
Current and Future Developments

in R Graphics

Paul Murrell

The University of Auckland

Tokyo 2003

General Remarks

Some of the R code examples in this talk may only run properly

on the development version of R.

The Structure of R Graphics

Graphics
Packages

latticeellipse ...

Graphics
Systems

base grid

Graphics Engine

Graphics
Devices

X11 postscript pdf ...

← →

Graphical Parameters in R

← →

Graphical Parameters in R

R provides a basic set of graphical parameters for controlling the

appearance of graphical output:

col Colour of lines, text, ...
lwd Width of lines
lty Line type (solid, dashed, ...)
font Font face (plain, bold, italic, ...)
cex Font size multiplier
lineheight Line Height (multiple of the font size)

There is a need to make this list much more complete.

← →

Graphical Parameters in grid

The grid graphics system adds a few more standard parameters

...

fill Fill colour for rectangles, circles, and polygons
fontfamily Font family (Helvetica, Hershey, ...)
fontsize Font size (points)
alpha Alpha transparency

... but not all of these are fully supported and there are still

some important ones missing.

linecap Should the end of a line be “round” or “square”?
linejoin Should a join be “smooth” or “pointy”

← →

Fonts in R

Specifying a font family can be quite complicated and depends

a lot on the platform and/or output format.

It would be nice if the fontfamily parameter was device-

independent. One way to achieve this is to have a “font

database” for each device to translate the font family specifi-

cation into a device-specific format.

grid.text("Hello", gp=gpar(fontfamily="sans"))

ps.options(fontdb=list(sans="Helvetica", serif="Times",
symbol="Symbol", mono="Courier"))

x11.options(fontdb=list(sans="-*-helvetica-*-*-*-*-*-*-*-*-*-*-*-*",
serif="-*-times-*-*-*-*-*-*-*-*-*-*-*-*",
symbol="-*-symbol-*-*-*-*-*-*-*-*-*-*-*-*",
mono="-*-courier-*-*-*-*-*-*-*-*-*-*-*-*"))

← →

Specifying Graphical Parameters

The base graphics system provides the par() function for

“permanently” setting graphical parameters.

It is also possible to specify graphical parameters “temporarily”

by providing them as arguments to individual functions.

This approach has several problems:

• It is difficult to specify where a setting should apply when

using the par function; there has consequently been an

“explosion” of parameters

• The implementation of graphical parameters for individual

functions has become inconsistent.

← →

Problems with par

There is a parameter for each part of a graph.

fg ”foreground” colour
col plotting symbols
col.axis axis tick labels
col.lab axis labels
col.main plot titles
col.sub plot sub-titles

This can make it difficult to affect all of a graph.

> par(fg = "grey", col = "grey", col.axis = "grey", col.lab = "grey",
+ col.main = "grey", col.sub = "grey")
> plot(1:10, main = "My Plot", sub = "Subtitle")

This approach is not extensible to new structures.

← →

Inconsistent parameters

• rect(): col gives the fill colour and border gives the edge

colour.

> rect(0, 0, 1, 1, border = "red", col = "blue")

• points(): col gives the edge colour for plotting symbols and

bg gives the fill colour for open plotting symbols.

> points(0:1, pch = 22, col = "red", bg = "blue")

• box(): col gives the edge colour and there is no way to specify

the fill colour.

← →

Specifying Graphical Parameters in grid

In grid there is a fixed set of graphical parameters. The gpar()

function is used to specify graphical parameter settings.

> gpar(col = "red", fill = "blue")
$col
[1] "red"

$fill
[1] "blue"

attr(,"class")
[1] "gpar"

All functions have a gp argument which can be the result of a

call to gpar.

> grid.rect(gp = gpar(col = "red", fill = "blue"))

← →

Specifying Graphical Parameters in grid

Graphical parameter settings are “inherited”.

