
CONTRIBUTED ARTICLE 1

Debugging grid Graphics
Paul Murrell and Velvet Ly

Abstract A graphical scene that has been pro-
duced using the grid graphics package consists
of grobs (graphical objects) and viewports. This
article describes functions that allow the explo-
ration and inspection of the grobs and viewports
in a grid scene. This is useful for adding more
drawing to a scene that was produced using grid
and for understanding and debugging the grid
code that produced a scene.

Introduction

The grid graphics package for R contains features
that are intended to assist in the creation of flexible,
complex graphical scenes, such as the plots that are
produced by lattice and ggplot2.

Two particularly important features are view-
ports , which represent rectangular regions on the
page for drawing into, and grobs , which represent
shapes that have been drawn onto the page.

To illustrate these grid concepts, the following
code draws a simple scene consisting of a narrow
“strip” region atop a larger “panel” region, with a
rectangle boundary drawn for each region and the
top region shaded grey (see Figure 1).

> library(grid)

> stripVP <- viewport(y=1,
+ height=unit(1, "lines"),
+ just="top",
+ name="stripvp")
> panelVP <- viewport(y=0,
+ height=unit(1, "npc") -
+ unit(1, "lines"),
+ just="bottom",
+ name="panelvp")

> pushViewport(stripVP)
> grid.rect(gp=gpar(fill="grey80"),
+ name="striprect")
> upViewport()
> pushViewport(panelVP)
> grid.rect(name="panelrect")
> upViewport()

Figure 1: A scene consisting of two viewports, with
a rectangle drawn in each.

One benefit that accrues from using viewports to
draw the scene in Figure 1 is that, once the scene has
been drawn, the viewports can be revisited to add
further drawing to the scene. For example, the fol-
lowing code revisits the “strip” region and adds a
text label (see Figure 2).

> downViewport("stripvp")
> grid.text("strip text", name="striptext")
> upViewport()

strip text

Figure 2: The scene from Figure 1 with text added to
the top viewport.

One benefit that accrues from the fact that grid
creates grobs representing the shapes in a scene is
that, after the scene has been drawn, it is possible to
modify elements of the scene. For example, the fol-
lowing code modifies the text that was just drawn in
the strip region so that it is dark green, italic, and in
a serif font (see Figure 3).

> grid.edit("striptext",
+ label="modified text",
+ gp=gpar(col="darkgreen",
+ fontface="italic",
+ fontfamily="serif"))

modified text

Figure 3: The scene from Figure 2 with the text mod-
ified to be dark green, italic, and serif.

The following code shows that it is also possible
to remove objects from a scene — this returns the
scene to its original state (Figure 1) by removing the
text that we had added above.

> grid.remove("striptext")

The importance of names

The ability to navigate within viewports in a scene
and the ability to modify grobs within a scene both
depend upon being able to unambiguously specify a
particular viewport or grob.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 2

All viewports and grobs have a name , so speci-
fying a particular viewport or grob is simply a mat-
ter of specifying the relevant viewport name or grob
name.

In the simple example above, this is not a difficult
task because we have the code that created the scene
so we can see the names that were used. However,
when a scene has been generated by someone else’s
code, for example, a call to a lattice plotting func-
tion, it may not be very easy to determine the name
of a viewport or grob.1

Pity the developer

Problems can also arise when we want to develop
new functions that draw scenes using grid. In this
case, knowing the names of viewports and grobs is
not the problem because we have created the names.
Instead, the problem is knowing where on the page
the viewports and grobs have ended up. The result
of running error-ridden grid code can be a confusing
jumble of drawing output. In this case, it is useful
to be able to identify where on the page a particular
viewport or grob has been drawn.

Pity the student

Even when the author of a piece of grid code knows
exactly what the code is doing, and the code is be-
having correctly, it can be difficult to convey to other
people the relationship between the grid code and
the output that it produces on a page. This is another
situation where it can be useful to provide a visual
cue about the location on the page of abstract con-
cepts such as viewports and grobs and the relation-
ships between them.

This article describes a number of functions that
are provided by the grid package to help identify
what viewports and grobs have been used to create
a scene and track exactly where each viewport and
grob has been drawn on the page.

