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An Introduction to R Graphics

Chapter preview

This chapter provides the most basic information to get started pro-
ducing plots in R. First of all, there is a three-line code example that
demonstrates the fundamental steps involved in producing a plot. This
is followed by a series of figures to demonstrate the range of images
that R can produce. There is also a section on the organization of R

graphics giving information on where to look for a particular function.
The final section describes the different graphical output formats that
R can produce and how to obtain a particular output format.

The following code provides a simple example of how to produce a plot using
R (see Figure 1.1).

> plot(pressure)

> text(150, 600,

"Pressure (mm Hg)\nversus\nTemperature (Celsius)")

The expression plot(pressure) produces a scatterplot of pressure versus
temperature, including axes, labels, and a bounding rectangle.∗ The call to
the text() function adds the label at the data location (150, 600) within
the plot.

∗The pressure data set, available in the datasets package, contains 19 recordings of
the relationship between vapor pressure (in millimeters of mercury) and temperature (in
degrees Celsius).
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Figure 1.1
A simple scatterplot of vapor pressure of mercury as a function of temperature.

The plot is produced from two simple R expressions: one expression to draw the

basic plot, consisting of axes, data symbols, and bounding rectangle; and another

expression to add the text label within the plot.
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This example is basic R graphics in a nutshell. In order to produce graphical
output, the user calls a series of graphics functions, each of which produces
either a complete plot, or adds some output to an existing plot. R graphics
follows a “painters model,” which means that graphics output occurs in steps,
with later output obscuring any previous output that it overlaps.

There are very many graphical functions provided by R and the add-on pack-
ages for R, so before describing individual functions, Section 1.1 demonstrates
the variety of results that can be achieved using R graphics. This should pro-
vide some idea of what users can expect to be able to achieve with R graphics.

Section 1.2 gives an overview of how the graphics functions in R are organized.
This should provide users with some basic ideas of where to look for a function
to do a specific task. Section 1.3 describes the set of functions involved with
the selection of a particular graphical output format. By the end of this
chapter, the reader will be in a position to start understanding in more detail
the core R functions that produce graphical output.

1.1 R graphics examples

This section provides an introduction to R graphics by way of a series of
examples. None of the code used to produce these images is shown, but it
is available from the web site for this book. The aim for now is simply to
provide an overall impression of the range of graphical images that can be
produced using R. The figures are described over the next few pages and the
images themselves are all collected together on pages 7 to 15.

1.1.1 Standard plots

R provides the usual range of standard statistical plots, including scatterplots,
boxplots, histograms, barplots, piecharts, and basic 3D plots. Figure 1.2 shows
some examples.∗

In R, these basic plot types can be produced by a single function call (e.g.,

∗The barplot makes use of data on death rates in the state of Virginia for different age
groups and population groups, available as the VADeaths data set in the datasets package.
The boxplot example makes use of data on the effect of vitamin C on tooth growth in guinea
pigs, available as the ToothGrowth data set, also from the datasets package. These and
many other data sets distributed with R were obtained from “Interactive Data Analysis” by
Don McNeil[40] rather than directly from the original source.
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pie(pie.sales) will produce a piechart), but plots can also be considered
merely as starting points for producing more complex images. For example, in
the scatterplot in Figure 1.2, a text label has been added within the body of the
plot (in this case to show a subject identification number) and a secondary
y-axis has been added on the right-hand side of the plot. Similarly, in the
histogram, lines have been added to show a theoretical normal distribution
for comparison with the observed data. In the barplot, labels have been added
to the elements of the bars to quantify the contribution of each element to the
total bar and, in the boxplot, a legend has been added to distinguish between
the two data sets that have been plotted.

This ability to add several graphical elements together to create the final
result is a fundamental feature of R graphics. The flexibility that this allows
is demonstrated in Figure 1.3, which illustrates the estimation of the original
number of vessels based on broken fragments gathered at an archaeological
site: a measure of “completeness” is obtained from the fragments at the site;
a theoretical relationship is used to produce an estimated range of “sampling
fraction” from the observed completeness; and another theoretical relationship
dictates the original number of vessels from a sampling fraction[19]. This plot
is based on a simple scatterplot, but requires the addition of many extra lines,
polygons, and pieces of text, and the use of multiple overlapping coordinate
systems to produce the final result.

For more information on the R functions that produce these standard plots,
see Chapter 2. Chapter 3 describes the various ways that further output can
be added to a plot.

1.1.2 Trellis plots

In addition to the traditional statistical plots, R provides an implementation of
Trellis plots[6] via the package lattice[54] by Deepayan Sarkar. Trellis plots
embody a number of design principles proposed by Bill Cleveland[12][13] that
are aimed at ensuring accurate and faithful communication of information via
statistical plots. These principles are evident in a number of new plot types
in Trellis and in the default choice of colors, symbol shapes, and line styles
provided by Trellis plots. Furthermore, Trellis plots provide a feature known
as “multi-panel conditioning,” which creates multiple plots by splitting the
data being plotted according to the levels of other variables.

Figure 1.4 shows an example of a Trellis plot. The data are yields of several
different varieties of barley at six sites, over two years. The plot consists of
six “panels,” one for each site. Each panel consists of a dotplot showing yield
for each variety with different symbols used to distinguish different years, and
a “strip” showing the name of the site.
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For more information on the Trellis system and how to produce Trellis plots
using the lattice package, see Chapter 4.

1.1.3 Special-purpose plots

As well as providing a wide variety of functions that produce complete plots,
R provides a set of functions for producing graphical output primitives, such
as lines, text, rectangles, and polygons. This makes it possible for users to
write their own functions to create plots that occur in more specialized areas.
There are many examples of special-purpose plots in add-on packages for R.
For example, Figure 1.5 shows a map of New Zealand produced using R and
the add-on packages maps[7] and mapproj[39].

R graphics works mostly in rectangular Cartesian coordinates, but functions
have been written to display data in other coordinate systems. Figure 1.6
shows three plots based on polar coordinates. The top-left image was pro-
duced using the stars() function. Such star plots are useful for representing
data where many variables have been measured on a relatively small number of
subjects. The top-right image was produced using customized code by Karsten
Bjerre and the bottom-left image was produced using the rose.diag() func-
tion from the CircStats package[36]. Plots such as these are useful for pre-
senting geographic, or compass-based data. The bottom-right image in Figure
1.6 is a ternary plot producing using ternaryplot() from the vcd package[41].
A ternary plot can be used to plot categorical data where there are exactly
three levels.

In some cases, researchers are inspired to produce a totally new type of plot
for their data. R is not only a good platform for experimenting with novel
plots, but it is also a good way to deliver new plotting techniques to other
researchers. Figure 1.7 shows a novel display for decision trees, visualizing the
distribution of the dependent variable in each terminal node[30] (produced
using the party package).

For more information on how to generate a plot starting from an empty page
with traditional graphics functions, see Chapter 3. The grid package provides
even more power and flexibility for producing customized graphical output
(see Chapters 5 and 6), especially for the purpose of producing functions for
others to use (see Chapter 7).

1.1.4 General graphical scenes

The generality and flexibility of R graphics makes it possible to produce graph-
ical images that go beyond what is normally considered to be statistical graph-
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ics, although the information presented can usually be thought of as data of
some kind. A good mainstream example is the ability to embed tabular ar-
rangements of text as graphical elements within a plot as in Figure 1.8. This
is a standard way of presenting the results of a meta-analysis. Figure 1.12
and Figure 3.6 provide other examples of tabular graphical output produced
by R.∗

R has also been used to produce figures that help to visualize important con-
cepts or teaching points. Figure 1.9 shows two examples that provide a geo-
metric representation of extensions to F-tests (provided by Arden Miller[42]).
A more unusual example of a general diagram is provided by the musical score
in Figure 1.10 (provided by Steven Miller). R graphics can even be used like
a general-purpose painting program to produce “clip art” as shown by Figure
1.11. These examples tend to require more effort to achieve the final result as
they cannot be produced from a single function call. However, R’s graphics
facilities, especially those provided by the grid system (Chapters 5 and 6),
provide a great deal of support for composing arbitrary images like these.

These examples present only a tiny taste of what R graphics (and clever and
enthusiastic users) can do. They highlight the usefulness of R graphics not
only for producing what are considered to be standard plot types (for little
effort), but also for providing tools to produce final images that are well
beyond the standard plot types (including going beyond the boundaries of
what is normally considered statistical graphics).

∗All of the figures in this book, apart from the figures in Chapter 7 that only contain R

code, were produced using R.
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Figure 1.2

Some standard plots produced using R: (from left-to-right and top-to-bottom) a
scatterplot, a histogram, a barplot, a boxplot, a 3D surface, and a piechart. In the
first four cases, the basic plot type has been augmented by adding additional labels,
lines, and axes. (The boxplot is adapted from an idea by Roger Bivand.)
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Figure 1.3
A customized scatterplot produced using R. This is created by starting with a simple

scatterplot and augmenting it by adding an additional y-axis and several additional

sets of lines, polygons, and text labels.



An Introduction to R Graphics 9

Barley Yield (bushels/acre) 

20 30 40 50 60

Svansota
No. 462

Manchuria
No. 475

Velvet
Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Grand Rapids
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Duluth
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

University Farm
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Morris
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Crookston
Svansota

No. 462
Manchuria

No. 475
Velvet

Peatland
Glabron
No. 457

Wisconsin No. 38
Trebi

Waseca

1932
1931

Figure 1.4
A Trellis dotplot produced using R. The relationship between the yield of barley and
species of barley is presented, with a separate dotplot for different experimental sites
and different plotting symbols for data gathered in different years. This is a small
modification of Figure 1.1 from Bill Cleveland’s “Visualizing Data” (reproduced with
permission from Hobart Press).
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Auckland  

Figure 1.5
A map of New Zealand produced using R, Ray Brownrigg’s maps package, and
Thomas Minka’s mapproj package. The map (of New Zealand) is drawn as a se-
ries of polygons, and then text, an arrow, and a data point have been added to
indicate the location of Auckland, the birthplace of R. A separate world map has
been drawn in the bottom-right corner, with a circle to help people locate New
Zealand.
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Figure 1.6

Some polar-coordinate plots produced using R (top-left), the CircStats package by
Ulric Lund and Claudio Agostinelli (top-right), and code submitted to the R-help

mailing list by Karsten Bjerre (bottom-left). The plot at bottom-right is a ternary
plot produced using the vcd package (by David Meyer, Achim Zeileis, Alexandros
Karatzoglou, and Kurt Hornik)
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Figure 1.7
A novel decision tree plot, visualizing the distribution of the dependent variable in

each terminal node. Produced using the party package by Torsten Hothorn, Kurt

Hornik, and Achim Zeileis.
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Figure 1.8
A table-like plot produced using R. This is a typical presentation of the results
from a meta-analysis. The original motivation and data were provided by Martyn
Plummer[48].
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Figure 1.9
Didactic diagrams produced using R and functions provided by Arden Miller. The

figures show a geometric representation of extensions to F-tests.
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A music score produced using R (code by Steven Miller).
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Figure 1.11

A piece of clip art produced using R.
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1.2 The organization of R graphics

This section briefly describes how R’s graphics functions are organized so that
the user knows where to start looking for a particular function.

The R graphics system can be broken into four distinct levels: graphics pack-
ages; graphics systems; a graphics engine, including standard graphics devices;
and graphics device packages (see Figure 1.12).

Graphics

Packages
lattice ...maps ...

Graphics

Systems
graphics grid

Graphics

Engine

&

Devices

grDevices

Graphics

Device

Packages

gtkDevice ...

Figure 1.12
The structure of the R graphics system showing the main packages that provide

graphics functions in R. Arrows indicate where one package builds on the functions

in another package. The packages described in this book are highlighted with thicker

borders and grey backgrounds.
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The core R graphics functionality described in this book is provided by the
graphics engine and the two graphics systems, traditional graphics and grid.
The graphics engine consists of functions in the grDevices package and pro-
vides fundamental support for handling such things as colors and fonts (see
Section 3.2), and graphics devices for producing output in different graphics
formats (see Section 1.3).

The traditional graphics system consists of functions in the graphics package
and is described in Part I. The grid graphics system consists of functions in
the grid package and is described in Part II.

There are many other graphics functions provided in add-on graphics pack-
ages, which build on the functions in the graphics systems. Only one such
package, the lattice package, is described in any detail in this book. The
lattice package builds on the grid system to provide Trellis plots (see Chap-
ter 4).

There are also add-on graphics device packages that provide additional graph-
ical output formats.

1.2.1 Types of graphics functions

Functions in the graphics systems and graphics packages can be broken down
into three main types: high-level functions that produce complete plots; low-

level functions that add further output to an existing plot; and functions for
working interactively with graphical output.

The traditional system, or graphics packages built on top of it, provide the
majority of the high-level functions currently available in R. The most signifi-
cant exception is the lattice package (see Chapter 4), which provides complete
plots based on the grid system.

Both the traditional and grid systems provide many low-level graphics func-
tions, and grid also provides functions for interacting with graphical output
(editing, extracting, deleting parts of an image).

Most functions in graphics packages produce complete plots and typically offer
specialized plots for a specific sort of analysis or a specific field of study. For
example: the hexbin package[10] from the BioConductor project has functions
for producing hexagonal binning plots for visualizing large amounts of data;
the maps package[7] provides functions for visualizing geographic data (see, for
example, Figure 1.5); and the package scatterplot3d[35] produces a variety
of 3-dimensional plots. If there is a need for a particular sort of plot, there
is a reasonable chance that someone has already written a function to do it.
For example, a common request on the R-help mailing list is for a way to
add error bars to scatterplots or barplots and this can be achieved via the
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functions plotCI() from the gplots package in the gregmisc bundle or the
errbar() function from the Hmisc package. There are some search facilities
linked off the main R home page web site to help to find a particular function
for a particular purpose (also see Section A.2.10).

