
Developing a “Next Generation”
Statistical Computing Environment

Ross Ihaka Duncan Temple Lang
University of Auckland University of California



Talk Outline

This talk will seek to answer a number of questions about
statistical software systems:

• Where are we now?

• Where would we like to be?

• How do we get there from here?

• What are the implications of reaching our goals?



Current Systems

• Statistical Packages

– SAS, SPSS, STATA, . . .

• Statistical Programming Environments

– LISPSTAT, R, S, SPLUS, . . .

• Programming Environments

– MATLAB, OCTAVE, OmegaHat, Python,. . .

• General Purpose Programming Languages

– C, C++, C#, Fortran, Java, Lisp, Scheme, . . .



Programming Environments

• Programming environments have become
increasingly popular over the past 10 to 15 years.

• They are characterised by a having a flexible
programming (or scripting) language with a large
amount of functionality added through library-like
extensions.

• Generally, these environments obtain their flexibility
by being based on interpreters.

• Programming environments are easier to use than
general programming languages, but there is a
performance hit because they are interpreted.



S-Like Programming Environments

• The S family of languages includes R and SPLUS.

• The family members all have:

– Call-by-value semantics

– A whole-object model of computation

– Vectorised capabilities

– Generic-function based object systems

– A very large library of statistical applications

• The languages are implemented as slow interpreters,
but critical computations are implemented in C or
Fortran.



Problems with the S Family

• The whole-object model limits the size of problem
which can be handled. This is compounded by the
use of call-by-value semantics which can produce
multiple copies of data sets in memory.

• It also leads the use of algorithms which require the
presence of entire data sets.

• The emphasis is very much on vector operations. In
fact the family does not include the notion of scalar
quantities, meaning the overhead of array access is
unavoidable. This makes it difficulty to implement
many computations efficiently.



The Need for a New System

• The computational model used in the S family has its
origins in the mid 1970s.

• Advances in computing technology have kept
software using the model useful, but more and more
problems lie beyond the scope of what it can handle.

• In order to handle a large range of the current range
of problems of interest, the basic computational
model needs to be changed.



Obstacles to Evolution

• In the beginning, R provided a useful platform for
experimentation and research.

• As a mature system with a large user base, such
experimentation is necessarily curtailed.

• While useful work continues, substantive changes
(e.g. anything involving a change to the evaluation
model) would not be welcomed by the user base.

• Real change is only likely to come through revolution
rather than evolution.



Features for a New System

• Speed

• Smaller (relative) footprint

• Foreign function interface

• Parallelism

• Support for reasoning about code



Candidate Systems

• We don’t have the resources to build a new system
entirely from scratch. We need some giant shoulders
to stand on.

• Two candidate systems are:

– Python

– Lisp

• Benchmarking shows that (compiled) Lisp is better
for array-based computations.

• We also think that Lisp has features which will
ultimately make it a better data analysis language.



Lisp as the Base for New System

On the plus side:

• Lisp is a well-established, widely-used system

• There are a multiplicity of high-quality
implementations

• There are very good resources explaining Lisp at
both the high and low levels.

On the minus side:

• Lisp has an image problem – it is perceived as a
“dead” language.

• Because Lisp is an amalgam of features there are
some inelegances to deal with.



Particular Lisp Features of Interest

• Compilation to machine code

• Optional type-declaration

• Pass-by-reference semantics

• A flexible generic-function based object system

• Macros

• Support for computing on the language.



A System Vision

• We envision Lisp lying at the heart of a rich
computational environment.

• On top there is an interactive language which is
really just a thin syntax layer over the Lisp system.

• Desirable Lisp features such as the FFI, and existing
interfaces can be exploited directly.

• Commercial tree-shaking technology can be used to
produce small stand alone applications.



LISP

Interactive
Environment

Native libraries
C/C++/FORTRAN

FF
I

Stand-alone
computational

unit

External Services

Web Services
DCOM
CORBA

compiled

Visualization

modulesinterpreter

REPL

Abstract Interfaces
IDL



Implementation Issues

• Syntax

• Lisp idiosyncrasies

• The object model

• Access to standard technologies



Development Time-Frame

• At present we are very much exploring the feasibility
of building a new system.

• We feel that it is prudent to invest a good deal of time
in understanding the technology we are proposing to
adopt.

• Building a basic computing language can be
relatively quickly, but there are other tasks which
may take longer.



The Implications of a New Environment

• The environment we envision would be rather richer
than current statistical computing environments.

• For statisticians to use the full capabilities of such an
environment will require them to rethink the way in
which they use computing.

• This will require a higher level of awareness and
better education about the computational sciences.

• Doing this may well require changes to educational
programs in statistics.



Summary

• This talk represents a progress report on an
investigation of how we might go about producing a
new statistical computing environment.

• Preliminary experiments have indicated that building
a system on top of Common Lisp provides a
productive direction to go in.

• We believe that systems based on Lisp will be both
more sophisticated and better performing than
present systems.


	Title Page
	Talk Outline
	Current Systems
	Programming Environments
	S-Like Programming Environments
	Problems with the S Family
	The Need for a New System
	Obstacles to Evolution
	Features for a New System
	Candidate Systems
	Lisp as the Base for New System
	Particular Lisp Features of Interest
	A System Vision
	Figure: A System Map
	Implementation Issues
	Development Time-Frame
	The Implications of a New Environment
	Summary