> pushViewport(viewport(gp = gpar(fill = "blue")))
viewport[GRIDVP1]
> grid.rect(gp = gpar(col = "red"))
> popViewport()
viewport[ROOT]

This approach allows graphical parameter settings to affect

either just a part of a graph, or a whole image.

This approach also extends to new structures.

← →

Interactive Graphics in R

← →

Interactive Graphics in R

R graphics provides a lot of power and flexibility for producing

presentation graphics (i.e., static plots).

R base graphics in particular are not designed to support any

serious interactive behaviour.

• identify()

• locator()

R’s graphics structure is designed for generality (multiple de-

vices) and to be programmed at the user (interpreted) level.

This means that it is slower than other systems and makes it

unsuitable for highly dynamic applications.

← →

Interactive Graphics in Other Software

One approach to providing interactive graphics in R is to “leave

it to the experts”; use R for numerical computations and

communicate with third-party software to produce interactive

graphical displays.

• GGobi

http://www.ggobi.org/

• iPlots

http://www1.math.uni-augsburg.de/iPlots/

← →

http://www.ggobi.org/
http://www1.math.uni-augsburg.de/iPlots/

Dynamic Graphics in SVG

Another approach is to use R only to describe an image and

offload the rendering to third-party software.

The gridSVG package converts a grid description of an image

into an SVG document.

http://www.stat.auckland.ac.nz/~paul/

> pushViewport(viewport(gp = gpar(col = "black", fill = NA)))
> t <- seq(0, 2 * pi, length = 30)
> x <- 20 * cos(t)
> v <- -20 * sin(t)
> grid.circle(x = grid.animate(unit(x, "native"), duration = 5,
+ rep = TRUE), y = grid.animate(unit(v, "native"), duration = 5,
+ rep = TRUE), r = unit(1, "mm"), gp = gpar(fill = "black"))
> popViewport()
> gridToSVG()

← →

http://www.stat.auckland.ac.nz/~paul/

Interactive Graphics in grid

The design of the grid graphics system provides greater support

(than the base system) for interactive graphics.

grid graphics functions return a graphical object as well as

producing graphical output. This object can be edited in order

to modify the graphical output.

> gr <- grid.rect()
> grid.get(gr, "width")
[1] 1npc
> grid.edit(gr, width = unit(0.5, "npc"))
NULL
> grid.get(gr, "width")
[1] 0.5npc

← →

Interactive Graphics in grid

M Kondrin has made use of this feature of grid to develop an

interactive graph editor for simple plot types.

This is available as an R add-on package called Disgrace.

http://www.hppi.troitsk.ru/Kondrin/disgrace.htm

← →

http://www.hppi.troitsk.ru/Kondrin/disgrace.htm

Interactive Graphics in grid

← →

Integrating grid and base Graphics

← →

Integrating grid and base Graphics

R now has two distinct graphics systems: the “traditional” S

graphics system (what I call base graphics); and the new grid

system.

grid and base each maintain a separate set of coordinate systems.

This makes it difficult to combine output from the two graphics

systems.

For example, calls to base graphics functions within a lattice

panel function do not work.

> data(ethanol)
> EE <- equal.count(ethanol$E, number = 9, overlap = 1/4)
> xyplot(NOx ~ C | EE, data = ethanol, panel = function(x, y, ...) {
+ panel.xyplot(x, y)
+ abline(h = 2)
+ })

← →

Integrating grid and base Graphics

It would be nice to be able to combine the output from base and

grid graphics:

• to be able to annotate base plots using grid’s units.

• to be able to arrange base plots using grid’s viewports.

← →

The gridBase package

The gridBase package (available from CRAN) provides functions

for aligning the grid and base coordinate systems.