The grid.ls() function

A simple listing of the names of all grobs in a scene
can be produced using the grid.ls() function. For
example, the following code lists the grobs in Fig-
ure 1, which consists of just two rectangles called
"striprect" and "panelrect"

> grid.ls()

striprect
panelrect

The grid.ls() function can also be used to list
viewports in the current scene, via the viewports ar-
gument and the fullNames argument can be speci-
fied to print further information in the listing so that
it is easier to distinguish viewports from grobs. The
following code produces a more complete listing of
the scene from Figure 1 with both viewports and
grobs listed. Notice that the names are indented to
reflect the fact that some viewports are nested within
others and also to reflect the fact that the grobs are
drawn within different viewports.

> grid.ls(viewports=TRUE, fullNames=TRUE)

viewport[ROOT]
viewport[stripvp]
rect[striprect]
upViewport[1]

viewport[panelvp]
rect[panelrect]
upViewport[1]

This function is useful for at least viewing the
names of all grobs and viewports in a scene and it
gives some indication of the structure of the scene.
Even for a complex scene, such as a lattice mul-
tipanel conditioning plot it is possible, if a little
tedious, to identify important components of the
scene.

The showGrob() function

The showGrob() function displays the names of the
grobs in a scene by labelling them on the current
scene. By default, a semitransparent rectangle is
drawn to show the extent of each grob and the name
of the grob is drawn within that rectangle. For exam-
ple, the following code labels the grobs in the simple
scene from Figure 1. The resulting labelled scene is
shown in Figure 4 — there are two rectangles called
"striprect" and "panelrect".

> showGrob()

striprect

panelrect

Figure 4: The scene from Figure 1 with labelling
added by the showGrob() function to show the loca-
tions and names of the grobs used to draw the scene.

In more complex scenes, it is common for sev-
eral grobs to overlap each other so that this sort
of labelling becomes very messy. Later sections

1The lattice package does provide some assistance in the form of the trellis.vpname() and trellis.grobname() functions.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 3

will demonstrate how to cope with that complex-
ity using other functions and other arguments to the
showGrob() function.

The showViewport() function

The showViewport() function performs a similar task
to showGrob() except that it labels the viewports in a
scene. Again, the labelling consists of a semitrans-
parent rectangle and the name of the viewport. For
example, the following code labels the viewports in
the scene from Figure 1, which has a narrow view-
port called "stripvp" on top and a larger viewport
called "panelvp" below.

> showViewport()

panelvp

stripvp

Figure 5: The scene from Figure 1 with labelling
added by the showViewport() function to show the
locations and names of the viewports that were used
to draw the scene.

In more complex scenes, it is common for view-
ports to overlap each other, so the default output
from showViewport() is less legible. Later sections
will describe solutions to this problem using further
arguments to showViewport() as well as different de-
bugging functions.

The gridDebug package

The gridDebug package provides some additional
tools for debugging grid output.

The gridTree() function draws a scene graph
from a grid scene, using the graph and Rgraphviz
packages. This is a node-and-edge graph that con-
tains a node for each grob and each viewport in the
current grid scene. The graph has an edge from each
child viewport to its parent viewport and an edge
from each grob to the viewport within which the
grob is drawn. The nodes are labelled tihe the name
of the corresponding grobs and viewports. For ex-
ample, the following code produces a scene graph
for the simple scene in Figure 1. The scene graph is
shown in Figure 6.

> library(gridDebug)

> gridTree()

ROOT

stripvp

striprect

panelvp

panelrect

Figure 6: A node-and-edge graph of the scene from
Figure 1. Both viewports are direct descendants of
the ROOT viewport and one grob is drawn in each
viewport.

This graph shows that the two viewports have
both been pushed directly beneath the ROOT viewport
(they are siblings) and that each grob has been drawn
in a separate viewport.

One advantage of this function is that it is unaf-
fected by overlapping grobs or viewports. The main
downside is that node labels become very small as
the scene becomes more complex.

More complex scenes

We will now consider a more complex scene and
look at how the various debugging functions can be
adapted to cope with the additional complexity. As
an example, we will look at a plot produced by the
histogram() function from the lattice package (see
Figure 7).

