Writing Efficient Programs in

R
(and Beyond)

Ross Thaka*, Duncan Temple Lang™*, Brendan McArdle*

“The University of Auckland
**The University of California, Davis

Example: Generating a 2d Simple Random Walk

A two dimensional (discrete) random walk can be defined as
follows:

Start at the point (0, 0).
Fori=1,2,3,... take a unit step in a randomly

chosen direction; N, S, E, W.

It is possible to theory to study such a random walk, but it is
also useful to use simulation to study the properties of random
walks.

The sample Function

A virtual lotto ticket line.

> sample(1:40, 7)
[1] 34 15 3 32 4 39 37

Sampling with replacement.

> sample(1:40, 7, replace = TRUE)
[1] 13 21 23 39 23 6 38

Sample random directions and step sizes.

> sample(c(TRUE, FALSE), 1)
[1] TRUE

> sample(c(-1, 1), 1)

[1] -1

Version One: Naive Implementation

In this version we’ll write the program the way a C, C++ or
Java programmer might.

This means running a loop and generating the values one a
time.

At the heart of the program we have to choose a direction (x or
y) to step in and an step-size (either +1 or —1).

These random choices are made using the sample function.

Version One: R Code

> rw2dl =
function(n) {
Xpos = ypos = numeric(n)
xdir = c(TRUE, FALSE)
pml = c(1, -1)
for(i in 2:n)
if (sample(xdir, 1)) {
xpos[i] = xpos[i-1] + sample(pml, 1)
ypos[i] = ypos[i-1]
3
else {
xpos[i] = xpos[i-1]
ypos[il] ypos[i-1] + sample(pml, 1)
3
list(x = xpos, y = ypos)
}

Performance

We can time the performance of this algorithm using the
system.time function.

> system.time(rw2d1(100000))
user system elapsed
2.587 0.002 2.591

We’ll use this figure as a baseline for comparison with other
methods we’ll develop later.

Version Two: Vectorisation

Rather than computing the position element by element, this
version computes the vectors of position changes and then
uses cumsum to compute the positions.

To compute 7 positions we need n — 1 position changes.

The step sizes can be computed as
steps = sample(c(-1, 1), n - 1, replace = TRUE)

and whether or not to step in the x direction can be determined
as

xdir = sample(c(TRUE, FALSE), n - 1,
replace = TRUE)

Version Two: R Code

> rw2d2 =
function(n) {
steps = sample(c(-1, 1), n - 1,
replace = TRUE)

sample(c(TRUE, FALSE), n - 1,

replace = TRUE)
xpos = c(0, cumsum(ifelse(xdir, steps, 0)))
ypos = c(0, cumsum(ifelse(xdir, 0, steps)))
list(x = xpos, y = ypos)

xdir

Version Two: R Code

> rw2d2 =
function(n) {
steps = sample(c(-1, 1), n - 1,
replace = TRUE)

sample(c(TRUE, FALSE), n - 1,

replace = TRUE)
xpos = c(0, cumsum(ifelse(xdir, steps, 0)))
ypos = c(0, cumsum(ifelse(xdir, 0, steps)))
list(x = xpos, y = ypos)

xdir

3

> system.time(rw2d2(100000))
user system elapsed
0.103 0.011 0.114

This is 1/23 the elapsed time taken by the baseline version.

Vectorisation clearly makes a huge difference to run times.

Version Three: Heavy Vectorisation

A potential problem with the previous version is the use of the
ifelse function to deal with the x and y directions separately.

As a final improvement let’s deal with the four step directions
separately and simply choose one of the four directions at
random.

The directions can be chosen via
dirs = sample(l:4, n - 1, replace = TRUE)

and this can then be used to select the appropriate increments
in the x and y directions from precomputed vectors.

Version Three: R Code

> rw2d3 =
function(n) {
xsteps = c(-1, 1, 0, ©0)
ysteps = c(0, O, -1, 1)
dir = sample(l:4, n - 1, replace = TRUE)
xpos = c(0, cumsum(xsteps[dir]))
ypos = c(®, cumsum(ysteps[dir]))
list(x = xpos, y = ypos)

Version Three: R Code

> rw2d3 =
function(n) {
xsteps = c(-1, 1, 0, ©0)
ysteps = c(0, O, -1, 1)
dir = sample(l:4, n - 1, replace = TRUE)
xpos = c(0, cumsum(xsteps[dir]))
ypos = c(®, cumsum(ysteps[dir]))
list(x = xpos, y = ypos)
}

> system.time(rw2d3(100000))
user system elapsed
0.011 0.001 0.013

This has cut the running time to about 1/9 of the previous
version and 1/200 of the baseline version.

Profiling

Profiling is a useful tool which can be used to find out how
much time is being spent inside each function when some R
code is run.

When profiling is turned on, R gathers information on where
the program is at regularly spaced time points (20 millisecond
separation by default) and stores the information in a file.

After profiling is turned off the information stored in the file
can be analysed to produce a summary of how much time is
spent in each function.

It can be quite surprising to find out just where R is spending
its time and this can help to find ways to make programs run
faster.

Profiling Example

The following code will enable use to find out where R is
spending its time when running the rw2d2 function.

Because the process is statistical we’ll run the function a
number of times to ensure that enough data is being gathered.

> Rprof()
> for(i in 1:100)

pos = rw2d2(100000)
> Rprof(NULL)

Profiling Analysis

> prof = summaryRprof()
> prof$by.self[1:5,]

self.time self.pct total.time total.pct

"ifelse" 5.08
"&" 1.30
"sample" 1.10
" 1.08
"cumsum" 0.34

52.
13.
11.
11.

3.

2

3
3
1
5

7.94
1.30
1.10
1.08
0.34

81.
13.
11.
11.

3.

81.5% of the time is being spent in the ifelse function (and

calls made to other R functions from inside the i felse

function).

This explains why removing the ifelse calls has such a big

effect.

Ul = W W U

Lessons

e Producing efficient programs in R requires thought and
experimentation.

e In general, vectorisation is a big win and converting
loops into vectorised alternatives almost always pays
off.

e Code profiling can give a way to locate those parts of a
program which will benefit most from optimisation.

e Unfortunately, it is not always possible to produce
efficient programs using vectorisation.

Directions for New Research

o There are new high-level languages which which
produce very efficient code by using careful code
analysis and transformation.

— SaC — Single assignment C (University of Kiel)
— CT — C for Throughput Computing (Intel)

e These languages are not interactive.

o Whether it is possible to bring the techniques used by
these languages to an interactive languages is an open
question.

o The other alternative is to try to make naively written
programs run fast.

e How to do this in an interactive language is an open
question.

A Quick Progress Report

We believe that it is possible to make naively specified
programs in a language not unlike R run much faster
than R (up to 600 times faster for some problems).

Integrating this with method-dispatch in object-oriented
languages is tricky, but looks possible.

This is not going to be enough to take advantage of the
potential offered by the parallel processing architectures
now becoming available.

To harness that potential, the techniques used in
languages like Sac and CT must be used.

It is not clear whether this is possible in interactive
languages.

	Title Page
	Figure: A Random Walk
	Example: Generating a 2d Simple Random Walk
	The sample Function
	Version One: Naive Implementation
	Version One: R Code
	Performance
	Version Two: Vectorisation
	Version Two: R Code
	Version Three: Heavy Vectorisation
	Version Three: R Code
	Profiling
	Profiling Example
	Profiling Analysis
	Lessons
	Directions for New Research
	A Quick Progress Report