> midpts <- barplot(1:10, axes = FALSE)
> axis(2)
> axis(1, at = midpts, labels = FALSE)
> vps <- baseViewports()
> par(new = TRUE)
> pushViewport(vps$inner, vps$figure, vps$plot)
> grid.text(c("one", "two", "three", "four", "five", "six", "seven",
+ "eight", "nine", "ten"), x = unit(midpts, "native"), y = unit(-1,
+ "lines"), just = "right", rot = 60)
> popViewport(3)

← →

The gridBase package

0
2

4
6

8
10

on
e

tw
o

th
re

e

fo
ur

fiv
e

si
x

se
ve

n

ei
gh

t

ni
ne te
n

← →

The gridBase package

F
lo

rid
a

N
or

th
 C

ar
ol

in
a

39 44 45 55

C
al

ifo
rn

ia
M

ar
yl

an
d

A
riz

on
a

N
ew

 M
ex

ic
o

D
el

aw
ar

e
A

la
ba

m
a

Lo
ui

si
an

a
Ill

in
oi

s
N

ew
 Y

or
k

M
ic

hi
ga

n
N

ev
ad

a
A

la
sk

a
M

is
si

ss
ip

pi
S

ou
th

 C
ar

ol
in

a

39 44 45 55

W
as

hi
ng

to
n

O
re

go
n

W
yo

m
in

g
O

kl
ah

om
a

V
irg

in
ia

R
ho

de
 Is

la
nd

M
as

sa
ch

us
et

ts
N

ew
 J

er
se

y
M

is
so

ur
i

A
rk

an
sa

s
T

en
ne

ss
ee

G
eo

rg
ia

C
ol

or
ad

o
T

ex
as

39 44 45 55

Id
ah

o
N

eb
ra

sk
a

K
en

tu
ck

y
M

on
ta

na
O

hi
o

U
ta

h
In

di
an

a
K

an
sa

s
C

on
ne

ct
ic

ut
P

en
ns

yl
va

ni
a

H
aw

ai
i

W
es

t V
irg

in
ia

M
ai

ne
S

ou
th

 D
ak

ot
a

N
or

th
 D

ak
ot

a
V

er
m

on
t

M
in

ne
so

ta
W

is
co

ns
in

Io
w

a
N

ew
 H

am
ps

hi
re

39 44 45 55

← →

The gridBase package

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2

x

y

← →

Display Lists in R

← →

Display Lists in R

The graphics engine maintains a display list; a record of all

graphical output.

The display list is used for redrawing output when a device is

resized or when copying between devices.

The graphics engine’s display list has some severe limitations:

• graphical output is only recorded at the lowest level (lines,

rectangles, ...), not at a high level (axes, plots, ...).

• calculations leading up to graphical output are not recorded.

For example, any output from the legend() function does not

resize well.

← →

Resizing legend() output

The legend() function performs calculations to locate and draw

a border around the legend. If the device is resized, these

calculations become incorrect.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

y ●

●

●

●

●
●
●
●
●●

●●●●
●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●
●●●●●

●
●
●
●
●

●

●

●

●

●

●

●
●
●
●
●
●●

●●●●
●
●
●
●

●

●

●

●

●sin(c x)

← →

The grid display list

The grid graphics system maintains its own display list. This is

used for redrawing when a grid graphical object is edited and has

fewer limitations:

• graphical output is recorded at a high level (axes, plots,

...). This is used by the gridSVG package to associate

attributes (hyperlinks, transparency) with high-level objects

in an image.

• calculations leading up to graphical output can be recorded.

If an object has a draw.details method, that will be run when

the display list redraws an image.

← →

gridSVG hyperlinks

The following code associates a URL with a complete set of data

points.

> grid.hyperlink(grid.points(iris$Sepal.Length, iris$Sepal.Width),
+ href = "http://130.203.156.63/chu/course/iris.htm#iris1")

← →

Safely resizing legend() output

If the grid display list is used and the legend function is placed

within a draw.details method then the output will survive a device

resize.