> library(lattice)

> histogram(faithful$eruptions)

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 4

faithful$eruptions

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

2 3 4 5

Figure 7: A more complex grid scene consisting of
a simple plot produced by the histogram() function
from the lattice package.

The grid.ls() function

For more complex scenes, the number of viewports
and grobs can make it difficult to consume the listing
from grid.ls() and, as viewports and grobs become
nested to greater depths, simple indenting can be in-
sufficient to convey the nesting clearly.

One solution is to specify a different formatting
function via the print argument to the grid.ls()
function. For example, the following code lists all
grobs and viewports from Figure 7, but with only
one line for each grob. The nesting of viewports is
shown by listing the full viewport path to each grob.
Figure 8 shows the resulting output.

> grid.ls(viewports=TRUE, print=grobPathListing)

Another solution is to capture (rather than just
print) the result from grid.ls(). This is a list ob-
ject containing a lot of information about the current
scene and it can be processed computationally to an-
swer more complex questions about the scene (see
Figure 9).

> sceneListing <- grid.ls(viewports=TRUE,
+ print=FALSE)

> do.call("cbind", sceneListing)

The showGrob() function

In a more complex scene, it is common for grobs to
overlap each other, which can result in a messy la-
belling from the showGrob() function. Another prob-
lem is that text grobs do not label well because the

labelling text is hard to read when overlaid on the
text that is being labelled. One possible solution is to
vary the graphical parameters used in the labelling.
For example, the following code sets the fill colour
for the grob bounding rectangles to be opaque (see
Figure 10).

> showGrob(gp=gpar(fill=rgb(1, .85, .85)))

plot_01.background

faithful$eruptionsplot_01.xlab

P
er

ce
nt

 o
f T

ot
al

pl
ot

_0
1.

yl
ab

plot_01.ticks.top.panel.1.1

pl
ot

_0
1.

tic
ks

.le
ft.

pa
ne

l.1
.1

0

5

10

15

20

pl
ot

_0
1.

tic
kl

ab
el

s.
le

ft.
pa

ne
l.1

.1

plot_01.ticks.bottom.panel.1.1

2 3 4 5plot_01.ticklabels.bottom.panel.1.1

pl
ot

_0
1.

tic
ks

.r
ig

ht
.p

an
el

.1
.1

plot_01.histogram.baseline.lines.panel.1.1

plot_01.histogram.rect.panel.1.1plot_01.border.panel.1.1

Figure 10: The lattice plot from Figure 7 with la-
belling added by the showGrob() function to show
the locations and names of the grobs that were used
to draw the scene.

One problem with this solution is that some
overlapping grobs are not visible at all. To solve
this, the gPath argument can be used to specify a
particular grob to label. The following code uses
this approach to label just the rectangle grob called
"plot_01.histogram.rect.panel.1.1" (the rectan-
gle grob that draws the histogram bars; see Figure
11).

> showGrob(gPath="plot_01.histogram.rect.panel.1.1")

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 5

ROOT | plot_01.background
ROOT::plot_01.toplevel.vp::plot_01.xlab.vp | plot_01.xlab
ROOT::plot_01.toplevel.vp::plot_01.ylab.vp | plot_01.ylab
ROOT::plot_01.toplevel.vp::plot_01.strip.1.1.off.vp | plot_01.ticks.top.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.strip.left.1.1.off.vp | plot_01.ticks.left.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.strip.left.1.1.off.vp | plot_01.ticklabels.left.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.ticks.bottom.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.ticklabels.bottom.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.ticks.right.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.vp | plot_01.histogram.baseline.lines.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.vp | plot_01.histogram.rect.panel.1.1
ROOT::plot_01.toplevel.vp::plot_01.panel.1.1.off.vp | plot_01.border.panel.1.1

Figure 8: A listing of the grobs and viewports from Figure 7 produced by grid.ls().

