
Writing Grid Graphics Code

Paul Murrell

July 9, 2003

The Grid Graphics system contains a degree of complexity in order to allow
things like interactive graphics. This means that many of the predefined Grid
graphics functions are relatively complicated1.

One design aim of Grid Graphics is to allow users to create simple graphics
simply and not to force them to use complicated concepts or write complicated
code unless they actually need to. Along similar lines, it is intended that people
should be able to prototype even complex graphics very simply and then refine
the implementation into a more sophisticated form if necessary.

With the predefined graphics functions being fully-developed and complicated
implementations, there is a lack of examples of simple, prototype code. Fur-
thermore, given that the aim is to allow a range of ways to produce the same
graphical output, there is a need for examples which demonstrate the various
stages, from simple to complex, that a piece of Grid Graphics code can go
through.

This document describes the construction of a scatterplot object, like that shown
below, going from the simplest, prototype implementation to the most complex
and sophisticated. It demonstrates that if you only want simple graphics output
then you can do it pretty simply and quickly. It also demonstrates how to
write functions that allow your graphics to be used by other people. Finally,
it demonstrates how to make your graphics fully interactive (or at least as
interactive as Grid will let you make it).

This document should be read after the Grid Graphics Users’ Guide. Here we
are assuming that the reader has an understanding of viewports, layouts, and
units.

Procedural Grid Graphics

The simplest way to produce graphical output in Grid is just like producing
standard R graphical output. You simply issue a series of graphics commands.
For example, plot(x, y) followed by points(x, y2, pch=16), followed by

1Although there are exceptions; some functions, such as grid.show.viewport, are purely
for producing illustrative diagrams and remain simple and procedural.

1

text(x, y3, y3), and so on2. The purpose of the commands is simply to
produce graphics output; in particular, we are not concerned with any values
returned by the plotting functions. I will call this procedural graphics3.

In this document, we will not be using predefined high-level plotting functions
like plot() because our ultimate aim is actually to build such a function. For
the current purposes, we are assuming that no convenient high-level plotting
functions exist.

In order to draw a simple scatterplot, we can issue a series of commands which
draw the various components of the plot.

First of all, we generate some data to plot.

> x <- runif(10)

> y <- runif(10)

Next we allocate regions for the different parts of the plot to go into. This is the
most difficult part of the exercise, but it is possible to do some very complicated
things relatively easily using viewports, layouts, and units.

The goal is to end up with a data region in the middle of the plot, where the
points will be plotted, and a margin around the outside for the axes to fit in,
with a space for a title at the top.

> plot.layout <- grid.layout(ncol = 3, nrow = 3, widths = unit(c(5,

+ 1, 2), c("lines", "null", "lines")), heights = unit(c(3,

+ 1, 5), c("lines", "null", "lines")))

> plot.vp <- viewport(layout = plot.layout)

> data.vp <- viewport(layout.pos.row = 2, layout.pos.col = 2, xscale = range(x) +

+ c(-0.05, 0.05) * diff(range(x)), yscale = range(y) + c(-0.05,

+ 0.05) * diff(range(y)))

> title.vp <- viewport(layout.pos.row = 1)

Now we draw the components of the plot: points, axes, labels, and a title.

> push.viewport(plot.vp)

> push.viewport(data.vp)

> grid.points(x, y)

> grid.rect()

> grid.xaxis()

> grid.yaxis()

> grid.text("x axis", y = unit(-4, "lines"), gp = gpar(fontsize = 14))

> grid.text("y axis", x = unit(-4, "lines"), gp = gpar(fontsize = 14),

+ rot = 90)

> pop.viewport()

> grid.text("A Simple Plot", gp = gpar(fontsize = 16), vp = title.vp)

> pop.viewport()

2You can’t actually do this in Grid yet, but it should be possible “soon”.
3It could also reasonably be called incremental graphics because of the way that plots can

be built up in a piece-wise fashion.

2

●

●

●

●

●

●
●

●

●

●

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

x axis

y
ax

is
A Simple Plot

Writing a Grid Graphics Function

Issuing commands like in the previous section is most useful for adding anno-
tations to an existing graphic or for prototyping initial ideas. When we are
producing a graphic over and over it is far more convenient to wrap up the
graphics commands in a function.

