
Writing Efficient Programs in
R

(and Beyond)
Ross Ihaka∗, Duncan Temple Lang∗∗, Brendan McArdle∗

∗The University of Auckland
∗∗The University of California, Davis

●

Example: Generating a 2d Simple Random Walk

A two dimensional (discrete) random walk can be defined as
follows:

Start at the point (0, 0).

For i = 1, 2, 3, . . . take a unit step in a randomly
chosen direction; N, S, E, W.

It is possible to theory to study such a random walk, but it is
also useful to use simulation to study the properties of random
walks.

The sample Function

A virtual lotto ticket line.

> sample(1:40, 7)
[1] 34 15 3 32 4 39 37

Sampling with replacement.

> sample(1:40, 7, replace = TRUE)
[1] 13 21 23 39 23 6 38

Sample random directions and step sizes.

> sample(c(TRUE, FALSE), 1)
[1] TRUE
> sample(c(-1, 1), 1)
[1] -1

Version One: Naive Implementation

In this version we’ll write the program the way a C, C++ or
Java programmer might.

This means running a loop and generating the values one a
time.

At the heart of the program we have to choose a direction (x or
y) to step in and an step-size (either +1 or −1).

These random choices are made using the sample function.

Version One: R Code

> rw2d1 =
function(n) {
xpos = ypos = numeric(n)
xdir = c(TRUE, FALSE)
pm1 = c(1, -1)
for(i in 2:n)
if (sample(xdir, 1)) {
xpos[i] = xpos[i-1] + sample(pm1, 1)
ypos[i] = ypos[i-1]

}
else {
xpos[i] = xpos[i-1]
ypos[i] = ypos[i-1] + sample(pm1, 1)

}
list(x = xpos, y = ypos)

}

Performance

We can time the performance of this algorithm using the
system.time function.

> system.time(rw2d1(100000))
user system elapsed
2.587 0.002 2.591

We’ll use this figure as a baseline for comparison with other
methods we’ll develop later.

Version Two: Vectorisation

Rather than computing the position element by element, this
version computes the vectors of position changes and then
uses cumsum to compute the positions.

To compute n positions we need n − 1 position changes.

The step sizes can be computed as

steps = sample(c(-1, 1), n - 1, replace = TRUE)

and whether or not to step in the x direction can be determined
as

xdir = sample(c(TRUE, FALSE), n - 1,
replace = TRUE)

Version Two: R Code

> rw2d2 =
function(n) {
steps = sample(c(-1, 1), n - 1,

replace = TRUE)
xdir = sample(c(TRUE, FALSE), n - 1,

replace = TRUE)
xpos = c(0, cumsum(ifelse(xdir, steps, 0)))
ypos = c(0, cumsum(ifelse(xdir, 0, steps)))
list(x = xpos, y = ypos)

}

Version Two: R Code

> rw2d2 =
function(n) {
steps = sample(c(-1, 1), n - 1,

replace = TRUE)
xdir = sample(c(TRUE, FALSE), n - 1,

replace = TRUE)
xpos = c(0, cumsum(ifelse(xdir, steps, 0)))
ypos = c(0, cumsum(ifelse(xdir, 0, steps)))
list(x = xpos, y = ypos)

}

> system.time(rw2d2(100000))
user system elapsed
0.103 0.011 0.114

This is 1/23 the elapsed time taken by the baseline version.

Vectorisation clearly makes a huge difference to run times.

Version Three: Heavy Vectorisation

A potential problem with the previous version is the use of the
ifelse function to deal with the x and y directions separately.

As a final improvement let’s deal with the four step directions
separately and simply choose one of the four directions at
random.

The directions can be chosen via

dirs = sample(1:4, n - 1, replace = TRUE)

and this can then be used to select the appropriate increments
in the x and y directions from precomputed vectors.

Version Three: R Code

> rw2d3 =
function(n) {
xsteps = c(-1, 1, 0, 0)
ysteps = c(0, 0, -1, 1)
dir = sample(1:4, n - 1, replace = TRUE)
xpos = c(0, cumsum(xsteps[dir]))
ypos = c(0, cumsum(ysteps[dir]))
list(x = xpos, y = ypos)

}

Version Three: R Code

> rw2d3 =
function(n) {
xsteps = c(-1, 1, 0, 0)
ysteps = c(0, 0, -1, 1)
dir = sample(1:4, n - 1, replace = TRUE)
xpos = c(0, cumsum(xsteps[dir]))
ypos = c(0, cumsum(ysteps[dir]))
list(x = xpos, y = ypos)

}

> system.time(rw2d3(100000))
user system elapsed
0.011 0.001 0.013

This has cut the running time to about 1/9 of the previous
version and 1/200 of the baseline version.

Profiling

Profiling is a useful tool which can be used to find out how
much time is being spent inside each function when some R
code is run.

When profiling is turned on, R gathers information on where
the program is at regularly spaced time points (20 millisecond
separation by default) and stores the information in a file.

After profiling is turned off the information stored in the file
can be analysed to produce a summary of how much time is
spent in each function.

It can be quite surprising to find out just where R is spending
its time and this can help to find ways to make programs run
faster.

Profiling Example

The following code will enable use to find out where R is
spending its time when running the rw2d2 function.

Because the process is statistical we’ll run the function a
number of times to ensure that enough data is being gathered.

> Rprof()
> for(i in 1:100)

pos = rw2d2(100000)
> Rprof(NULL)

Profiling Analysis

> prof = summaryRprof()
> prof$by.self[1:5,]

self.time self.pct total.time total.pct
"ifelse" 5.08 52.2 7.94 81.5
"&" 1.30 13.3 1.30 13.3
"sample" 1.10 11.3 1.10 11.3
"!" 1.08 11.1 1.08 11.1
"cumsum" 0.34 3.5 0.34 3.5

81.5% of the time is being spent in the ifelse function (and
calls made to other R functions from inside the ifelse
function).

This explains why removing the ifelse calls has such a big
effect.

Lessons

• Producing efficient programs in R requires thought and
experimentation.

• In general, vectorisation is a big win and converting
loops into vectorised alternatives almost always pays
off.

• Code profiling can give a way to locate those parts of a
program which will benefit most from optimisation.

• Unfortunately, it is not always possible to produce
efficient programs using vectorisation.

Directions for New Research

• There are new high-level languages which which
produce very efficient code by using careful code
analysis and transformation.

– SaC — Single assignment C (University of Kiel)
– CT — C for Throughput Computing (Intel)

• These languages are not interactive.

• Whether it is possible to bring the techniques used by
these languages to an interactive languages is an open
question.

• The other alternative is to try to make naively written
programs run fast.

• How to do this in an interactive language is an open
question.

A Quick Progress Report

• We believe that it is possible to make naively specified
programs in a language not unlike R run much faster
than R (up to 600 times faster for some problems).

• Integrating this with method-dispatch in object-oriented
languages is tricky, but looks possible.

• This is not going to be enough to take advantage of the
potential offered by the parallel processing architectures
now becoming available.

• To harness that potential, the techniques used in
languages like Sac and CT must be used.

• It is not clear whether this is possible in interactive
languages.

	Title Page
	Figure: A Random Walk
	Example: Generating a 2d Simple Random Walk
	The sample Function
	Version One: Naive Implementation
	Version One: R Code
	Performance
	Version Two: Vectorisation
	Version Two: R Code
	Version Three: Heavy Vectorisation
	Version Three: R Code
	Profiling
	Profiling Example
	Profiling Analysis
	Lessons
	Directions for New Research
	A Quick Progress Report