While there is no detailed discussion of the high-level graphics functions in
graphics packages other than lattice, the general comments in Chapter 2 con-
cerning the behavior of high-level functions in the traditional graphics system
will often apply as well to high-level graphics functions in graphics packages
built on the traditional system.

1.2.2 Traditional graphics versus grid graphics

The existence of two distinct graphics systems in R raises the issue of when
to use each system.

For the purpose of producing complete plots from a single function call, which
graphics system to use will largely depend on what type of plot is required.
The choice of graphics system is largely irrelevant if no further output needs
to be added to the plot.

If it is necessary to add further output to a plot, the most important thing to
know is which graphics system was used to produce the original plot. In gen-
eral, the same graphics system should be used to add further output (though
see Appendix B for ways around this).

In some cases, the same sort of plot can be produced by both lattice and
traditional functions. The lattice versions offer more flexibility for adding
further output and for interacting with the plot, plus Trellis plots have a
better design in terms of visually decoding the information in the plot.

For producing graphical scenes starting from a blank page, the grid system
offers the benefit of a much wider range of possibilities, at the cost of having
to learn a few additional concepts.

For the purpose of writing new graphical functions for others to use, grid
again provides better support for producing more general output that can be
combined with other output more easily. Grid also provides more possibilities
for interaction.
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1.3 Graphical output formats

At the start of this chapter (page 1), there is a simple example of the sort of R

expressions that are required to produce a plot. When using R interactively,
the result is a plot drawn on screen. However, it is also possible to produce
a file that contains the plot, for example, as a PostScript document. This
section describes how to control the format in which a plot is produced.

R graphics output can be produced in a wide variety of graphical formats.
In R’s terminology, output is directed to a particular output device and that
dictates the output format that will be produced. A device must be created or
“opened” in order to receive graphical output and, for devices that create a file
on disk, the device must also be closed in order to complete the output. For
example, for producing PostScript output, R has a function postscript()

that opens a file to receive PostScript commands. Graphical output sent to
this device is recorded by writing PostScript commands into the file. The
function dev.off() closes a device.

The following code shows how to produce a simple scatterplot in PostScript
format. The output is stored in a file called myplot.ps:

> postscript(file="myplot.ps")

> plot(pressure)

> dev.off()

To produce the same output in PNG format (in a file called myplot.png), the
code simply becomes:

> png(file="myplot.png")

> plot(pressure)

> dev.off()

When working in an interactive session, output is often produced, at least
initially, on the screen. When R is installed, an appropriate screen format is
selected as the default device and this default device is opened automatically
the first time that any graphical output occurs. For example, on the various
Unix systems, the default device is an X11 window so the first time a graphics
function gets called, a window is created to draw the output on screen. The
user can control the format of the default device using the options() function.
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Table 1.1
Graphics formats that R supports and the functions that open

an appropriate graphics device

Device Function Graphical Format

Screen/GUI Devices
x11() or X11() X Window window
windows() Microsoft Windows window
quartz() Mac OS X Quartz window

File Devices
postscript() Adobe PostScript file
pdf() Adobe PDF file
pictex() LATEX PicTEX file
xfig() XFIG file
bitmap() GhostScript conversion to file
png() PNG bitmap file
jpeg() JPEG bitmap file
(Windows only)

win.metafile() Windows Metafile file
bmp() Windows BMP file

Devices provided by add-on packages
devGTK() GTK window (gtkDevice)
devJava() Java Swing window (RJavaDevice)
devSVG() SVG file (RSvgDevice)

1.3.1 Graphics devices

Table 1.1 gives a full list of functions that open devices and the output formats
that they correspond to.

All of these functions provide several arguments to allow the user to specify
things such as the physical size of the window or document being created. The
documentation for individual functions should be consulted for descriptions
of these arguments.

It is possible to have more than one device open at the same time, but only
one device is currently “active” and all graphics output is sent to that device.

If multiple devices are open, there are functions to control which device is
active. The list of open devices can be obtained using dev.list(). This gives
the name (the device format) and number for each open device. The function
dev.cur() returns this information only for the currently active device. The
dev.set() function can be used to make a device active, by specifying the
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appropriate device number and the functions dev.next() and dev.prev()

can be used to make the next/previous device on the device list the active
device.

All open devices can be closed at once using the function graphics.off().
When an R session ends, all open devices are closed automatically.

1.3.2 Multiple pages of output

For a screen device, starting a new page involves clearing the window before
producing more output. On Windows there is a facility for returning to pre-
vious screens of output (see the “History” menu, which is available when a
graphics window has focus), but on most screen devices, the output of previ-
ous pages is lost.

For file devices, the output format dictates whether multiple pages are sup-
ported. For example, PostScript and PDF allow multiple pages, but PNG does
not. It is usually possible, especially for devices that do not support multiple
pages of output, to specify that each page of output produces a separate file.
This is achieved by specifying the argument onefile=FALSE when opening
a device and specifying a pattern for the file name like file="myplot%03d"

so that the %03d is replaced by a three-digit number (padded with zeroes)
indicating the “page number” for each file that is created.

1.3.3 Display lists

R maintains a display list for each open device, which is a record of the output
on the current page of a device. This is used to redraw the output when
a device is resized and can also be used to copy output from one device to
another.

The function dev.copy() copies all output from the active device to another
device. The copy may be distorted if the aspect ratio of the destination device
— the ratio of the physical height and width of the device — is not the same as
the aspect ratio of the active device. The function dev.copy2eps() is similar
to dev.copy(), but it preserves the aspect ratio of the copy and creates a file
in EPS (Encapsulated PostScript) format that is ideal for embedding in other
documents (e.g., a LATEX document). The dev2bitmap() function is similar
in that it also tries to preserve the aspect ratio of the image, but it produces
one of the output formats available via the bitmap() device.

The function dev.print() attempts to print the output on the active device.
By default, this involves making a PostScript copy and then invoking the print
command given by options("printcmd").
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The display list can consume a reasonable amount of memory if a plot is par-
ticularly complex or if there are very many devices open at the same time.
For this reason it is possible to disable the display list, by typing the expres-
sion dev.control(displaylist="inhibit"). If the display list is disabled,
output will not be redrawn when a device is resized, and output cannot be
copied between devices.

Chapter summary

R graphics can produce a wide variety of graphical output, including
(but not limited to) many different kinds of statistical plots, and the
output can be produced in a wide variety of formats. Graphical output
is produced by calling functions that either draw a complete plot or
add further output to an existing plot.

There are two main graphics systems in R: a traditional system similar
to the original S graphics system and a newer grid system that is
unique to R. Additional graphics functionality is provided by a large
number of add-on packages that build on these graphics systems.
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Trellis Graphics: the Lattice Package

Chapter preview

This chapter describes how to produce Trellis plots using R. There
is a description of what Trellis plots are as well as a description of
the functions used to produce them. Trellis plots are designed to be
easy to interpret and at the same time provide some modern and
sophisticated plotting styles, such as multipanel conditioning.

The grid graphics system provides no high-level plotting functions
itself, so this chapter also describes the best way to produce a complete
plot using the grid system. There are several advantages to producing
a plot using the grid system, including greater flexibility in adding
further output to the plot, and the ability to interactively edit the
plot.

This chapter describes the lattice package, developed by Deepayan Sarkar[54].
Lattice is based on the grid graphics system, but can be used as a complete
graphics system in itself and a great deal can be achieved without encountering
any of the underlying grid concepts.∗ This chapter deals with lattice as a
self-contained system consisting of functions for producing complete plots,
functions for controlling the appearance of the plots, and functions for opening
and closing devices. Section 5.8 and Section 6.7 describe some of the benefits
that can be gained from viewing lattice plots as grid output and dealing
directly with the grid concepts and objects that underly the lattice system.

∗To give Deepayan proper credit, lattice uses grid only to render plots. Lattice performs

a lot of work itself to deconstruct formulae, rearrange the data, and manage many user-

settable options.
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The graphics functions that make up the lattice graphics system are provided
in an add-on package called lattice. The lattice system is loaded into R as
follows.

> library(lattice)

The lattice package implements the Trellis Graphics system[6] with some novel
extensions. The Trellis Graphics system has a large number of sophisticated
features and many of these are described in this section, but more information,
examples, and background are available from the Trellis Display web site:

http://cm.bell-labs.com/cm/ms/departments/sia/project/trellis/index.html

4.1 The lattice graphics model

In simple usage, lattice functions appear to work just like traditional graphics
functions where the user calls a function and output is generated on the current
device. The following example plots the locations of 1000 earthquakes that
have occurred in the Pacific Ocean (near Fiji) since 1964 (see Figure 4.1).∗

> xyplot(lat ~ long, data=quakes, pch=".")

It is perfectly valid to use lattice this way; however, lattice graphics functions
do not produce graphical output directly. Instead they produce an object
of class "trellis", which contains a description of the plot. The print()

method for objects of this class does the actual drawing of the plot. This
can be demonstrated quite easily. For example, the following code creates a
trellis object, but does not draw anything.

> tplot <- xyplot(lat ~ long, data=quakes, pch=".")

The result of the call to xyplot() is assigned to the variable tplot so it is
not printed. The plot can be drawn by calling print on the trellis object
(the result is exactly the same as Figure 4.1).

> print(tplot)

∗The data are available as the data set quakes in the datasets package.
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Figure 4.1

A scatterplot using lattice (showing the locations of earthquakes in the Pacific
Ocean). A basic lattice plot has a very similar appearance to an analogous tra-
ditional plot.
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This design makes it possible to work with the trellis object and modify it
using the update() method for trellis objects, which is an alternative to
modifying the original R expression used to create the trellis object. The
following code demonstrates this idea by modifying the trellis object tplot
to redefine the main title of the plot (it was empty). The resulting output is
shown in Figure 4.2. A subtle change to look for is the fact that extra space
has been introduced to allow room for adding the new main title text (the
height of the plot region is slightly smaller compared to Figure 4.1).

> update(tplot,

main="Earthquakes in the Pacific Ocean\n(since 1964)")

The side-effect of the code above is to produce new output that is a modifi-
cation of the original plot, represented by tplot. However, it is important to
remember that tplot has not been changed in any way (typing tplot again
will produce output like Figure 4.1 again). In order to retain an R object
representing the modified plot, the user must assign the value returned by the
update() function, as in the following code.

> tplot2 <-

update(tplot,

main="Earthquakes in the Pacific Ocean (since 1964)")

4.1.1 Lattice devices

For each graphics device, lattice maintains its own set of graphical parameter
settings that control the appearance of plots (colors of lines, fonts for text,
and many more — see Section 4.3)∗. The default settings depend on the
type of device being opened (e.g., the settings are different for a PostScript
device compared to a PDF device). In simple usage this causes no problems,
because lattice automatically initializes these settings the first time that lattice
output is produced on a device. If it is necessary to control the initial values
for these settings the trellis.device() function can be used to explicitly
open a device with specific lattice graphical parameter settings (or just to
enforce specific lattice settings on an existing device). Section 4.3 describes
more functions for manipulating the lattice graphical parameter settings.

∗One of the features of Trellis Graphics is that carefully selected default settings are
provided for colors, data symbols, and so on. These settings are selected to maximize the
interpretability of plots and are based on principles of human perception[15].
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Figure 4.2
The result of modifying a lattice object. Lattice creates an object representing the

plot. If this object is modified, the plot is redrawn. This figure shows the result of

modifying the object representing the plot in Figure 4.1 to add a title to the plot.
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4.2 Lattice plot types

Lattice provides functions to produce a number of standard plot types, plus
some more modern and specialized plots. Table 4.1 describes the functions
that are available and Figure 4.3 provides a basic idea of the sort of output
that they produce.

There are a number of functions that produce output very similar to the out-
put of functions in the traditional graphics system, but there are three possible
reasons for using lattice functions instead of the traditional counterparts:

1. The default appearance of the lattice plots is superior in some areas.
For example, the default colors and the default data symbols have been
deliberately chosen to make it easy to distinguish between groups when
more than one data series is plotted. There are also some subtle things
such as the fact that tick labels on the y-axes are written horizontally
by default, which makes them easier to read.

2. The lattice plot functions can be extended in several very powerful ways.
For example, several data series can be plotted at once in a convenient
manner and multiple panels of plots can be produced easily (see Section
4.2.1).

3. The output from lattice functions is grid output, so many powerful grid
features are available for annotating, editing, and saving the graphics
output. See Section 5.8 and Section 6.7 for examples of these features.