name gDepth vpDepth gPath vpPath type
1 ROOT 0 0 vpListing
2 plot_01.background 0 1 ROOT grobListing
3 plot_01.toplevel.vp 0 1 ROOT vpListing
4 plot_01.xlab.vp 0 2 ROOT::plot_01.toplevel.vp vpListing
5 plot_01.xlab 0 3 ROOT::plot_01.toplevel.vp::plot_01.xlab.vp grobListing
6 1 0 3 ROOT::plot_01.toplevel.vp::plot_01.xlab.vp vpUpListing
7 plot_01.ylab.vp 0 2 ROOT::plot_01.toplevel.vp vpListing
8 plot_01.ylab 0 3 ROOT::plot_01.toplevel.vp::plot_01.ylab.vp grobListing
9 1 0 3 ROOT::plot_01.toplevel.vp::plot_01.ylab.vp vpUpListing
10 plot_01.figure.vp 0 2 ROOT::plot_01.toplevel.vp vpListing

Figure 9: The raw result that is returned by a grid.ls() call for the scene in Figure 7. Only the first 10 lines of
information is shown.

faithful$eruptions

P
er

ce
nt

 o
f T

ot
al

0

5

10

15

20

2 3 4 5

plot_01.histogram.rect.panel.1.1

Figure 11: The lattice plot from Figure 7
with labelling added by the showGrob()
function to show the location of grob
"plot_01.histogram.rect.panel.1.1".

The showViewport() function

In complex scenes, it is also very common for view-
ports to overlap each other. It is possible to dis-

play just a specific viewport with showViewport(),
by supplying a viewport path as the first argument,
but another option is to draw all viewports sepa-
rately via the leaves argument. The following code
demonstrates this approach and the result is shown
in Figure 12.

> showViewport(newpage=TRUE, leaves=TRUE,
+ col="black")

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 6

plot_01.
plot_01.figure.vp plot_01.panel.1.1.off.vp

plot_01.panel.1.1.vp

plot_01.strip.1.1.off.vp

pl
ot

_0
1.

st
rip

.le
ft.

1.
1.

of
f.v

p

plot_01.xlab.vp

pl
ot

_0
1.

yl
ab

.v
p

Figure 12: The result of calling showViewport() to
display the viewports used to draw the scene in Fig-
ure 7, with each viewport displayed on its own in a
separate “mini page” to overcome the fact that sev-
eral viewports overlap each other.

The gridTree() function

One advantage of the gridTree() function is that it
is immune to the overlap of grobs and viewports in a
scene. This is because this sort of display emphasizes
the conceptual structure of the scene rather than re-
flecting the location of grobs and viewports on the
page.

The following code produces a scene graph for
the lattice plot from Figure 7 and the result is shown
in Figure 13.

> gridTree()

One problem that does arise with the gridTree()
function is that the grob and viewport names, which
are used to label the nodes of the scene graph, can
become too small to read.

The following code demonstrates this problem
with an example plot from the ggplot2 package. The
plot is shown in Figure 14 and the scene graph gen-
erated by gridTree() is shown in Figure 15.

> library(ggplot2)

> qplot(faithful$eruptions, binwidth=.5)

faithful$eruptions

co
un

t

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Figure 14: A more complex grid scene consisting of
a simple plot produced by the qplot() function from
the ggplot2 package.

Although it is impossible to read the names of
individual grobs and viewports on this graph, it is
still interesting to compare the structure of this scene
with the graph from the lattice plot in Figure 13.
The graph clearly shows that the lattice package uses
two levels of viewports, but only simple grobs, while
the ggplot2 package has a single, relatively complex,
gTree that contains numerous other grobs, gTrees and
viewports.

Interactive tools

The problem of unreadable labels on a scene graph
may be alleviated by using the gridTreeTips() func-
tion, from the gridDebug package. This makes use
of the gridSVG package to produce an SVG version
of the scene graph with simple interaction added so
that, when the mouse hovers over a node in the scene
graph, a tooltip pops up to show the name of the
node. Figure 16 shows an example of the output
from this function (as viewed in Firefox).

