
R Functions
Things Your Mother (Probably)

Didn’t Tell You About

R and Extensibility

• The success that R currently enjoys is largely because
the environment is extensible.

– Developers can easily add new capabilities.

– Users can quickly develop and customise their
own methodology.

• Both developers and users implement their extensions in
the same way — as new R functions.

• This uniform method of extension provides a certain
unity to the process of R development and it is natural
to move from being a user to being a developer.

What Is An R Function?

• An R function is a packaged recipe that converts one or
more inputs (called arguments) into a single output.

• The recipe is implemented as a single R expression that
uses the values of the arguments to compute the result.

• Functions are first-class values. They can be:

– assigned as values of variables

– passed as arguments to other functions

An Example

• The following function takes a single input value and
computes its square.

> square = function(x) x * x

• The function is created and then assigned the name
square.

• The variable, x, is a formal parameter of the function.

• When the function is called it is passed an argument
that provides a value for the formal parameter.

> square(1:5)

[1] 1 4 9 16 25

Combining Functions

• Functions defined by users are identical in nature to
those provided by the system and can be used in exactly
the same way.

> sum(1:10)

[1] 55

> sum.of.squares =

function(x)

sum(square(x))

> sum.of.squares(1:10)

[1] 385

Optional Arguments

• R functions can have many arguments (the default plot
function has 16).

• Function definitions can allow arguments to take default
values so that users do not need to provide values for
every argument.

• If the plot function is called with a single argument it is
used to provide y values for the plot; all other arguments
take on default values.

• Default arguments are specified as follows:

parameter = expression

Example

• The following variant of sum.of.squares adds a
second parameter so that the function returns the
sum-of-squares of deviations about the second value.

• The second argument has a default value equal to the
mean of the first.

> sum.of.squares =

function(x, about = mean(x))

sum(square(x - about))

• Note that the default argument value is defined in terms
of variables internal to the function.

Example (Continued)

• Since many arguments can take default values, it is
useful to have a way of specifying which arguments do
not.

> sum.of.squares(1:10)

[1] 82.5

> sum.of.squares(1:10, about = 0)

[1] 385

• There is a set of rules the determine how arguments are
matched to parameters.

> sum.of.squares(about = 0, 1:10)

[1] 385

Example (Continued)

• The present definition of sum.of.squares does not
work when NA values are present.

> sum.of.squares(c(-1, 1, NA))

[1] NA

• The inclusion of an NA value produces an NA result.

• It may well be that we want NA values ignored to
produce the same result as:

> sum.of.squares(c(-1, 1))

[1] 2

Example (Continued)

• Let’s modify the sum.of.squares function so that it
removes any NA values from x.

> sum.of.squares =

function(x, about = mean(x)) {

x = x[!is.na(x)]

sum(square(x - about))

}

> sum.of.squares(c(-1, 1, NA))

[1] 2

Example (Continued)

• Let’s modify the sum.of.squares function so that it
removes any NA values from x.

> sum.of.squares =

function(x, about = mean(x)) {

x = x[!is.na(x)]

sum(square(x - about))

}

> sum.of.squares(c(-1, 1, NA))

[1] 2

• This produces the “right” result, but the fact that it does
so is surprising.

Lazy Evaluation

• R function arguments are not evaluated until the value
of the argument is needed.

• In the case of the preceding example, the value of
about is not required until the expression

sum(square(x - about))

is evaluated.

• At that point, the NA values have been deleted from x so
that the value of mean(x) is not NA.

Lazy Evaluation and Side Effects

• Because argument evaluation is lazy, it is dangerous to
ever carry out assignment (or any operation with a side
effect) in an argument to a function.

> x = 10

> y = 20

> f((x = 100), (y = 200))

[1] 300

Lazy Evaluation and Side Effects

• Because argument evaluation is lazy, it is dangerous to
ever carry out assignment (or any operation with a side
effect) in an argument to a function.

> x = 10

> y = 20

> f((x = 100), (y = 200))

[1] 300

> x; y

[1] 10

[1] 20

Lazy Evaluation and Side Effects

• Because argument evaluation is lazy, it is dangerous to
ever carry out assignment (or any operation with a side
effect) in an argument to a function.

> x = 10

> y = 20

> f((x = 100), (y = 200))

[1] 300

> x; y

[1] 10

[1] 20

• This is because the function f is defined as follows.

> f = function(a, b) 300

Scoping

• The scoping rules of a language describe how the values
of variables are determined.

• R uses block-structured scope, similar to languages like
Algol-60 and Pascal and Scheme.

• If a function g is defined within a function g, the
variables in f are visible in g, unless they are shadowed
by a local variable.

• The use of these scoping rules make R a very different
language from the earlier S language developed at Bell
Laboratories.

Example

• Consider the following nested function definition.

> linmap =

function(x, a, b, swap = FALSE) {

transform = function(x) {

if (swap) b + a * x

else a + b * x

}

transform(x)

}

• Within the function transform, the variable name x
refers to the argument of transform while a, b and
swap refer to the arguments of the enclosing linmap

function.

A Simple Function

• The following function adds the value of the global
variable x to its argument.

> add.x.to = function(u) x + u

> x = 20

> add.x.to(10)

[1] 30

> x = 30

> add.x.to(10)

[1] 40

Nested Functions

• The function add.x.to looks just like the previous one,
but now the value of x is an argument to the enclosing
function add.