Most of the lattice plotting functions provide a very long list of arguments
and produce a wide range of different types of output. Many of the argu-
ments are shared by different functions and the on-line help for the xyplot()

function provides an explanation of these standard arguments. The follow-
ing sections address some of the important shared arguments, but for a full
explanation of all arguments, the documentation for each specific function
should be consulted. The next section discusses two important arguments,
formula and data. The use of several other arguments is demonstrated in
Section 4.2.2 in the context of a more complex example. Section 4.3 mentions
the par.settings argument and Section 4.4 describes the layout argument.
Section 4.5 describes the panel and strip arguments.
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Table 4.1
The plotting functions available in lattice

Lattice Traditional
Function Description Analogue

barchart() Barcharts barplot()

bwplot() Boxplots boxplot()
Box-and-whisker plots

densityplot() Conditional kernel density plots none
Smoothed density estimate

dotplot() Dotplots dotchart()
Continuous versus categorical

histogram() Histograms hist()

qqmath() Quantile–quantile plots qqnorm()
Data set versus theoretical distribution

stripplot() Stripplots stripchart()
One-dimensional scatterplot

qq() Quantile–quantile plots qqplot()
Data set versus data set

xyplot() Scatterplots plot()

levelplot() Level plots image()

contourplot() Contour plots contour()

cloud() 3-dimensional scatterplot none

wireframe() 3-dimensional surfaces persp()

splom() Scatterplot matrices pairs()

parallel() Parallel coordinate plots none
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barchart bwplot densityplot dotplot

histogram qqmath stripplot qq

xyplot levelplot contourplot cloud

wireframe

x

y

splom parallel

Figure 4.3
Plot types available in lattice. The name of the function used to produce the different

plot types is shown in the strip above each plot.
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4.2.1 The formula argument and multipanel conditioning

In most cases, the first argument to the lattice plotting functions is an R

formula (see Section A.2.6) that describes which variables to plot. The sim-
plest case has already been demonstrated. A formula of the form y ~ x

plots variable y against variable x. There are some variations for plots of
only one variable or plots of more than two variables. For example, for the
bwplot() function, the formula can be of the form ~ x and for the cloud()

and wireframe() functions something of the form z ~ x * y is required to
specify the three variables to plot. Another useful variation is the ability to
specify multiple y-variables. Something of the form y1 + y2 ~ x produces a
plot of both the y1 variable and the y2 variable against x. Multiple x-variables
can be specified as well.

The second argument to a lattice plotting function is typically data, which
allows the user to specify a data frame within which lattice can find the
variables specified in the formula.

One of the very powerful features of Trellis Graphics is the ability to specify
conditioning variables within the formula argument. Something of the form
y ~ x | g indicates that several plots should be generated, showing the vari-
able y against the variable x for each level of the variable g. In order to demon-
strate this feature, the following code produces several scatterplots, with each
scatterplot showing the locations of earthquakes that occurred within a par-
ticular depth range (see Figure 4.4). First of all, a new variable depthgroup is
defined, which is a binning of the original depth variable in the quakes data
set.

> depthgroup <- equal.count(quakes$depth, number=3, overlap=0)

Now this depthgroup variable can be used to produce a scatterplot for each
depth range.

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".")

In the Trellis terminology, the plot in Figure 4.4 consists of three panels. Each
panel in this case contains a scatterplot and above each panel there is a strip

that presents the level of the conditioning variable.

There can be more than one conditioning variable in the formula argument,
in which case a panel is produced for each combination of the conditioning
variables. An example of this is given in Section 4.2.2.

The most natural type of variable to use as a conditioning variable is a cat-
egorical variable (factor), but there is also support for using a continuous
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Figure 4.4
A lattice multipanel conditioning plot. A single function call produces several scat-

terplots of the locations of earthquakes for different earthquake depths.
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(numeric) conditioning variable. For this purpose, Trellis Graphics introduces
the concept of a shingle. This is a continuous variable with a number of
ranges associated with it. The ranges are used to split the continuous val-
ues into (possibly overlapping) groups. The shingle() function can be used
to explicitly control the ranges, or the equal.count() function can be used
to generate ranges automatically given a number of groups (as was done to
produce the depthgroup variable above).

4.2.2 A nontrivial example

This section describes an example that makes use of some of the common
arguments to the lattice plotting functions to produce a more complex final
result (see Figure 4.5). First of all, another grouping variable, magnitude, is
defined, which is a shingle indicating whether an earthquake is big or small.

> magnitude <- equal.count(quakes$mag, number=2, overlap=0)

The plot is still produced from a single function call, but there are two con-
ditioning variables, so there is a panel for each possible combination of depth
and magnitude. A title and axis labels have been specified for the plot using
the main, xlab, and ylab arguments. The between argument has been used
to introduce a vertical gap between the top row of panels (big earthquakes)
and the bottom row of panels (small earthquakes). The par.strip.text ar-
gument is used to control the size of text in the strips above each panel. The
scales argument is used to control the drawing of axis labels; in this case
the specification says that the x-axis labels should go at the bottom for both
panels. This is to avoid the axis tick marks interfering with the main title.
Finally, the par.settings argument is used to control the size of the tick
labels on the axes.

> xyplot(lat ~ long | depthgroup * magnitude,

data=quakes,

main="Fiji Earthquakes",

ylab="latitude", xlab="longitude",

pch=".",

scales=list(x=list(alternating=c(1, 1, 1))),

between=list(y=1),

par.strip.text=list(cex=0.7),

par.settings=list(axis.text=list(cex=0.7)))

This example demonstrates that it is possible to have very fine control over
many aspects of a lattice plot, given sufficient willingness to learn about all
of the arguments that are available.
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Figure 4.5
A complex lattice plot. There are a large number of arguments to lattice plotting

functions to allow control over many details of a plot, such as the text to use for

labels and titles, the size and placement of axis tick labels, and the size of the gaps

between columns and rows of panels.
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4.3 Controlling the appearance of lattice plots

An important feature of Trellis Graphics is the careful selection of default
settings that are provided for many of the features of lattice plots. For exam-
ple, the default data symbols and colors used to distinguish between different
data series have been chosen so that it is easy to visually discriminate be-
tween them. Nevertheless, it is still sometimes desirable to be able to make
alterations to the default settings for aspects like color and text size. It is also
useful to be able to control the layout or arrangement of the components (pan-
els and strips) of a lattice plot, but that is dealt with separately in Section
4.4. This section is only concerned with graphical parameters that control
colors, line types, fonts and the like.

The lattice graphical parameter settings consist of a large list of parameter
groups and each parameter group is a list of parameter settings. For example,
there is a plot.line parameter group consisting of col, lty, and lwd settings
to control the color, line type, and line width for lines drawn between data
locations. There is a separate plot.symbol group consisting of cex, col,
font, and pch settings to control the size, shape, and color of data symbols.
The settings in each parameter group affect some aspect of a lattice plot:
some have a “global” effect; for example, the fontsize settings affect all text
in a plot; some are more specific; for example, the strip.background setting
affects the background color of strips; and some only affect a certain aspect
of a certain sort of plot; for example, the box.dot settings affect only the dot
that is plotted at the median value in boxplots.

A separate list of graphical parameters is maintained for each graphics device.
Changes to parameter settings (see below) only affect the current device.

The function show.settings() produces a picture representing some of the
current graphical parameter settings. Figure 4.6 shows the settings for a
black-and-white PostScript device.

The current value of graphical parameter settings can be obtained using the
trellis.par.get() function. For a list of all current graphical parameter
settings, type trellis.par.get(). If a name is specified as the argument to
this function, then only the relevant settings are returned. The following code
shows how to obtain only the fontsize group of settings (the output is on
page 139).

> trellis.par.get("fontsize")
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$text

[1] 9

$points

[1] 8

There are two ways to set new values for graphical parameters. The values
can be set persistently (i.e., they will affect all subsequent plots until a new
setting is specified) using the trellis.par.set() function, or they can be
set temporarily for a single plot by specifying settings as an argument to a
plotting function.

The trellis.par.set() function can be used in several ways. For back-
compatibility with the original implementation of Trellis, it is possible to
provide a name as the first argument and a list of settings as the second
argument. This will modify the values for one parameter group.

A new approach is to provide a list of lists that can be used to modify multiple
parameter groups at once. Lattice also introduces the concept of themes,
which is a comprehensive and coherent set of graphical parameter values. It
is possible to specify such a theme and enforce a new “look and feel” for a
plot in one function call. Lattice currently provides one such theme via the
col.whitebg() function. It is also possible to obtain the default theme for a
particular device using the canonical.theme() function.

The following code demonstrates how to use trellis.par.set() in either
the backwards-compatible, one-parameter-group-at-a-time way, or the new
list-of-lists way, to specify fontsize settings.

> trellis.par.set("fontsize", list(text=14, points=10))

> trellis.par.set(list(fontsize=list(text=14, points=10)))

The theme approach is usually more convenient, especially when setting only
one value within a parameter group. For example, the following code demon-
strates the difference between the two approaches for modifying just the text
setting within the fontsize parameter group (old way first, new way second).

> fontsize <- trellis.par.get("fontsize")

> fontsize$text <- 20

> trellis.par.set("fontsize", fontsize)

> trellis.par.set(list(fontsize=list(text=20)))

The concept of themes is an example of a lattice-specific extension to the
original Trellis Graphics system.
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The other way to modify lattice graphical parameter settings is on a per-
plot basis, by specifying a par.settings argument in the call to a plotting
function. The value for this argument should be a theme (a list of lists).
Such a setting will only be enforced for the relevant plot and will not affect
any subsequent plots. The following code demonstrates how to modify the
fontsize settings just for a single plot.

> xyplot(lat ~ long, data=quakes,

par.settings=list(fontsize=list(text=14, points=10)))

4.4 Arranging lattice plots

There are two types of arrangements to consider when dealing with lattice
plots: the arrangement of panels and strips within a single lattice plot; and
the arrangement of several complete lattice plots together on a single page.

In the first case (the arrangement of panels and strips within a single plot)
there are two useful arguments that can be specified in a call to a lattice
plotting function: the layout argument and the aspect argument.

The layout argument consists of up to three values. The first two indicate
the number of columns and rows of panels on each page and the third value
indicates the number of pages. It is not necessary to specify all three values,
as lattice provides sensible default values for any unspecified values. The
following code produces a variation on Figure 4.4 by explicitly specifying that
there should be a single column of three panels via the layout argument, and
that each panel must be “square” via the aspect argument. The index.cond

argument has also been used to specify that the panels should be ordered from
top to bottom (see Figure 4.7).

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".",

layout=c(1, 3), aspect=1, index.cond=list(3:1))

The aspect argument specifies the aspect ratio (height divided by width) for
the panels. The default value is "fill", which means that panels expand to
occupy as much space as possible. In the example above, the panels were all
forced to be square by specifying aspect=1. This argument will also accept
the special value "xy", which means that the aspect ratio is calculated to
satisfy the “banking to 45 degrees” rule proposed by Bill Cleveland[13].
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Figure 4.7
Controlling the layout of lattice panels. Lattice arranges panels in a sensible way by

default, but there are several ways to force the panels to be arranged in a particular

layout. This figure shows a custom arrangement of the panels in the plot from Figure

4.4.
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As with the choice of colors and data symbols, a lot of work is done to select
sensible default values for the arrangement of panels, so in many cases nothing
special needs to be specified.

Another issue in the arrangement of a single lattice plot is the placement and
structure of the key or legend. This can be controlled using the auto.key or
key argument to plotting functions, which will accept complex specifications
of the contents, layout, and positioning of the key.

The problem of arranging multiple lattice plots on a page requires a different
approach. A trellis object must be created (but not plotted) for each lattice
plot, then the print() function is called, supplying arguments to specify the
position of each plot. The following code provides a simple demonstration
using the average yearly number of sunspots from 1749 to 1983, available as
the sunspots data set in the datasets package (see Figure 4.8). Two lattice
plots are produced and then positioned one above the other on a page. The
position argument is used to specify their location, (left, bottom, right,

top), as a proportion of the total page, and the more argument is used in the
first print() call to ensure that the second print() call draws on the same
page. The scales argument is also used to draw the x-axis at the top of the
top plot.

> spots <- by(sunspots, gl(235, 12, lab=1749:1983), mean)

> plot1 <- xyplot(spots ~ 1749:1983, xlab="", type="l",

main="Average Yearly Sunspots",

scales=list(x=list(alternating=2)))

> plot2 <- xyplot(spots ~ 1749:1983, xlab="Year", type="l")

> print(plot1, position=c(0, 0.2, 1, 1), more=TRUE)

> print(plot2, position=c(0, 0, 1, 0.33))

Section 5.8 describes additional options for controlling the arrangements of
panels within a lattice plot, and more flexible options for arranging multiple
lattice plots, using the concepts and facilities of the grid system.

4.5 Annotating lattice plots

In the original Trellis Graphics system, plots are completely self-contained.
There is no real concept of adding output to a plot once the plot has been
drawn. This constraint has been lifted in lattice, though the traditional ap-
proach is still supported.
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Arranging multiple lattice plots. This shows two separate lattice plots arranged

together on a single page.
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4.5.1 Panel functions and strip functions

The trellis object that is produced by a lattice plotting function is a com-
plete description of a plot. The usual way to add extra output to a plot (e.g.,
add text labels to data symbols), is to add extra information to the trellis

object. This is achieved by specifying a panel function via the panel argument
of lattice plotting functions.

The panel function is called for each panel in a lattice plot. All lattice plotting
functions have a default panel function, which is usually the name of the
function with a “panel.” prefix. For example, the default panel function for
the xyplot() function is panel.xyplot(). The default panel function draws
the default contents for a panel so it is typical to call this default as part of a
custom panel function.

The arguments available to the panel function differ depending on the plotting
function. The documentation for individual panel functions should be con-
sulted for full details, but some common arguments to expect are x and y (and
possibly z), giving locations at which to plot data symbols, and subscripts,
which provides the indices used to obtain the subset of the data for each panel.

In addition to the panel function, it is possible to specify a prepanel function

for controlling the scaling and size of panels and a strip function for controlling
what gets drawn in the strips of a lattice plot.

The following code provides a simple demonstration of the use of panel,
prepanel and strip functions. The plot is a lattice multi-panel scatterplot
with text labels added to the data points and a custom strip showing both
levels of the conditioning variable with the relevant level bold and the other
level grey (see Figure 4.9).