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 7

ROOT

plot_01.
background

plot_01.
toplevel.

vp

plot_01.
xlab.vp

plot_01.
xlab

plot_01.
ylab.vp

plot_01.
ylab

plot_01.
figure.

vp

plot_01.
panel.1.1.

vp

plot_01.
strip.1.1.

off.vp

plot_01.
ticks.
top.

panel.1.1

plot_01.
strip.

left.1.1.
off.vp

plot_01.
ticks.
left.

panel.1.1

plot_01.
ticklabels.

left.
panel.1.1

plot_01.
panel.1.1.

off.vp

plot_01.
ticks.

bottom.
panel.1.1

plot_01.
ticklabels.
bottom.

panel.1.1

plot_01.
ticks.
right.

panel.1.1

plot_01.
histogram.
baseline.

lines.
panel.1.1

plot_01.
histogram.

rect.
panel.1.1

plot_01.
border.

panel.1.1

plot_01

Figure 13: A node-and-edge graph of the scene from Figure 7

Figure 15: A node-and-edge graph of the scene from Figure 14

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 8

Figure 16: A node-and-edge graph of the scene
from Figure 14 in SVG format so that, when the
mouse hovers over a node on the graph, a tooltip
shows the name of the node. The mouse is
hovering over the node for the viewport called
"plot_01.toplevel.vp".

Another function from the gridDebug pack-
age, which also makes use of gridSVG, is the
grobBrowser() function. This takes any grid scene
and produces an SVG version of the scene that also
contains tooltips. In this case, whenever the mouse
hovers over a grob in the scene, a tooltip pops up to
show the name of the grob. Figure 17 shows an ex-
ample of the output from this function (as viewed in
Firefox).

Figure 17: The scene from Figure 14 in SVG for-
mat so that, when the mouse hovers over a grob
in the scene, a tooltip shows the name of the grob.
The mouse is hovering over one of the bars in the
histogram, which corresponds to the grob called
"plot_01.histogram.rect.panel.1.1".

Tools in other packages

The playwith package also provides some tools
for exploring the grobs in a grid scene. The
showGrobsBB() function produces a similar result to
showGrob() and identifyGrob() allows the user to
click within a normal R graphics device to identify
grobs. If the click occurs within the bounding box of
a grob then the name of that grob is returned as the
result. The result may be several grob names if there
are overlapping grobs.

Conclusions

This article has described several tools that assist
with the debugging of grid graphics code, whether
that is trying to understand someone else’s code, try-
ing to understand your own code, or trying to ex-
plain grid code to someone else.

The tools provide various ways to view the
names of grobs and viewports that were used to
draw a scene, the relationships between the grobs
and viewports, and where those grobs and viewports
end up when drawn on the page.

Each of the tools has various weaknesses, so it
may be necessary to use them in combination with
each other in order to gain a complete understand-
ing of a complex scene.

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

CONTRIBUTED ARTICLE 9

Bibliography

F. Andrews. playwith: A GUI for interactive plots
using GTK+, 2010. URL http://CRAN.R-project.
org/package=playwith. R package version 0.9-53.

R. Gentleman, E. Whalen, W. Huber, and S. Falcon.
graph: A package to handle graph data structures,
2010. URL http://CRAN.R-project.org/package=
graph. R package version 1.28.0.

J. Gentry, L. Long, R. Gentleman, S. Falcon, F. Hahne,
D. Sarkar, and K. Hansen. Rgraphviz: Provides
plotting capabilities for R graph objects, 2010. R pack-
age version 1.23.6.

P. Murrell. gridSVG: Export grid graphics as SVG,
2011. R package version 0.7-0.

P. Murrell and V. Ly. gridDebug: Debugging Grid
Graphics, 2011. R package version 0.2.

Paul Murrell
Department of Statistics
The University of Auckland
New Zealand
paul@stat.auckland.ac.nz

Velevt Ly
Department of Statistics
The University of Auckland
New Zealand
kly004@aucklanduni.ac.nz

The R Journal Vol. X/Y, Month, Year ISSN 2073-4859

http://CRAN.R-project.org/package=playwith
http://CRAN.R-project.org/package=playwith
http://CRAN.R-project.org/package=graph
http://CRAN.R-project.org/package=graph
mailto:paul@stat.auckland.ac.nz
mailto:kly004@aucklanduni.ac.nz

	Debugging grid Graphics
	Introduction
	The importance of names
	Pity the developer
	Pity the student

	The grid.ls() function
	The showGrob() function
	The showViewport() function
	The gridDebug package
	More complex scenes
	The grid.ls() function
	The showGrob() function
	The showViewport() function
	The gridTree() function

	Interactive tools
	Tools in other packages
	Conclusions