> draw.details.mylegend <- function(grob, grob.wrapped, recording) {
+ x <- 0:64/64
+ y <- sin(3 * pi * x)
+ plot(x, y, type = "l", col = "blue")
+ points(x, y, pch = 21, bg = "white")
+ legend(0.4, 1, "sin(c x)", pch = 21, pt.bg = "white", lty = 1,
+ col = "blue")
+ }
> engine.display.list(FALSE)
NULL
> dev.control(displaylist = "inhibit")
> grid.grob(list(), "mylegend")

← →

The grid display list

Unfortunately, the grid display list is slower than the graphics

engine’s display list.

← →

Saving Graphics in R

← →

Saving Graphics in R

R graphics can be “saved” in several different ways:

• An R code script

plot(1:10)

• A device-dependent format (PostScript, PDF, ...)

> postscript()
> plot(1:10)
> dev.off()

• Saving the display list

> plot(1:10)
> myplot <- recordPlot()
> save(myplot, file = "myplot.Rdata")

← →

Saving Graphics in R

There are downsides to each of these:

• An R code script is easy to reproduce and it can be edited

further, but it is difficult to interact with programmatically.

• A device-dependent format (PostScript, PDF, ...) is not

(fully) editable.

• The display list is a binary, undocumented format with no

API.

← →

Saving Graphics in grid

WARNING: example code from here on will not work in ANY

publicly available version of grid

grid produces objects representing the drawn image, which can

be saved.

These are subtly different from an R script; instead of a

“procedural” description of a graph, they provide an “object-

oriented” description.

An object-oriented description of a graph is easier to program-

matically query, edit, and generally interact with.

← →

Saving Graphics in grid

An R script provides a procedural description.

pushViewport(plotViewport(c(5, 4, 4, 2), name="plotRegion"))
grid.rect()
pushViewport(viewport(name="dataRegion"))
grid.xaxis()
grid.yaxis()
popViewport(2)

Modifying the image must occur “manually”.

pushViewport(plotViewport(c(5, 4, 4, 2), name="plotRegion"))
grid.rect()
pushViewport(viewport(name="dataRegion"))
grid.xaxis()
grid.yaxis()

grid.points()
popViewport(2)

← →

Saving Graphics in grid

A grid object provides an object-oriented description.

> gplot <- gTree(childrenvp = vpTree(plotViewport(c(5, 4, 4, 2),
+ name = "plotRegion"), vpList(viewport(name = "dataRegion"))),
+ children = gList(xaxisGrob(vp = "plotRegion::dataRegion"),
+ yaxisGrob(vp = "plotRegion::dataRegion"), rectGrob(vp = "plotRegion")))
> grid.draw(gplot)
> save(gplot, file = "gplot1")

An API can be provided for interacting with this object.

> load("gplot1")
> gplot <- addGrob(gplot, pointsGrob(vp = "plotRegion::dataRegion"))
> grid.newpage()
> grid.draw(gplot)

← →

	General Remarks
	The Structure of R Graphics
	Graphical Parameters in R
	Graphical Parameters in R
	Graphical Parameters in grid
	Fonts in R
	Specifying Graphical Parameters
	Problems with par
	Inconsistent parameters
	Specifying Graphical Parameters in grid
	Specifying Graphical Parameters in grid

	Interactive Graphics in R
	Interactive Graphics in R
	Interactive Graphics in Other Software
	Dynamic Graphics in SVG
	Interactive Graphics in grid
	Interactive Graphics in grid
	Interactive Graphics in grid

	Integrating grid and base Graphics
	Integrating grid and base Graphics
	Integrating grid and base Graphics
	The gridBase package
	The gridBase package
	The gridBase package
	The gridBase package

	Display Lists in R
	Display Lists in R
	Resizing legend() output
	The grid display list
	gridSVG hyperlinks
	Safely resizing legend() output
	The grid display list

	Saving Graphics in R
	Saving Graphics in R
	Saving Graphics in R
	Saving Graphics in grid
	Saving Graphics in grid
	Saving Graphics in grid