The panel function calls the default panel.xyplot() to draw data symbols,
then calls ltext() to draw the labels. Because lattice is based on grid, tra-
ditional graphics functions will not work in a panel function (though see Ap-
pendix B for a way around this constraint). However, there are several lattice
functions that correspond to traditional functions and can be used in much
the same way as the corresponding traditional functions. The names of the
lattice analogues are the traditional function names with an “l” prefix added.
In this case, the code draws letters as the labels, using the subscripts argu-
ment to select an appropriate subset. The labels are drawn slightly to the left
of and above the data symbols by subtracting 1 from the x values and adding
1 to the y values.
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Figure 4.9
Annotating a lattice plot using panel and strip functions. The text labels have been

added beside the data symbols using a custom panel function and the bold and grey

numerals in the strips have been produced using a custom strip function.
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> myPanel <- function(x, y, subscripts, ...) {

panel.xyplot(x, y, ...)

ltext(x - 1, y + 1, letters[subscripts], cex=0.5)

}

The strip function also uses ltext(). Locations within the strip are based on
a “normalized” coordinate system with the location (0, 0) at the bottom-left
corner and (1, 1) at the top-right corner. The font face and color for the
text is calculated using the which.panel argument. This supplies the current
level for each conditioning variable in the panel.

> myStrip <- function(which.panel, ...) {

font <- rep(1, 2)

font[which.panel] <- 2

col=rep("grey", 2)

col[which.panel] <- "black"

llines(c(0, 1, 1, 0, 0), c(0, 0, 1, 1, 0))

ltext(c(0.33, 0.66), rep(0.5, 2), 1:2,

font=font, col=col)

}

The prepanel function calculates the limits of the scales for each panel by
extending the range of data by 1 unit (this allows room for the text labels
that are added in the panel function).

> myPrePanel <- function(x, y, ...) {

list(xlim=c(min(x) - 1, max(x) + 1),

ylim=c(min(y) - 1, max(y) + 1))

}

We now generate some data to plot and create the plot using xyplot(), with
the special panel functions provided as arguments. The final result is shown
in Figure 4.9.

> X <- 1:20

> Y <- 1:20

> G <- factor(rep(1:2, 10))

> xyplot(X ~ Y | G, aspect=1, layout=c(1, 2),

panel=myPanel, strip=myStrip,

prepanel=myPrePanel)

A great deal more can be done with panel functions using grid concepts and
functions. See Sections 5.8 and 6.7 for some examples.
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4.5.2 Adding output to a lattice plot

Unlike in the original Trellis implementation, it is also possible to add output
to a complete lattice plot (i.e., without using a panel function). The func-
tion trellis.focus() can be used to return to a particular panel or strip
of the current lattice plot in order to add further output using, for example,
llines() or lpoints(). The function trellis.panelArgs() may be useful
for retrieving the arguments (including the data) used to originally draw the
panel. Also, the trellis.identify() function provides basic mouse inter-
action for labelling data points within a panel. Again, Sections 5.8 and 6.7
show how grid provides more flexibility for navigating to different parts of a
lattice plot and for adding further output.

4.6 Creating new lattice plots

The lattice plotting functions have many arguments and are very flexible in
the variety of output that they can produce. However, lattice is not designed
to be the best environment for developing new types of graphical display. For
example, there is no mechanism for adding new graphical parameters to the
list of values that control the appearance of plots (see Section 4.3).

Nevertheless, a lot can be done by defining a panel function that does not just
add extra output to the default output, but replaces the default output with
some sort of completely different display. For example, the lattice dotplot()

function is really only a call to the bwplot() function with a different panel
function supplied.

Users wanting to develop a new lattice plotting function along these lines are
advised to read Chapter 5 to gain an understanding of the grid system that
is used in the production of lattice output.
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Chapter summary

The lattice package implements and extends the Trellis graphics sys-

tem for producing complete statistical plots. This system provides

most standard plot types and a number of modern plot types with

several important extensions. For a start, the layout and appearance

of the plots is designed to maximize readability and comprehension of

the information represented in the plot. Also, the system provides a

feature called multipanel conditioning, which produces multiple panels

of plots from a single data set, where each panel contains a different

subset of the data. The lattice functions provide an extensive set of

arguments for customizing the detailed appearance of a plot and there

are functions that allow the user to add further output to a plot.
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The Grid Graphics Model

Chapter preview

This chapter describes the fundamental tools that grid provides for
drawing graphical scenes (including plots). There are basic features
such as functions for drawing lines, rectangles, and text, together with
more sophisticated and powerful concepts such as viewports, layouts,
and units, which allow basic output to be located and sized in very
flexible ways.

This chapter is useful for drawing a wide variety of pictures, including
statistical plots from scratch, and for adding output to lattice plots.

The functions that make up the grid graphics system are provided in an add-
on package called grid. The grid system is loaded into R as follows.

> library(grid)

In addition to the standard on-line documentation available via the help()

function, grid provides both broader and more in-depth on-line documentation
in a series of vignettes, which are available via the vignette() function.

The grid graphics system only provides low-level graphics functions. There
are no high-level functions for producing complete plots. Section 5.1 briefly
introduces the concepts underlying the grid system, but this only provides an
indication of how to work with grid and some of the things that are possible.
An effective direct use of grid functions requires a deeper understanding of
the grid system (see later sections of this chapter and Chapter 6).

149
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The lattice package described in Chapter 4 provides a good demonstration of
the high-level results that can be achieved using grid. Other examples in this
book are Figure 1.7 in Chapter 1 and Figures 7.1 and 7.18 in Chapter 7.

5.1 A brief overview of grid graphics

This chapter describes how to use grid to produce graphical output. There
are functions to produce basic output, such as lines and rectangles and text,
and there are functions to establish the context for drawing, such as specifying
where output should be placed and what colors and fonts to use for drawing.

Like the traditional system, all grid output occurs on the current device,∗ and
later output obscures any earlier output that it overlaps (i.e.,output follows
the “painters model”). In this way, images can be constructed incrementally
using grid by calling functions in sequence to add more and more output.

There are grid functions to draw primitive graphical output such as lines,
text, and polygons, plus some slightly higher-level graphical components such
as axes (see Section 5.2). Complex graphical output is produced by making a
sequence of calls to these primitive functions.

The colors, line types, fonts, and other aspects that affect the appearance of
graphical output are controlled via a set of graphical parameters (see Section
5.4).

Grid provides no predefined regions for graphical output, but there is a pow-
erful facility for defining regions, based on the idea of a viewport (see Section
5.5). It is quite simple to produce a set of regions that are convenient for
producing a single plot (see the example in the next section), but it is also
possible to produce very complex sets of regions such as those used in the
production of Trellis plots (see Chapter 4).

All viewports have a large set of coordinate systems associated with them
so that it is possible to position and size output in physical terms (e.g., in
centimeters) as well as relative to the scales on axes, and in a variety of other
ways (see Section 5.3).

All grid output occurs relative to the current viewport (region) on a page. In
order to start a new page of output, the user must call the grid.newpage()

∗See Section 1.3.1 for information on devices and selecting a current device when more

than one device is open.
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function. The function grid.prompt() controls whether the user is prompted
when moving to a new page.

As well as the side effect of producing graphical output, grid graphics functions
produce objects representing output. These objects can be saved to produce
a persistent record of a plot, and other grid functions exist to modify these
graphical objects (for example, it is possible to interactively edit a plot). It is
also possible to work entirely with graphical descriptions, without producing
any output. Functions for working with graphical objects are described in
detail in Chapter 6.

5.1.1 A simple example

The following example demonstrates the construction of a simple scatterplot
using grid. This is more work than a single function call to produce the plot,
but it shows some of the advantages that can be gained by producing the plot
using grid.

This example uses the pressure data to produce a scatterplot much like that
in Figure 1.1.

Firstly, some regions are created that will correspond to the “plot region” (the
area within which the data symbols will be drawn) and the “margins” (the
area used to draw axes and labels).

The following code creates two viewports. The first viewport is a rectangular
region that leaves space for 5 lines of text at the bottom, 4 lines of text at the
left side, 2 lines at the top, and 2 lines to the right. The second viewport is
in the same location as the first, but it has x- and y-scales corresponding to
the range of the pressure data to be plotted.

> pushViewport(plotViewport(c(5, 4, 2, 2)))

> pushViewport(dataViewport(pressure$temperature,

pressure$pressure,

name="plotRegion"))

The following code draws the scatterplot one piece at a time. Grid output
occurs relative to the most recent viewport, which in this case is the viewport
with the appropriate axis scales. The data symbols are drawn relative to the
x- and y-scales, a rectangle is drawn around the entire plot region, and x- and
y-axes are drawn to represent the scales.
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> grid.points(pressure$temperature, pressure$pressure,

name="dataSymbols")

> grid.rect()

> grid.xaxis()

> grid.yaxis()

Adding labels to the axes demonstrates the use of the different coordinate
systems available. The label text is drawn outside the edges of the plot region
and is positioned in terms of a number of lines of text (i.e.,the height that a
line of text would occupy).

> grid.text("temperature", y=unit(-3, "lines"))

> grid.text("pressure", x=unit(-3, "lines"), rot=90)

The obvious result of running the above code is the graphical output (see the
top-left image in Figure 5.1). Less obvious is the fact that several objects have
been created. There are objects representing the viewport regions and there
are objects representing the graphical output. The following code makes use
of this fact to modify the plotting symbol from a circle to a triangle (see the
top-right image in Figure 5.1). The object representing the data symbols was
named "dataSymbols" (see the code above) and this name is used to find that
object and modify it using the grid.edit() function.

> grid.edit("dataSymbols", pch=2)

The next piece of code makes use of the objects representing the viewports.
The upViewport() and downViewport() functions are used to navigate be-
tween the different viewport regions to perform some extra annotations. First
of all, a call to the upViewport() function is used to go back to working
within the entire device so that a dashed rectangle can be drawn around the
complete plot. Next, the downViewport() function is used to return to the
plot region to add a text annotation that is positioned relative to the scale on
the axes of the plot (see bottom-right image in Figure 5.1).

> upViewport(2)

> grid.rect(gp=gpar(lty="dashed"))

> downViewport("plotRegion")

> grid.text("Pressure (mm Hg)\nversus\nTemperature (Celsius)",

x=unit(150, "native"), y=unit(600, "native"))

The final scatterplot is still quite simple in this example, but the techniques
that were used to produce it are very general and powerful. It is possible to
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Figure 5.1
A simple scatterplot produced using grid. The top-left plot was constructed from
a series of calls to primitive grid functions that produce graphical output. The
top-right plot shows the result of calling the grid.edit() function to interactively
modify the plotting symbol. The bottom-right plot was created by making calls to
upViewport() and downViewport() to navigate between different drawing regions
and adding further output (a dashed border and text within the plot).



154 R Graphics

produce a very complex plot, yet still have complete access to modify and add
to any part of the plot.

In the remaining sections of this chapter, and in Chapter 6, the basic grid
concepts of viewports and units are discussed in full detail. A complete un-
derstanding of the grid system will be useful in two ways: it will allow the
user to produce very complex images from scratch (the issue of making them
available to others is addressed in Chapter 7) and it will allow the user to
work effectively with (e.g., modify and add to) complex grid output that is
produced by other people’s code (e.g. lattice plots).

5.2 Graphical primitives

The most simple grid functions to understand are those that draw something.
There are a set of grid functions for producing basic graphical output such as
lines, circles, and text.∗ Table 5.1 lists the full set of these functions.

The first arguments to most of these functions is a set of locations and di-
mensions for the graphical object to draw. For example, grid.rect() has
arguments x, y, width, and height for specifying the locations and sizes of
the rectangles to draw. An important exception is the grid.text() function,
which requires the text to draw as its first argument.

In most cases, multiple locations and sizes can be specified and multiple prim-
itives will be produced in response. For example, the following function call
produces 100 circles because 100 locations and radii are specified (see Figure
5.2).

> grid.circle(x=seq(0.1, 0.9, length=100),

y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),

r=abs(0.1*cos(seq(0, 2*pi, length=100))))

The grid.move.to() and grid.line.to() functions are unusual in that they
both only accept one location. These functions refer to and modify a “cur-
rent location.” The grid.move.to() function sets the current location and
grid.line.to() draws from the current location to a new location, then sets

∗All of these functions are of the form grid.*() and, for each one, there is a correspond-

ing *Grob() function that creates an object containing a description of primitive graphical

output, but does not draw anything. The *Grob() versions are addressed fully in Chapter

6.
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Table 5.1
Graphical primitives in grid. This is the complete set of low-level functions that
produce graphical output. For each function that produces graphical output (left-
most column), there is a corresponding function that returns a graphical object
containing a description of graphical output instead of producing graphical output
(right-most column). The latter set of functions is described further in Chapter 6.