> add =

function(x, y) {

add.x.to = function(u) x + u

add.x.to(y)

}

> add(10, 20)

[1] 30

A Function that Returns a Function

• Now we’ll change the example so that instead of
returning a numeric value the outer function returns the
inner function.

> make.add.to =

function(x) {

add.x.to = function(u) x + u

add.x.to

}

> add.10.to = make.add.to(10)

> add.10.to(100)

[1] 110

Variable Capture and Closures

• In the previous example, the variable x came into
existence when the outer function make.add.to was
called.

• This variable continues to exist after make.add.to
returns because it is required for the value returned by
make.add.to to make sense.

• The outer functions local variable x has been captured
by the function returned as a value.

• The variable x is, in a sense “enclosed” within the
function returned by make.add.to.

• Functions that enclose data in this way are called
closures.

Captured Variables are Private

• Each time make.add.to is called, a new x variable is
created.

> add.10.to = make.add.to(10)

> add.20.to = make.add.to(20)

> add.10.to(100)

[1] 110

> add.20.to(100)

[1] 120

• This means that each function returned by
make.add.to has its own private x variable.

Other Ways of Creating Private Variables

• The use of nested functions is not the only way to create
private variables.

• Here are some alternatives.

> add.10.to =

with(list(x = 10),

function(u) x + u)

> add.20.to =

local({

x = 20

function(u) x + u

})

How This is Useful

• The ability to create closures might seem like a fairly
esoteric capability, but it provides a way to directly
provide many kinds of object used directly in statistics.

• The mechanism is used in many R functions (e.g.
splinefun).

• I’ll show just one example: likelihoods.

Likelihoods

• Here is a function that creates a function that computes
the negative log likelihood for a sample of normal
observations stored in a vector x.

> negloglike =

local({

x = rnorm(100)

function(theta)

-sum(log(dnorm(x,

theta[1],

theta[2])))

})

Likelihood-Based Estimation

• Given the negative log likelihood it is easy to obtain
parameter estimates and standard errors.

> res = optim(c(0, 1), negloglike,

hessian = TRUE)

> res$convergence

[1] 0

> res$par

[1] -0.03126232 0.86081820

> sqrt(diag(solve(res$hessian)))

[1] 0.08608182 0.06087361

Other Applications

• Many statistical problems can be attacked using
likelihood-based analyses, even when they have a
non-standard form.

• Markov chains with their associated transition matrices
and current states are naturally modelled as closures.

• Complex software can be written without worrying
about “namespace clutter.”

• The R package facility is implemented using these
ideas.

• The S4 object system is implemented using closures.

Recursion

• The Devil’s DP Dictionary defines recursion as follows:

Recursion (n). See Recursion.

• In computing, a function is recursive if, either directly
or indirectly, it can make a call itself.

• The prototypical example of recursion is the factorial
function.

> factorial =

function(n)

if (n == 0) 1 else n * factorial(n - 1)

Example: Computation Using Recursion

• In the good old days the following kind of problem
would have been found in an introductory statistics
course:

There are 8 girls and 4 boys in a class. How
many ways can they be arranged in a line so
that the boys are separated by at least one
girl?

• (These days, questions that require thought lead to bad
class reviews and they’ve been done away with.)

• There is a trivial solution to this problem, but let’s
assume that we aren’t smart enough to spot it.

• Instead, we’ll attack the problem using recursion.

Formulating the Problem as a Recursion

• First let’s generalise to the case of g girls and b boys.

• If the number of arrangements is f (b,g), then we have
the following recursion.

f (b,g) = g× f (b,g−1)+b×g× f (b−1,g−1)

• This recursion comes from considering what happens
when we pick either a girl or a boy as our first choice.

• In addition to the basic recursion, we also need ensure
that there are termination rules that provide a way of
stopping the recursion.

Termination Rules

• The consideration of special cases gets us a number of
termination rules.

Condition Function Value

b = 1, g = 0, f (b,g) = 1

g < b−1 f (b,g) = 0

b = 0 f (b,g) = g!

A Computational Solution

> f =

function(b, g) {

if (b == 1 && g == 0) 1

else if (g < b - 1) 0

else if (b == 0) factorial(g)

else g * f(b, g - 1) +

b * g * f(b - 1, g - 1)

}

> f(4, 8)

[1] 121927680

A Computational Solution

> f =

function(b, g) {

if (b == 1 && g == 0) 1

else if (g < b - 1) 0

else if (b == 0) factorial(g)

else g * f(b, g - 1) +

b * g * f(b - 1, g - 1)

}

> f(4, 8)

[1] 121927680

> factorial(8) * prod(9:6)

[1] 121927680

The Number of Function Calls

• The evaluation of f(4, 8) takes 307 calls to f.

• Of these, 306 are calls by f to itself.

	Title Page
	R and Extensibility
	What Is An R Function?
	An Example
	Combining Functions
	Optional Arguments
	Example
	Example (Continued)
	Example (Continued)
	Example (Continued)
	Lazy Evaluation
	Lazy Evaluation and Side Effects
	Scoping
	Example
	A Simple Function
	Nested Functions
	A Function that Returns a Function
	Variable Capture and Closures
	Captured Variables are Private
	Other Ways of Creating Private Variables
	How This is Useful
	Likelihoods
	Likelihood-Based Estimation
	Other Applications
	Recursion
	Example: Computation Using Recursion
	Formulating the Problem as a Recursion
	Termination Rules
	A Computational Solution
	The Number of Function Calls

