation of
intermediate vectors.

• Type declarations make it possible to implement such
optimisations.

• The SAC language (Scholz et al) provides an example
of what can be done.



Building a New Language

• Given that we can determine suitable technologies,
building a new language high-performance language is
possible.

• Building such a language and a computational
environment based on it will take time, but we have a
model for how to go about the process.

• There are meta issues that need to be addressed.

– How can development be supported?

– How can the rights of contributors to the project
be protected?
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