Function to Function to
Produce Output Description Produce Object

grid.move.to() Set the current location moveToGrob()

grid.line.to() Draw a line from the current lo-

cation to a new location and reset

the current location.

lineToGrob()

grid.lines() Draw a single line through multi-

ple locations in sequence.

linesGrob()

grid.segments() Draw multiple lines between pairs

of locations.

segmentsGrob()

grid.rect() Draw rectangles given locations

and sizes.

rectGrob()

grid.circle() Draw circles given locations and

radii.

circleGrob()

grid.polygon() Draw polygons given vertexes. polygonGrob()

grid.text() Draw text given strings, locations

and rotations.

textGrob()

grid.arrows() Draw arrows at either end of lines

given locations or an object de-

scribing lines.

arrowsGrob()

grid.points() Draw data symbols given loca-

tions.

pointsGrob()

grid.xaxis() Draw x-axis. xaxisGrob()

grid.yaxis() Draw y-axis. yaxisGrob()
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Figure 5.2
Primitive grid output. A demonstration of basic graphical output produced using

a single call to the grid.circle() function. There are 100 circles of varying sizes,

each at a different (x, y) location.

the current location to be the new location. The current location is not used
by the other drawing functions∗. In most cases, grid.lines() will be more
convenient, but grid.move.to() and grid.line.to() are useful for drawing
lines across multiple viewports (an example is given in Section 5.5.1).

The grid.arrows() function is used to add arrows to lines. A single line
can be specified by x and y locations (through which a line will be drawn),
or the grob argument can be used to specify an object that describes one or
more lines (produced by linesGrob(), segmentsGrob(), or lineToGrob()).
In the latter case, grid.arrows() will add arrows at the ends of the line(s).
The following code demonstrates the different uses (see Figure 5.3). The first
grid.arrows() call specifies locations via the x and y arguments to produce
a single line, at the end of which an arrow is drawn. The second call specifies
a segments graphical object via the grob argument, which describes three
lines, and an arrow is added to the end of each of these lines.

> angle <- seq(0, 2*pi, length=50)

> grid.arrows(x=seq(0.1, 0.5, length=50),

y=0.5 + 0.3*sin(angle))

> grid.arrows(grob=segmentsGrob(6:8/10, 0.2, 7:9/10, 0.8))

∗There is one exception: the grid.arrows() function makes use of the current location

when an arrow is added to a line.to graphical object produced by lineToGrob().



The Grid Graphics Model 157

Figure 5.3
Drawing arrows using the grid.arrows() function. Arrows can be added to: a
single line through multiple points, as generated by grid.lines() (e.g., the sine
curve in the left half of the figure); multiple straight line segments, as generated by
grid.segments() (e.g., the three straight lines in the right half of the figure); the
result of a line-to operation, as generated by grid.line.to() (example not shown
here).

In simple usage, the grid.polygon() function draws a single polygon through
the specified x and y locations (automatically joining the last location to the
first to close the polygon). It is possible to produce multiple polygons from a
single call (which is much faster than making multiple calls) if the id argument
is specified. In this case, a polygon is drawn for each set of x and y locations
corresponding to a different value of id. The following code demonstrates
both usages (see Figure 5.4). The two grid.polygon() calls use the same x

and y locations, but the second call splits the locations into three separate
polygons using the id argument.

> angle <- seq(0, 2*pi, length=10)[-10]

> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

gp=gpar(fill="grey"))

> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:3, each=3),

gp=gpar(fill="grey"))

The grid.xaxis() and grid.yaxis() functions are not really graphical prim-
itives as they produce relatively complex output consisting of both lines and
text. They are included here because they complete the set of grid functions
that produce graphical output. The main argument to these functions is the
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Figure 5.4
Drawing polygons using the grid.polygon() function. By default, a single polygon
is produced from multiple (x, y) locations (the nonagon on the left), but it is
possible to associate subsets of the locations with separate polygons using the id

argument (the three triangles on the right).

at argument. This is used to specify where tick-marks should be placed. If the
argument is not specified, sensible tick-marks are drawn based on the current
scales in effect (see Section 5.5 for information about viewport scales). The
values specified for the at argument are always relative to the current scales
(see the concept of the "native" coordinate system in Section 5.3). These
functions are much less flexible and general than the traditional axis() func-
tion. For example, they do not provide automatic support for generating
labels from time- or date-based at locations.

Drawing curves

There is no native curve-drawing function in grid, but an approximation to a
smooth curve consisting of many straight line segments is often sufficient. The
example on the left of Figure 5.3 demonstrates how a series of line segments
can appear very much like a smooth curve, if enough line segments are used.

5.2.1 Standard arguments

All primitive graphics functions accept a gp argument that allows control over
aspects such as the color and line type of the relevant output. For example, the
following code specifies that the boundary of the rectangle should be dashed



The Grid Graphics Model 159

and colored red.

> grid.rect(gp=gpar(col="red", lty="dashed"))

Section 5.4 provides more information about setting graphical parameters.

All primitive graphics functions also accept a vp argument that can be used
to specify a viewport in which to draw the relevant output. The following
code shows a simple example of the syntax (the result is a rectangle drawn in
the left half of the page); Section 5.5 describes viewports and the use of vp
arguments in full detail.

> grid.rect(vp=viewport(x=0, width=0.5, just="left"))

Finally, all primitive graphics functions also accept a name argument. This can
be used to identify the graphical object produced by the function. It is useful
for interactively editing graphical output and when working with graphical
objects (see Chapter 6). The following code demonstrates how to associate a
name with a rectangle.

> grid.rect(name="myrect")

5.3 Coordinate systems

When drawing in grid, there are always a large number of coordinate systems
available for specifying the locations and sizes of graphical output. For ex-
ample, it is possible to specify an x location as a proportion of the width of
the drawing region, or as a number of inches (or centimeters, or millimeters)
from the left-hand edge of the drawing region, or relative to the current x-
scale. The full set of coordinate systems available is shown in Table 5.2. The
meaning of some of these will only become clear with an understanding of
viewports (Section 5.5) and graphical objects (Chapter 6).∗

With so many coordinate systems available, it is necessary to specify which
coordinate system a location or size refers to. The unit() function is used

∗Absolute units, such as inches, may not be rendered with full accuracy on screen devices
(see the footnote on page 100).
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Table 5.2
The full set of coordinate systems available in grid.

Coordinate
System Name Description

"native" Locations and sizes are relative to the x- and y-
scales for the current viewport.

"npc" Normalized Parent Coordinates. Treats the
bottom-left corner of the current viewport as the
location (0, 0) and the top-right corner as (1, 1).

"snpc" Square Normalized Parent Coordinates. Locations
and sizes are expressed as a proportion of the
smaller of the width and height of the current
viewport.

"inches" Locations and sizes are in terms of physical inches.
For locations, (0, 0) is at the bottom-left of the
viewport.

"cm" Same as "inches", except in centimeters.

"mm" Millimeters.

"points" Points. There are 72.27 points per inch.

"bigpts" Big points. There are 72 big points per inch.

"picas" Picas. There are 12 points per pica.

"dida" Dida. 1157 dida equals 1238 points.

"cicero" Cicero. There are 12 dida per cicero.

"scaledpts" Scaled points. There are 65536 scaled points per
point.

"char" Locations and sizes are specified in terms of mul-
tiples of the current nominal font size (dependent
on the current fontsize and cex).

"lines" Locations and sizes are specified in terms of mul-
tiples of the height of a line of text (dependent on
the current fontsize, cex, and lineheight).

"strwidth"

"strheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given string (depen-
dent on the string and the current fontsize, cex,
fontfamily, and fontface).

"grobwidth"

"grobheight"

Locations and sizes are expressed as multiples of
the width (or height) of a given graphical object
(dependent on the type, location, and graphical
settings of the graphical object).
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to associate a numeric value with a coordinate system. This function creates
an object of class "unit" (hereafter referred to simply as a unit), which acts
very much like a normal numeric object — it is possible to perform basic
operations such as sub-setting units, and adding and subtracting units.

Each value in a unit can be associated with a different coordinate system and
each location and dimension of a graphical object is a separate unit, so for
example, a rectangle can have its x-location, y-location, width, and height all
specified relative to different coordinate systems.

The following pieces of code demonstrate some of the flexibility of grid units.
The first code examples show some different uses of the unit() function: a
single value is associated with a coordinate system, then several values are
associated with a coordinate system (notice the recycling of the coordinate
system value), then several values are associated with different coordinate
systems.

> unit(1, "mm")

[1] 1mm

> unit(1:4, "mm")

[1] 1mm 2mm 3mm 4mm

> unit(1:4, c("npc", "mm", "native", "lines"))

[1] 1npc 2mm 3native 4lines

The next code examples show how units can be manipulated in many of the
ways that normal numeric vectors can: firstly by sub-setting, then simple ad-
dition (again notice the recycling), then finally the use of a summary function
(max() in this case).

> unit(1:4, "mm")[2:3]

[1] 2mm 3mm

> unit(1, "npc") - unit(1:4, "mm")

[1] 1npc-1mm 1npc-2mm 1npc-3mm 1npc-4mm



162 R Graphics

> max(unit(1:4, c("npc", "mm", "native", "lines")))

[1] max(1npc, 2mm, 3native, 4lines)

Some operations on units are not as straightforward as with numeric vectors,
but require the use of functions written specifically for units. For exam-
ple, the length of units must be obtained using the unit.length() function
rather than length(), units must be concatenated (in the sense of the c()

function) using unit.c(), and there are special functions for repeating units
and for calculating parallel maxima and minima (unit.rep(), unit.pmin(),
and unit.pmax()).

The following code provides an example of using units to locate and size a
rectangle. The rectangle is at a location 40% of the way across the drawing
region and 1 inch from the bottom of the drawing region. It is as wide as the
text "very snug", and it is one line of text high (see Figure 5.5).

> grid.rect(x=unit(0.4, "npc"), y=unit(1, "inches"),

width=stringWidth("very snug"),

height=unit(1, "lines"),

just=c("left", "bottom"))

5.3.1 Conversion functions

As demonstrated in the previous section, a unit is not simply a numeric value.
Units only reduce to a simple numeric value (a physical location on a graphics
device) when drawing occurs. A consequence of this is that a unit can mean
very different things, depending on when it gets drawn (this should become
more apparent with an understanding of graphical parameters in Section 5.4
and viewports in Section 5.5).

In some cases, it can be useful to convert a unit to a simple numeric value.
For example, it is sometimes necessary to know the current scale limits for
numerical calculations. There are several functions that can assist with this
problem: convertUnit(), convertX(), convertY(), convertWidth(), and
convertHeight(). The following code demonstrates how to calculate the
current scale limits for the x-dimension. First of all, a scale is defined on the
x-axis with the range c(-10, 50) (see Section 5.5 for more about viewports).

> pushViewport(viewport(xscale=c(-10, 50)))

The next expression performs a query to obtain the current x-axis scale. The
expression unit(0:1, "npc") represents the left and right boundaries of the
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Figure 5.5
A demonstration of grid units. A diagram demonstrating how graphical output
can be located and sized using grid units to associate numeric values with different
coordinate systems. The grey border represents the current viewport. A black
rectangle has been drawn with its bottom-left corner 40% of the way across the
current viewport and 1 inch above the bottom of the current viewport. The rectangle
is 1 line of text high and as wide as the text “very snug” (as it would be drawn in
the current font).

current drawing region and convertX() is used to convert these locations into
values in the "native" coordinate system, which is relative to the current
scales.

> convertX(unit(0:1, "npc"), "native", valueOnly=TRUE)

[1] -10 50

WARNING: These conversion functions must be used with care. The out-
put from these functions is only valid for the current device size. If, for
example, a window on screen is resized, or output is copied from one device to
another device with a different physical size, these calculations may no longer
be correct. In other words, only rely on these functions when it is known
that the size of the graphics device will not change. See Appendix B for more
information on this topic and for a way to be able to use these functions on
devices that may be resized. The discussion on the use of these functions
in drawDetails() methods and the function grid.record() is also relevant
(see “Calculations during drawing” in Section 7.3.10).
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5.3.2 Complex units

There are two peculiarities of the "strwidth", "strheight", "grobwidth",
and "grobheight" coordinate systems that require further explanation. In
all of these cases, a value is interpreted as a multiple of the size of some
other object. In the former two cases, the other object is just a text string
(e.g., "a label"), but in the latter two cases, the other object can be any
graphical object (see Chapter 6). It is necessary to specify the other object
when generating a unit for these coordinate systems and this is achieved via
the data argument. The following code shows some simple examples.

> unit(1, "strwidth", "some text")

[1] 1strwidth

> unit(1, "grobwidth", textGrob("some text"))

[1] 1grobwidth

A more convenient interface for generating units, when all values are rela-
tive to a single coordinate system, is also available via the stringWidth(),
stringHeight(), grobWidth(), and grobHeight() functions. The following
code is equivalent to the previous example.

> stringWidth("some text")

[1] 1strwidth

> grobWidth(textGrob("some text"))

[1] 1grobwidth

In this particular example, the "strwidth" and "grobwidth" units will be
identical as they are based on identical pieces of text. The difference is that
a graphical object can contain not only the text to draw, but other informa-
tion that may affect the size of the text, such as the font family and size.
In the following code, the two units are no longer identical because the text

grob represents text drawn at font size of 18, whereas the simple string rep-
resents text at the default size of 10. The convertWidth() function is used
to demonstrate the difference.
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> convertWidth(stringWidth("some text"), "inches")

[1] 0.7175inches

> convertWidth(grobWidth(textGrob("some text",

gp=gpar(fontsize=18))),

"inches")

[1] 1.07625inches

For units that contain multiple values, there must be an object specified

for every "strwidth", "strheight", "grobwidth", and "grobheight" value.

Where there is a mixture of coordinate systems within a unit, a value of NULL

can be supplied for the coordinate systems that do not require data. The

following code demonstrates this.

> unit(rep(1, 3), "strwidth", list("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

> unit(rep(1, 3),

c("npc", "strwidth", "grobwidth"),

list(NULL, "two", textGrob("three")))

[1] 1npc 1strwidth 1grobwidth

Again, there is a simpler interface for straightforward situations.

