
Lessons Learned
Directions for the Future

Ross Ihaka
University of Auckland



Primary R Developers

Douglas Bates Guido Masarotto
John Chambers Duncan Murdoch
Peter Dalgaard Paul Murrell
Seth Falcon Martyn Plummer
Robert Gentleman Brian Ripley
Kurt Hornik Deepayan Sarkar
Stefano Iacus Heiner Schwarte
Ross Ihaka Duncan Temple Lang
Friedrich Leisch Luke Tierney
Thomas Lumley Simon Urbanek
Martin Maechler

Plus a supporting cast of thousands.



Primary R Developers

Douglas Bates Guido Masarotto
John Chambers Duncan Murdoch
Peter Dalgaard Paul Murrell
Seth Falcon Martyn Plummer
Robert Gentleman Brian Ripley
Kurt Hornik Deepayan Sarkar
Stefano Iacus Heiner Schwarte
Ross Ihaka Duncan Temple Lang
Friedrich Leisch Luke Tierney
Thomas Lumley Simon Urbanek
Martin Maechler

Plus a supporting cast of thousands.



Outline

• How we got to where we are

• Where we need to be

• Future directions for research

• Some current meta-issues



Early R

• R did not always look like an alternative
implementation of the S language.

• It started as a small Scheme-like interpreter (loosely
based on work by Sam Kamin and David Betz).

• This provided a platform for experimentation and
extension.



R Version GC-13

> (define square (lambda (x) (* x x)))
square

> (define v 10)
v

> (square v)
100



Present R

• The S-like appearance of R was added incrementally.

• Similarity to S was driven by the desire to access
already existing programming expertise and code.

• As R became more S-like the move towards making it
S compatible became irresistible.

• This ultimately produced the present mature and
widely-used system.

• Because R now has a large number of users who require
a stable platform for getting work done, it is no longer
suitable as a base for experimentation and development.



What R Provides

• An interactive, extensible, vectorised language.

• A large run-time environment which provides a good
deal of statistical functionality.

• Good (static) graphics capabilities.

• Community support mechanisms.

• The freedom to inspect, modify and redistribute the
source code.



R’s Limitations

• R is not very good at handling large-scale problems.

• The following present particular difficulties.

– Execution of large amounts of R code.

– Scalar (element-by-element) computations.

– Computations on large volumes of data.

• Some computational problems involve a mix of all of
these.



An Example - Updating a Data Frame

• A problem encountered by a colleage required updates
to corresponding elements of a collection of vectors.

• A natural way to do this was to store the variables in a
data frame and to update the rows of the data frame.

df[i,] = new.row

• The computation was running very slowly.



Row-Wise Dataframe Updates

Hold the variables to be updated in a data frame.

n = 60000
r = 10000
d = data.frame(w = numeric(n), x = numeric(n),

y = numeric(n), z = numeric(n))
value = c(1, 2, 3, 4)

system.time({
for(i in 1:r) {

j = sample(n, 1)
d[j,] = value

}
})

Run time: 100 seconds.



Multiple Vector Updates

Update the variables individually.

n = 60000
r = 10000
w = x = y = z = numeric(n)
value = c(1, 2, 3, 4)

system.time({
for(i in 1:r) {

j = sample(n, 1)
w[j] = value[1]; x[j] = value[2]
y[j] = value[3]; z[j] = value[4]

}
})

Run time: .2 seconds
(500 times faster than for the dataframe.)



What We (Will) Need To Deal With

• Multi-gigabyte data sets are now commonplace.

• Terabyte data sets are seen with increasing frequency.

• Petabye data sets are now beginning to appear.

• Statistical techniques are increasingly computationally
intensive.

• To handle this we will need orders of magnitude
increases in performance over what R (and other
interpreters) can provide.



What Can We Do?

• Wait for faster machines.

• Introduce more vectorisation and take advantage of
multicores.

• Make changes to R to eliminate bottlenecks.

– Compilation.

– Use non-copying semantics.

• Sweep the page clean and look at designs for new
languages.

• Duncan Temple Lang, Brendan McArdle and I have
begun examining what such new languages might look
like.



Basic Language Speed I, Compilation

• R is an interpreted language.

• Using compilation into bytecode or machine code
should speed up the language.

• A guess at how much the speed up will be is somewhere
between a small multiple and an order of magnitude.

• Certain R language elements (eval, get, assign, rm
and scoping) work against obtaining efficiency gains
through compilation.

• Cleaning up (i.e. changing) language semantics should
make it possible to get closer to the order of magnitude
value.



Basic Language Speed II, Scalar Types

• R is very slow at scalar computations.

• This produces limitations on the type of computations R
is useful for.

• Example: Simulation of Markov chains and AR
processes is inefficient because it cannot be vectorised.

• The limitation could perhaps be eliminated by
introducing scalar data types.

• This would avoid the boxing and unboxing costs
associated with using aggregate types (e.g. vectors) for
scalar computations.



Basic Language Speed III, Avoiding Copying

• R uses pass-by-value semantics.

• This means that functions do not operate directly on
their arguments, but rather on copies of the arguments.

• This can be very inefficient (e.g. model matrix copying
in lm etc).

• This is one reason that the row-wise dataframe update
process is so slow.

• Moving to pass-by-reference semantics should produce
efficiency gains and make it possible to handle much
larger problems.



Compiler Smarts I, Type Declarations

• Compiler performance can be boosted by the
introduction of (optional) type declarations.

• Performance analysis often makes it possible to
determine a few program locations which have a big
impact on performance.

• By giving the compiler information about the types of
variables in these locations it is often possible to
eliminate the bottlenecks.

• In particular, it should be possible to eliminate method
dispatch for common cases (like scalar arithmetic) in
simple cases, making performance comparable with C
and Fortran.



Compiler Smarts II, Code Transformation

• Naive evaluation vector expression like x+y+z creates a
vector intermediate x+y which is discarded immediately
x+y+z is formed.

• Transforming this into an iteration over vector elements
makes it possible to store intermediate values in
machine registers avoiding the allocation of
intermediate vectors.

• Type declarations make it possible to implement such
optimisations.

• The SAC language (Scholz et al) provides an example
of what can be done.



Building a New Language

• Given that we can determine suitable technologies,
building a new language high-performance language is
possible.

• Building such a language and a computational
environment based on it will take time, but we have a
model for how to go about the process.

• There are meta issues that need to be addressed.

– How can development be supported?

– How can the rights of contributors to the project
be protected?


	Title Page
	Primary R Developers
	Primary R Developers
	Outline
	Early R
	R Version GC-13
	Present R
	What R Provides
	R's Limitations
	An Example - Updating a Data Frame
	Row-Wise Dataframe Updates
	Multiple Vector Updates
	What We (Will) Need To Deal With
	What Can We Do?
	Basic Language Speed I, Compilation
	Basic Language Speed II, Scalar Types
	Basic Language Speed III, Avoiding Copying
	Compiler Smarts I, Type Declarations
	Compiler Smarts II, Code Transformation
	Building a New Language