> stringWidth(c("one", "two", "three"))

[1] 1strwidth 1strwidth 1strwidth

For "grobwidth" and "grobheight" units, it is also possible to specify the

name of a graphical object rather than the graphical object itself. This can

be useful for establishing a reference to a graphical object, so that when the

named graphical object is modified, the unit is updated for the change. The

following code demonstrates this idea. First of all, a text grob is created with

the name "tgrob".

> grid.text("some text", name="tgrob")
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Next, a unit is created that is based on the width of the grob called "tgrob".

> theUnit <- grobWidth("tgrob")

The convertWidth() function can be used to show the current value of the
unit.

> convertWidth(theUnit, "inches")

[1] 0.7175inches

The following code modifies the grob named "tgrob" and convertWidth()

is used to show that the value of the unit reflects the new width of the text

grob.

> grid.edit("tgrob", gp=gpar(fontsize=18))

> convertWidth(theUnit, "inches")

[1] 1.07625inches

5.4 Controlling the appearance of output

All graphical primitives functions (and the viewport() function — see Section
5.5) — have a gp argument that can be used to provide a set of graphical
parameters to control the appearance of the graphical output. There is a
fixed set of graphical parameters (see Table 5.3), all of which can be specified
for all types of graphical output.

The value supplied for the gp argument must be an object of class "gpar",
and a gpar object can be produced using the gpar() function. For example,
the following code produces a gpar object containing graphical parameter
settings controlling color and line type.

> gpar(col="red", lty="dashed")

$col

[1] "red"

$lty

[1] "dashed"
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Table 5.3
The full set of graphical parameters available in grid. The lex parameter

has only been available since R version 2.1.0.

Parameter Description

col Color of lines, text, rectangle borders, ...

fill Color for filling rectangles, circles, polygons, ...

gamma Gamma correction for colors

alpha Alpha blending coefficient for transparency

lwd Line width

lex Line width expansion multiplier applied to lwd to
obtain final line width

lty Line type

lineend Line end style (round, butt, square)

linejoin Line join style (round, mitre, bevel)

linemitre Line mitre limit

cex Character expansion multiplier applied to
fontsize to obtain final font size

fontsize Size of text (in points)

fontface Font face (bold, italic, ...)

fontfamily Font family

lineheight Multiplier applied to final font size to obtain the
height of a line
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The function get.gpar() can be used to obtain current graphical parameter
settings. The following code shows how to query the current line type and fill
color. When called with no arguments, the function returns a complete list of
current settings.

> get.gpar(c("lty", "fill"))

$lty

[1] "solid"

$fill

[1] "transparent"

A gpar object represents an explicit graphical context — settings for a small
number of specific graphical parameters. The example above produces a
graphical context that ensures that the color setting is "red" and the line-type
setting is "dashed". There is always an implicit graphical context consisting
of default settings for all graphical parameters. The implicit graphical con-
text is initialized automatically by grid for every graphics device and can be
modified by viewports (see Section 5.5.5) or by gTrees (see Section 6.2.1).∗

A graphical primitive will be drawn with graphical parameter settings taken
from the implicit graphical context, except where there are explicit graphical
parameter settings from the graphical primitive’s gp argument. For graphical
primitives, the explicit graphical context is only in effect for the duration of the
drawing of the graphical primitive. The following code example demonstrates
these rules.

The default initial implicit graphical context includes settings such as
lty="solid" and fill="transparent". The first (left-most) rectangle has an
explicit setting fill="black" so it only uses the implicit setting lty="solid".
The second (right-most) rectangle uses all of the implicit graphical parameter
settings. In particular, it is not at all affected by the explicit settings of the
first rectangle (see Figure 5.6).

> grid.rect(x=0.33, height=0.7, width=0.2,

gp=gpar(fill="black"))

> grid.rect(x=0.66, height=0.7, width=0.2)

∗The ideas of implicit and explicit graphical contexts are similar to the specification of
settings in Cascading Style Sheets[34] and the graphics state in PostScript[3].
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Figure 5.6
Graphical parameters for graphical primitives. The grey rectangle represents the
current viewport. The right-hand rectangle has been drawn with no specific graphi-
cal parameters so it inherits the defaults for the current viewport (which in this case
are a black border and no fill color). The left-hand rectangle has been drawn with
a specific fill color of black (it is still drawn with the inherited black border). The
graphical parameter settings for one rectangle have no effect on the other rectangle.

5.4.1 Specifying graphical parameter settings

The values that can be specified for colors, line types, line widths, line ends,
line joins, and fonts are mostly the same as for the traditional graphics system.
Sections 3.2.1, 3.2.2, and 3.2.3 contain descriptions of these specifications
(for example, see the sub-section “Specifying colors”). In many cases, the
graphical parameter in grid also has the same name as the traditional graphics
state setting (e.g., col), though several of the grid parameters are slightly
more verbose (e.g. lineend and fontfamily). Some other differences in the
specification of graphical parameter values in the grid graphics system are
described below.

In grid, the fontface value can be a string instead of an integer. Table 5.4
shows the possible string values.

In grid, the cex value is cumulative. This means that it is multiplied by the
previous cex value to obtain a current cex value. The following code shows
a simple example. A viewport is pushed with cex=0.5. This means that text
will be half size. Next, some text is drawn, also with cex=0.5. This text is
drawn quarter size because cex was already 0.5 from the viewport (0.5*0.5
= 0.25).
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Table 5.4
Possible font face specifications in grid.

Integer String Description

1 "plain" Roman or upright face
2 "bold" Bold face
3 "italic" or "oblique" Slanted face
4 "bold.italic" Bold and slanted face

For the HersheySerif font family
5 "cyrillic" Cyrillic font
6 "cyrillic.oblique" Slanted Cyrillic font
7 "EUC" Japanese characters

> pushViewport(viewport(gp=gpar(cex=0.5)))

> grid.text("How small do you think?", gp=gpar(cex=0.5))

The alpha graphical parameter setting is unique to grid. It is a value between
1 (fully opaque) and 0 (fully transparent). The alpha value is combined
with the alpha channel of colors by multiplying the two and this setting is
cumulative like the cex setting. The following code shows a simple example.
A viewport is pushed with alpha=0.5, then a rectangle is drawn using a
semitransparent red fill color (alpha channel set to 0.5). The final alpha
channel for the fill color is 0.25 (0.5*0.5 = 0.25).

> pushViewport(viewport(gp=gpar(alpha=0.5)))

> grid.rect(width=0.5, height=0.5,

gp=gpar(fill=rgb(1, 0, 0, 0.5)))

Grid does not support fill patterns (see page 58).

5.4.2 Vectorized graphical parameter settings

All graphical parameter settings may be vector values. Many graphical primi-
tive functions produce multiple primitives as output and graphical parameter
settings will be recycled over those primitives. The following code produces
100 circles, cycling through 50 different shades of grey for the circles (see
Figure 5.7).
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Figure 5.7
Recycling graphical parameters. The 100 circles are drawn by a single function call
with 50 different greys specified for the border color (from a very light grey to a
very dark grey and back to a very light grey). The 50 colors are recycled over the
100 circles so circle i gets the same color as circle i + 50.

> levels <- round(seq(90, 10, length=25))

> greys <- paste("grey", c(levels, rev(levels)), sep="")

> grid.circle(x=seq(0.1, 0.9, length=100),

y=0.5 + 0.4*sin(seq(0, 2*pi, length=100)),

r=abs(0.1*cos(seq(0, 2*pi, length=100))),

gp=gpar(col=greys))

The grid.polygon() function is a slightly complex case. There are two ways
in which this function will produce multiple polygons: when the id argument
is specified and when there are NA values in the x or y locations (see Sec-
tion 5.6). For grid.polygon(), a different graphical parameter will only be
applied to each polygon identified by a different id. When a single polygon
(as identified by a single id value) is split into multiple sub-polygons by NA

values, all sub-polygons receive the same graphical parameter settings. The
following code demonstrates these rules (see Figure 5.8). The first call to
grid.polygon() draws two polygons as specified by the id argument. The
fill graphical parameter setting contains two colors so the first polygon gets
the first color (grey) and the second polygon gets the second color (white). In
the second call, all that has changed is that an NA value has been introduced.
This means that the first polygon as specified by the id argument is split into
two separate polygons, but both of these polygons use the same fill setting
because they both correspond to an id of 1. Both of these polygons get the
first color (grey).
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NA

Figure 5.8
Recycling graphical parameters for polygons. On the left, a single function call

produces two polygons with different fill colors by specifying an id argument and

two fill colors. On the right, there are three polygons because an NA value has been

introduced in the (x, y) locations for the polygon, but there are still only two colors

specified. The colors are allocated to polygons using the id argument and ignoring

any NA values.

> angle <- seq(0, 2*pi, length=11)[-11]

> grid.polygon(x=0.25 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),

gp=gpar(fill=c("grey", "white")))

> angle[4] <- NA

> grid.polygon(x=0.75 + 0.15*cos(angle), y=0.5 + 0.3*sin(angle),

id=rep(1:2, c(7, 3)),

gp=gpar(fill=c("grey", "white")))

All graphical primitives have a gp component, so it is possible to specify any
graphical parameter setting for any graphical primitive. This may seem inef-
ficient, and indeed in some cases the values are completely ignored (e.g., text
drawing ignores the lty setting), but in many cases the values are potentially
useful. For example, even when there is no text being drawn, the settings for
fontsize, cex, and lineheight are always used to calculate the meaning of
"lines" and "char" coordinates.
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5.5 Viewports

A viewport is a rectangular region that provides a context for drawing.

A viewport provides a drawing context consisting of both a geometric context

and a graphical context. A geometric context consists of a set of coordinate sys-
tems for locating and sizing output and all of the coordinate systems described
in Section 5.3 are available within every viewport.∗ A graphical context con-
sists of explicit graphical parameter settings for controlling the appearance of
output. This is specified as a gpar object via the gp argument.

By default, grid creates a viewport that corresponds to the entire graphics
device and, until another viewport is created, drawing occurs within the full
extent of the device and using the default graphical parameter settings.

A new viewport is created using the viewport() function. A viewport has
a location (given by x and y), a size (given by width and height), and it is
justified relative to its location (according to the value of the just argument).
The location and size of a viewport are specified in units, so a viewport can
be positioned and sized within another viewport in a very flexible manner.
The following code creates a viewport that is left-justified at an x location
0.4 of the way across the drawing region, and bottom-justified 1 centimeter
from the bottom of the drawing region. It is as wide as the text "very very

snug indeed", and it is six lines of text high. Figure 5.9 shows a diagram
representing this viewport.

> viewport(x=unit(0.4, "npc"), y=unit(1, "cm"),

width=stringWidth("very very snug indeed"),

height=unit(6, "lines"),

just=c("left", "bottom"))

viewport[GRID.VP.33]

An important thing to notice in the above example is that the result of the
viewport() function is an object of class viewport. No region has actually
been created on a graphics device. In order to create regions on a graphics
device, a viewport object must be pushed onto the device, as described in the
next section.

∗The idea of being able to define a geometric context is similar to the concept of the
current transformation matrix (CTM) in PostScript[3] and the modeling transformation in
OpenGL[55].
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Figure 5.9
A diagram of a simple viewport. A viewport is a rectangular region specified by
an (x, y) location, a (width, height) size, and a justification (and possibly a
rotation). This diagram shows a viewport that is left-bottom justified 1 centimeter
off the bottom of the page and 0.4 of the way across the page. It is 6 lines of text
high and as wide as the text “very very snug indeed”.

5.5.1 Pushing, popping, and navigating between viewports

The pushViewport() function takes a viewport object and uses it to create
a region on the graphics device. This region becomes the drawing context for
all subsequent graphical output, until the region is removed or another region
is defined.

The following code demonstrates this idea (see Figure 5.10). To start with,
the entire device, and the default graphical parameter settings, provide the
drawing context. Within this context, the grid.text() call draws some text
at the top-left corner of the device. A viewport is then pushed, which creates
a region 80% as wide as the device, half the height of the device, and rotated
at an angle of 10 degrees∗. The viewport is given a name, "vp1", which will
help us to navigate back to this viewport from another viewport later.

Within the new drawing context defined by the viewport that has been pushed,
exactly the same grid.text() call produces some text at the top-left corner
of the viewport. A rectangle is also drawn to make the extent of the new
viewport clear.

∗It is not often very useful to rotate a viewport, but it helps in this case to dramatise

the difference between the drawing regions.
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top−left corner

top−left corner

Figure 5.10
Pushing a viewport. Drawing occurs relative to the entire device until a viewport is

pushed. For example, some text has been drawn in the top-left corner of the device.

Once a viewport has been pushed, output is drawn relative to that viewport. The

black rectangle represents a viewport that has been pushed and text has been drawn

in the top-left corner of that viewport.

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

> pushViewport(viewport(width=0.8, height=0.5, angle=10,

name="vp1"))

> grid.rect()

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

The pushing of viewports is entirely general. A viewport is pushed relative
to the current drawing context. The following code slightly extends the pre-
vious example by pushing a further viewport, exactly like the first, and again
drawing text at the top-left corner (see Figure 5.11). The location, size, and
rotation of this second viewport are all relative to the context provided by the
first viewport. Viewports can be nested like this to any depth.
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Figure 5.11
Pushing several viewports. Viewports are pushed relative to the current viewport.

Here, a second viewport has been pushed relative to the viewport that was pushed

in Figure 5.10. Again, text has been drawn in the top-left corner.

> pushViewport(viewport(width=0.8, height=0.5, angle=10,

name="vp2"))

> grid.rect()

> grid.text("top-left corner", x=unit(1, "mm"),

y=unit(1, "npc") - unit(1, "mm"),

just=c("left", "top"))

In grid, drawing is always within the context of the current viewport. One
way to change the current viewport is to push a viewport (as in the previous
examples), but there are other ways too. For a start, it is possible to pop a
viewport using the popViewport() function. This removes the current view-
port and the drawing context reverts to whatever it was before the current
viewport was pushed∗. The following code demonstrates popping viewports
(see Figure 5.12). The call to popViewport() removes the last viewport cre-
ated on the device. Text is drawn at the bottom-right of the resulting drawing
region (which has reverted back to being the first viewport that was pushed).

> popViewport()

> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),

y=unit(1, "mm"), just=c("right", "bottom"))

∗It is illegal to pop the top-most viewport that represents the entire device region and

the default graphical parameter settings. Trying to do so will result in an error.
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Figure 5.12
Popping a viewport. When a viewport is popped, the drawing context reverts to
the parent viewport. In this figure, the second viewport (pushed in Figure 5.11) has
been popped to go back to the first viewport (pushed in Figure 5.10). This time
text has been drawn in the bottom-right corner.

The popViewport() function has an integer argument n that specifies how
many viewports to pop. The default is 1, but several viewports can be popped
at once by specifying a larger value. The special value of 0 means that all
viewports should be popped. In other words, the drawing context should
revert to the entire device and the default graphical parameter settings.

Another way to change the current viewport is by using the upViewport()

and downViewport() functions. The upViewport() function is similar to
popViewport() in that the drawing context reverts to whatever it was prior to
the current viewport being pushed. The difference is that upViewport() does
not remove the current viewport from the device. This difference is significant
because it means that that a viewport can be revisited without having to push
it again. Revisiting a viewport is faster than pushing a viewport and it allows
the creation of viewport regions to be separated from the production of output
(see “viewport paths” in Section 5.5.3 and Chapter 7).

A viewport can be revisited using the downViewport() function. This function
has an argument name that can be used to specify the name of an existing
viewport. The result of downViewport() is to make the named viewport
the current drawing context. The following code demonstrates the use of
upViewport() and downViewport() (see Figure 5.13).

A call to upViewport() is made, which reverts the drawing context to the
entire device (recall that prior to this navigation the current viewport was
the first viewport that was pushed) and text is drawn in the bottom-right
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Figure 5.13
Navigating between viewports. Rather than popping a viewport, it is possible to
navigate up from a viewport (and leave the viewport on the device). Here navigation
has occurred from the first viewport to revert the drawing context to the entire
device and text has been drawn in the bottom-right corner. Next, there has been
a navigation down to the first viewport again and a second border has been drawn
around the outside of the viewport.

corner. The downViewport() function is then used to navigate back down to

the viewport that was first pushed and a second border is drawn around this

viewport. The viewport to navigate down to is specified by its name, "vp1".

> upViewport()

> grid.text("bottom-right corner",

x=unit(1, "npc") - unit(1, "mm"),

y=unit(1, "mm"), just=c("right", "bottom"))

> downViewport("vp1")

> grid.rect(width=unit(1, "npc") + unit(2, "mm"),

height=unit(1, "npc") + unit(2, "mm"))

There is also a seekViewport() function that can be used to travel across

the viewport tree. This can be convenient for interactive use, but the result is

less predictable, so it is less suitable for use in writing grid functions for oth-

ers to use. The call seekViewport("avp") is equivalent to upViewport(0);

downViewport("avp").
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Drawing between viewports

Sometimes it is useful to be able to locate graphical output relative to more
than one viewport. The only way to do this in grid is via the grid.move.to()
and grid.line.to() functions. It is possible to call grid.move.to() within
one viewport, change viewports, and call grid.line.to(). An example is
provided in Section 5.8.2.

5.5.2 Clipping to viewports

Drawing can be restricted to only the interior of the current viewport (clipped
to the viewport) by specifying the clip argument to the viewport() function.
This argument has three values: "on" indicates that output should be clipped
to the current viewport; "off" indicates that output should not be clipped
at all; "inherit" means that the clipping region of the previous viewport
should be used (this may not have been set by the previous viewport if that
viewport’s clip argument was also "inherit"). The following code provides
a simple example (see Figure 5.14). A viewport is pushed with clipping on
and a circle with a very thick black border is drawn relative to the viewport.
A rectangle is also drawn to show the extent of the viewport. The circle
partially extends beyond the limits of the viewport, so only those parts of the
circle that lie within the viewport are drawn.

> pushViewport(viewport(w=.5, h=.5, clip="on"))

> grid.rect()

> grid.circle(r=.7, gp=gpar(lwd=20))

Next, another viewport is pushed and this viewport just inherits the clipping
region from the first viewport. Another circle is drawn, this time with a grey
and slightly thinner border and again the circle is clipped to the viewport.

> pushViewport(viewport(clip="inherit"))

> grid.circle(r=.7, gp=gpar(lwd=10, col="grey"))

Finally, a third viewport is pushed with clipping turned off. Now, when a
third circle is drawn (with a thin, black border) all of the circle is drawn, even
though parts of the circle extend beyond the viewport.

> pushViewport(viewport(clip="off"))

> grid.circle(r=.7)

> popViewport(3)
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Figure 5.14
Clipping output in viewports. When a viewport is pushed, output can be clipped to
that viewport, or the clipping region can be left in its current state, or clipping can
be turned off entirely. In this figure, a viewport is pushed (the black rectangle) with
clipping on. A circle is drawn with a very thick black border and it gets clipped.
Next, another viewport is pushed (in the same location) with clipping left as it was.
A second circle is drawn with a slightly thinner grey border and it is also clipped.
Finally, a third viewport is pushed, which turns clipping off. A circle is drawn with
a thin black border and this circle is not clipped.
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5.5.3 Viewport lists, stacks, and trees

It can be convenient to work with several viewports at once and there are
several facilities for doing this in grid. The pushViewport() function will
accept multiple arguments and will push the specified viewports one after
another. For example, the fourth expression below is a shorter equivalent
version of the first three expressions.

> pushViewport(vp1)

> pushViewport(vp2)

> pushViewport(vp3)

> pushViewport(vp1, vp2, vp3)

The pushViewport() function will also accept objects that contain several
viewports: viewport lists, viewport stacks, and viewport trees. The func-
tion vpList() creates a list of viewports and these are pushed “in parallel.”
The first viewport in the list is pushed, then grid navigates back up before
the next viewport in the list is pushed. The vpStack() function creates a
stack of viewports and these are pushed “in series.” Pushing a stack of view-
ports is exactly the same as specifying the viewports as multiple arguments
to pushViewport(). The vpTree() function creates a tree of viewports that
consists of a parent viewport and any number of child viewports. The parent
viewport is pushed first, then the child viewports are pushed in parallel within
the parent.

The current set of viewports that have been pushed on the current device
constitute a viewport tree and the current.vpTree() function prints out a
representation of the current viewport tree. The following code demonstrates
the output from current.vpTree() and the difference between lists, stacks,
and trees of viewports. First of all, some (trivial) viewports are created to
work with.

> vp1 <- viewport(name="A")

> vp2 <- viewport(name="B")

> vp3 <- viewport(name="C")

The next piece of code shows these three viewports pushed as a list. The
output of current.vpTree() shows the root viewport (which represents the
entire device) and then all three viewports as children of the root viewport.

> pushViewport(vpList(vp1, vp2, vp3))

> current.vpTree()
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viewport[ROOT]->(viewport[A], viewport[B], viewport[C])

This next code pushes the three viewports as a stack. The viewport vp1 is
now the only child of the root viewport with vp2 a child of vp1, and vp3 a
child of vp2.

> grid.newpage()

> pushViewport(vpStack(vp1, vp2, vp3))

> current.vpTree()

viewport[ROOT]->(viewport[A]->(viewport[B]->(viewport[C])))

Finally, the three viewports are pushed as a tree, with vp1 as the parent and
vp2 and vp3 as its children.

> grid.newpage()

> pushViewport(vpTree(vp1, vpList(vp2, vp3)))

> current.vpTree()

viewport[ROOT]->(viewport[A]->(viewport[B], viewport[C]))

As with single viewports, viewport lists, stacks, and trees can be provided as
the vp argument for graphical functions (see Section 5.5.4).

Viewport paths

The downViewport() function, by default, searches down the current viewport
tree as far as is necessary to find a given viewport name. This is convenient
for interactive use, but can be ambiguous if there is more than one viewport
with the same name in the viewport tree.

Grid provides the concept of a viewport path to resolve such ambiguity. A
viewport path is an ordered list of viewport names, which specify a series
of parent-child relations. A viewport path is created using the vpPath()

function. For example, the following code produces a viewport path that
specifies a viewport called "C" with a parent called "B", which in turn has a
parent called "A".

> vpPath("A", "B", "C")

A::B::C
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For convenience in interactive use, a viewport path may be specified directly
as a string. For example, the previous viewport path could be specified simply
as "A::B::C". The vpPath() function should be used when writing graphics
functions for others to use.

The name argument to the downViewport() function will accept a viewport
path, in which case it searches for a viewport that matches the entire path.
The strict argument to downViewport() ensures that a viewport will only
be found if the full viewport path is found, starting from the current location

in the viewport tree.

5.5.4 Viewports as arguments to graphical primitives

As mentioned in Section 5.2.1, a viewport may be specified as an argument to
functions that produce graphical output (via an argument called vp). When a
viewport is specified in this way, the viewport gets pushed before the graphical
output is produced and popped afterwards. To make this completely clear,
the following two code segments are identical. First of all, a simple viewport
is defined.

> vp1 <- viewport(width=0.5, height=0.5, name="vp1")

The next code explicitly pushes the viewport, draws some text, then pops the
viewport.

> pushViewport(vp1)

> grid.text("Text drawn in a viewport")

> popViewport()

This next piece of code does the same thing in a single call.

> grid.text("Text drawn in a viewport", vp=vp1)

It is also possible to specify the name of a viewport (or a viewport path) for a
vp argument. In this case, the name (or path) is used to navigate down to the
viewport (via a call to downViewport()) and then back up again afterwards
(via a call to upViewport()). This promotes the practice of pushing viewports
once, then specifying where to draw different output by simply naming the
appropriate viewport. The following code does the same thing as the previous
example, but leaves the viewport intact (so that it can be used for further
drawing).
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> pushViewport(vp1)

> upViewport()

> grid.text("Text drawn in a viewport", vp="vp1")

This feature is also very useful when annotating a plot produced by a high-
level graphics function. As long as the graphics function names the viewports
that it creates and does not pop them, it is possible to revisit the viewports
to add further output. Examples of this are given in Section 5.8 and this
approach to writing high-level grid functions is discussed further in Chapter
7.

5.5.5 Graphical parameter settings in viewports

A viewport can have graphical parameter settings associated with it via the gp
argument to viewport(). When a viewport has graphical parameter settings,
those settings affect all graphical objects drawn within the viewport, and all
other viewports pushed within the viewport, unless the graphical objects or
the other viewports specify their own graphical parameter setting. In other
words, the graphical parameter settings for a viewport modify the implicit
graphical context (see page 168).

The following code demonstrates this rule. A viewport is pushed that has
a fill="grey" setting. A rectangle with no graphical parameter settings is
drawn within that viewport and this rectangle “inherits” the fill="grey"

setting. Another rectangle is drawn with its own fill setting so it does not
inherit the viewport setting (see Figure 5.15).

> pushViewport(viewport(gp=gpar(fill="grey")))

> grid.rect(x=0.33, height=0.7, width=0.2)

> grid.rect(x=0.66, height=0.7, width=0.2,

gp=gpar(fill="black"))

> popViewport()

The graphical parameter settings in a viewport only affect other viewports and
graphical output within that viewport. The settings do not affect the view-
port itself. For example, parameters controlling the size of text (fontsize,
cex, etc.) do not affect the meaning of "lines" units when determining the
location and size of the viewport (but they will affect the location and size
of other viewports or graphical output within the viewport). A layout (see
Section 5.5.6) counts as being within the viewport (i.e., it is affected by the
graphical parameter settings of the viewport).

If there are multiple values for a graphical parameter setting, only the first is
used when determining the location and size of a viewport.
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Figure 5.15
The inheritance of viewport graphical parameters. A diagram demonstrating how

viewport graphical parameter settings are inherited by graphical output within the

viewport. The viewport sets the default fill color to grey. The left-hand rectangle

specifies no fill color itself so it is filled with grey. The right-hand rectangle specifies

a black fill color that overrides the viewport setting.

5.5.6 Layouts

A viewport can have a layout specified via the layout argument. A layout
in grid is similar to the same concept in traditional graphics (see Section
3.3.2). It divides the viewport region into several columns and rows, where
each column can have a different width and each row can have a different
height. For several reasons, however, layouts are much more flexible in grid:
there are many more coordinate systems for specifying the widths of columns
and the heights of rows (see Section 5.3); viewports can occupy overlapping
areas within the layout; and each viewport within the viewport tree can have
a layout (layouts can be nested). There is also a just argument to justify the
layout within a viewport when the layout does not occupy the entire viewport
region.

Layouts provide a convenient way to position viewports using the standard
set of coordinate systems, and provide an extra coordinate system, "null",
which is specific to layouts.

The basic idea is that a viewport can be created with a layout and then
subsequent viewports can be positioned relative to that layout. In simple
cases, this can be just a convenient way to position viewports in a regular grid,
but in more complex cases, layouts are the only way to apportion regions.
There are very many ways that layouts can be used in grid; the following
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sections attempt to provide a glimpse of the possibilities by demonstrating a
series of example uses.

A grid layout is created using the function grid.layout() (not the traditional
function layout()).

A simple layout

The following code produces a simple layout with three columns and three
rows, where the central cell (row two, column two) is forced to always be
square (using the respect argument).

> vplay <- grid.layout(3, 3,

respect=rbind(c(0, 0, 0),

c(0, 1, 0),

c(0, 0, 0)))

The next piece of code uses this layout in a viewport. Any subsequent view-
ports may make use of the layout, or they can ignore it completely.

> pushViewport(viewport(layout=vplay))

In the next piece of code, two further viewports are pushed within the viewport
with the layout. The layout.pos.col and layout.pos.row arguments are
used to specify which cells within the layout each viewport should occupy. The
first viewport occupies all of column two and the second viewport occupies all
of row 2. This demonstrates that viewports can occupy overlapping regions
within a layout. A rectangle has been drawn within each viewport to show
the region that the viewport occupies (see Figure 5.16).

> pushViewport(viewport(layout.pos.col=2, name="col2"))

> upViewport()

> pushViewport(viewport(layout.pos.row=2, name="row2"))

A layout with units

This section describes a layout that makes use of grid units. In the context of
specifying the widths of columns and the heights of rows for a layout, there is
an additional unit available, the "null" unit. All other units ("cm", "npc",
etc.) are allocated first within a layout, then the "null" units are used to
divide the remaining space proportionally (see Section 3.3.2). The following
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col2

row2

Figure 5.16
Layouts and viewports. Two viewports occupying overlapping regions within a

layout. Each viewport is represented by a rectangle with the viewport name at the

top-left corner. The layout has three columns and three rows with one viewport

occupying all of row 2 and the other viewport occupying all of column 2.

code creates a layout with three columns and three rows. The left column is
one inch wide and the top row is three lines of text high. The remainder of
the current region is divided into two rows of equal height and two columns
with the right column twice as wide as the left column (see Figure 5.17).

> unitlay <-

grid.layout(3, 3,

widths=unit(c(1, 1, 2),

c("inches", "null", "null")),

heights=unit(c(3, 1, 1),

c("lines", "null", "null")))

With the use of "strwidth" and "grobwidth" units it is possible to produce
columns that are just wide enough to fit graphical output that will be drawn
in the column (and similarly for row heights — see Section 6.4).

A nested layout

This section demonstrates the nesting of layouts. The following code defines
a function that includes a trivial use of a layout consisting of two equal-width
columns to produce grid output.
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(1, 1)3lines

1inches

(1, 2)

1null

(1, 3) 3lines

2null

(2, 1)1null (2, 2) (2, 3) 1null

(3, 1)1null

1inches

(3, 2)

1null

(3, 3)

2null

1null

Figure 5.17
Layouts and units. A grid layout using a variety of coordinate systems to specify

the widths of columns and the heights of rows.
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> gridfun <- function() {

pushViewport(viewport(layout=grid.layout(1, 2)))

pushViewport(viewport(layout.pos.col=1))

grid.rect()

grid.text("black")

grid.text("&", x=1)

popViewport()

pushViewport(viewport(layout.pos.col=2, clip="on"))

grid.rect(gp=gpar(fill="black"))

grid.text("white", gp=gpar(col="white"))

grid.text("&", x=0, gp=gpar(col="white"))

popViewport(2)

}

The next piece of code creates a viewport with a layout and places the output
from the above function within a particular cell of that layout (see Figure
5.18).

> pushViewport(

viewport(

layout=grid.layout(5, 5,

widths=unit(c(5, 1, 5, 2, 5),

c("mm", "null", "mm",

"null", "mm")),

heights=unit(c(5, 1, 5, 2, 5),

c("mm", "null", "mm",

"null", "mm")))))

> pushViewport(viewport(layout.pos.col=2, layout.pos.row=2))

> gridfun()

> popViewport()

> pushViewport(viewport(layout.pos.col=4, layout.pos.row=4))

> gridfun()

> popViewport(2)

Although the result of this particular example could be achieved using a single
layout, what this shows is that it is possible to take grid code that makes use
of a layout (and may have been written by someone else) and embed it within
a layout of your own. A more sophisticated example of this involving lattice
plots is given in Section 5.8.2.
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black & white&

black & white&

Figure 5.18
Nested layouts. An example of a layout nested within a layout. The black and white
squares are drawn within a layout that has two equal-width columns. One instance
of the black and white squares has been embedded within cell (2, 2) of a layout
consisting of five columns and five rows of varying widths and heights (as indicated
by the dashed lines). Another instance has been embedded within cell (4, 4).

5.6 Missing values and non-finite values

Non-finite values are not permitted in the location, size, or scales of a viewport.
Viewport scales are checked when a viewport is created, but it is impossible
to be certain that locations and sizes are not non-finite when the viewport
is created, so this is only checked when the viewport is pushed. Non-finite
values result in error messages.

The locations and sizes of graphical objects can be specified as missing values
(NA, "NA") or non-finite values (NaN, Inf, -Inf). For most graphical primitives,
non-finite values for locations or sizes result in the corresponding primitive
not being drawn. For the grid.line.to() function, a line segment is only
drawn if the previous location and the new location are both not non-finite.
For grid.polygon(), a non-finite value breaks the polygon into two separate
polygons. This break happens within the current polygon as specified by the
id argument. All polygons with the same id receive the same gp settings. For
grid.arrows(), an arrow head is only drawn if the first or last line segment
is drawn.

Figure 5.19 shows the behavior of these primitives where x- and y-locations
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are seven equally-spaced locations around the perimeter of a circle. In the
top-left figure, all locations are not non-finite. In each of the other figures,
two locations have been made non-finite (indicated in each case by grey text).

5.7 Interactive graphics

The strength of the grid system is in the production of static graphics. There is
only very basic support for user interaction, consisting of the grid.locator()
function. This function returns the location of a single mouse click relative to
the current viewport. The result is a list containing an x and a y unit. The
unit argument can be used to specify the coordinate system to be used for
the result.

From R version 2.1.0, the getGraphicsEvent() function provides additional
capability (on Windows) to respond to mouse movements, mouse ups, and key
strokes. However, with this function, mouse activity is only reported relative
to the native coordinate system of the device.

5.8 Customizing lattice plots

This section provides some demonstrations of the basic grid functions within
the context of a complete lattice plot.

The lattice package described in Chapter 4 produces complete and very so-
phisticated plots using grid. It makes use of a sometimes large number of
viewports to arrange the graphical output. A page of lattice output contains
a top-level viewport with a quite complex layout that provides space for all of
the panels and strips and margins used in the plot. Viewports are created for
each panel and for each strip (among other things), and the plot is constructed
from a large number of rectangles, lines, text, and data points.

In many cases, it is possible to use lattice without having to know anything
about grid. However, a knowledge of grid provides a number of more ad-
vanced ways to work with lattice output (see Section 6.7). A simple ex-
ample is provided by the panel.width and panel.height arguments to the
print.trellis() method. These provide an alternative to the aspect argu-
ment for controlling the size of panels within a lattice plot using grid units.
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NA1

NA5

NA2

NA6

NA3

NA7

Figure 5.19
Non-finite values for line-tos, polygons, and arrows. The effect of non-finite values
for grid.line.to(), grid.polygon(), and grid.arrows. In each panel, a single
grey polygon, a single arrow (at the end of a thick black line), and a series of thin
white line-tos are drawn through the same set of seven points. In some cases, certain
locations have been set to NA (indicated by grey text), which causes the polygon to
become cropped, creates gaps in the lines, and can cause the arrow head to disappear.
In the bottom-left panel, the seventh location is not NA, but it produces no output.
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Figure 5.20
Controlling the size of lattice panels using grid units. Each panel is exactly 1.21

inches wide and 1.5 inches high.

The following code produces a multipanel lattice plot of the quakes data set
(see page 126) where the size of each panel is fixed at 1.21 inches wide and
1.5 inches high (see Figure 5.20).∗

> temp <- xyplot(lat ~ long | depthgroup,

data=quakes, pch=".",

layout=c(3, 1))

> print(temp,

panel.width=list(1.21, "inches"),

panel.height=list(1.5, "inches"))

5.8.1 Adding grid output to lattice output

The functions that lattice provides for adding output to panels (ltext(),
lpoints(), etc) are designed to make it easier to port code between R and
S-PLUS. However, they are restricted because they only allow output to be
located and sized relative to the "native" coordinate system. Grid graphical
primitives cannot be ported to S-PLUS, but they provide much more control

∗These specific sizes were chosen for this particular data set so that one unit of longitude

corresponds to the same physical size on the page as one unit of latitude.
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over the location and size of additional panel output. Furthermore, it is possi-
ble to create and push extra viewports within a panel if desired (although it is
very important that they are popped again or lattice will get very confused).

In a similar vein, the facilities provided by the upViewport() and
downViewport() functions in grid allow for more flexible navigation of a lat-
tice plot compared to the trellis.focus() function.

The following code provides an example of using low-level grid functions to add
output within a lattice panel function. This produces a variation on Figure
4.4 with a dot and a text label added to indicate the location of Auckland,
New Zealand relative to the earthquakes (see Figure 5.21).∗

> xyplot(lat ~ long | depthgroup, data=quakes, pch=".",

panel=function(...) {

grid.points(174.75, -36.87, pch=16,

size=unit(2, "mm"),

default.units="native")

grid.text("Auckland",

unit(174.75, "native") - unit(2, "mm"),

unit(-36.87, "native"),

just="right")

panel.xyplot(...)

})

5.8.2 Adding lattice output to grid output

As well as the advantages of using grid functions to add further output to
lattice plots, an understanding that lattice output is really grid output makes
it possible to embed lattice output within grid output. The following code
provides a simple example (see Figure 5.22).

First of all, two viewports are defined. The viewport tvp occupies the right-
most 1 inch of the device and will be used to draw a label. The viewport lvp
occupies the rest of the device and will be used to draw a lattice plot.

> lvp <- viewport(x=0,

width=unit(1, "npc") - unit(1, "inches"),

just="left", name="lvp")

> tvp <- viewport(x=1, width=unit(1, "inches"),

just="right", name="tvp")

∗The data are from the quakes data set (see page 126).
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Figure 5.21

Adding grid output to a lattice plot (the lattice plot in Figure 4.4). The grid
functions grid.text() and grid.points() are used within a lattice panel function
to highlight the location of Auckland, New Zealand within each panel.
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Figure 5.22
Embedding a lattice plot within grid output. The lattice plot is drawn within
the viewport "lvp" and the text label is drawn within the viewport "tvp" (the
viewports are indicated by grey rectangles with their names at the top-left corner).
An arrow is drawn from viewport "tvp" where the text was drawn into viewport
"panel.1.3.off.vp" — the top panel of the lattice plot.
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The next piece of code produces (but does not draw) an object representing
a multipanel scatterplot using the quakes data (see page 126).

> lplot <- xyplot(lat ~ long | depthgroup,

data=quakes, pch=".",

layout=c(1, 3), aspect=1,

index.cond=list(3:1))

The following pieces of code do all the drawing. First of all, the lvp viewport is
pushed and the lattice plot is drawn inside that. The upViewport() function
is used to navigate back up so that all of the lattice viewports are left intact.

> pushViewport(lvp)

> print(lplot, newpage=FALSE, prefix="plot1")

> upViewport()

Next, the tvp viewport is pushed and a text label is drawn in that.

> pushViewport(tvp)

> grid.text("Largest\nEarthquake", x=unit(2, "mm"),

y=unit(1, "npc") - unit(0.5, "inches"),

just="left")

The last step is to draw an arrow from the label to a data point within the
lattice plot. While still in the tvp viewport, the grid.move.to() function is
used to set the current location to a point just to the left of the text label.
Next, seekViewport() is used to navigate to the top panel within the lattice
plot.∗ Finally, grid.arrows() and lineToGrob() are used to draw a line
from the text to an (x ,y) location within the top panel. A circle is also
drawn to help identify the location being labelled.

∗The name of the viewport representing the top panel in the lattice plot can be ob-

tained using the trellis.vpname() function or by just visual inspection of the output of

current.vpTree() and possibly some trial-and-error.
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> grid.move.to(unit(1, "mm"),

unit(1, "npc") - unit(0.5, "inches"))

> seekViewport("plot1.panel.1.3.off.vp")

> grid.arrows(grob=lineToGrob(unit(167.62, "native") +

unit(1, "mm"),

unit(-15.56, "native")),

length=unit(3, "mm"), type="closed",

angle=10, gp=gpar(fill="black"))

> grid.circle(unit(167.62, "native"),

unit(-15.56, "native"),

r=unit(1, "mm"),

gp=gpar(lwd=0.1))

The final output is shown in Figure 5.22.

Chapter summary

Grid provides a number of functions for producing basic graphical out-

put such as lines, polygons, rectangles, and text, plus some functions

for producing slightly more complex output such as data symbols, ar-

rows, and axes. Graphical output can be located and sized relative

to a large number of coordinate systems and there are a number of

graphical parameter settings for controlling the appearance of output,

such as colors, fonts, and line types.

Viewports can be created to provide contexts for drawing. A viewport

defines a rectangular region on the device and all coordinate systems

are available within all viewports. Viewports can be arranged using

layouts and nested within one another to produce sophisticated ar-

rangements of graphical output.

Because lattice output is grid output, grid functions can be used to

add further output to a lattice plot. Grid functions can also be used

to control the size and placement of lattice plots.
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