The code below shows how we might wrap our scatterplot code within a couple
of functions. This is nothing more than an exercise in making the code tidier,
more convenient, and more reusable. The important point is that the functions
are procedural; they are designed to be called only for the graphical output that
they produce.

The following points are worth noting:

1. we have provided various arguments to control different aspects of the
graph such as the axis labels, the title, and the size of the plot margins.

2. we have added a call to grid.newpage() so that we draw each plot on a
fresh window/page.

> splot.layout <- function(margins) {

+ grid.layout(ncol = 3, nrow = 3, widths = unit.c(margins[2],

+ unit(1, "null"), margins[4]), heights = unit.c(margins[3],

3

+ unit(1, "null"), margins[1]))

+ }

> splot.draw.data <- function(x, y, xlabel, ylabel, vp) {

+ push.viewport(vp)

+ grid.points(x, y)

+ grid.rect()

+ grid.xaxis()

+ grid.yaxis()

+ grid.text(xlabel, y = unit(-4, "lines"), gp = gpar(fontsize = 14))

+ grid.text(ylabel, x = unit(-4, "lines"), gp = gpar(fontsize = 14),

+ rot = 90)

+ pop.viewport()

+ }

> splot <- function(x = runif(10), y = runif(10), xlabel = "x axis",

+ ylabel = "y axis", title = "A Simple Plot", margins = unit(c(5,

+ 5, 3, 2), "lines")) {

+ grid.newpage()

+ plot.layout <- splot.layout(margins)

+ plot.vp <- viewport(layout = plot.layout)

+ push.viewport(plot.vp)

+ data.vp <- viewport(layout.pos.row = 2, layout.pos.col = 2,

+ xscale = range(x) + c(-0.05, 0.05) * diff(range(x)),

+ yscale = range(y) + c(-0.05, 0.05) * diff(range(y)))

+ splot.draw.data(x, y, xlabel, ylabel, data.vp)

+ title.vp <- viewport(layout.pos.row = 1)

+ grid.text(title, gp = gpar(fontsize = 16), vp = title.vp)

+ pop.viewport()

+ }

We can now do things like the following to produce variations on the simple
scatterplot. The output from the second example is shown below the code.

> splot()

> splot(1:10, 1:10, title = "The Standard 1:10 Plot", xlabel = "1:10",

+ ylabel = "1:10")

4

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

2

4

6

8

10

1:10

1:
10

The Standard 1:10 Plot

Making a Grid Graphics Function Embeddable

Another design aim of Grid is that any graphic should be able to be drawn
within any coordinate system (and there are potentially a lot of coordinate
systems available because users can define their own viewports). The idea is
to encourage the development of graphical building blocks which can then be
assembled by higher-level functions to create complex graphics. For example, we
have been using the grid.text() function within different coordinate systems
to produce axis labels and a plot title4.

The function splot() described in the previous section is useful for producing
your own scatterplots with some minor control over the appearance. However,
this function is not in a useful state for acting as a building block within other
graphics functions. For a start, it always clears the whole device, and secondly,
it doesn’t clean up the viewport stack after itself.

The function has been rewritten below5 to make it more like a graphical building
block. The following points are of note:

1. we have added a vp argument, which allows someone else to specify where
the plot should be placed.

4This is in contrast to the R/S setup where there is a text() function for text in the data
region and an mtext() function for text in the margins.

5The functions splot.layout and splot.draw.data remain unchanged

5

2. we simply call push.viewport() with the vp argument to establish the
context specified by vp.

3. we call pop.viewport() for any viewports that we have pushed onto the
viewport stack.

4. we have added a logical add argument, which indicates whether the plot
should be added to some other graphics, or whether it is a complete graphic
on its own; grid.newpage() is only called if add is FALSE.

Aside: There is some awkwardness here com-
pared to standard R graphics because Grid graph-
ics does not have the notion of a “current plot”
or a “number of plots on page”. Such notions
could be programmed into a package so that
functions could go to the “next plot” and would
know when this meant also going to a new page.

> splot <- function(x = runif(10), y = runif(10), xlabel = "x axis",

+ ylabel = "y axis", title = "A Simple Plot", margins = unit(c(5,

+ 5, 3, 2), "lines"), vp = NULL, add = FALSE) {

+ if (!add)

+ grid.newpage()

+ plot.layout <- splot.layout(margins)

+ plot.vp <- viewport(layout = plot.layout)

+ if (!is.null(vp))

+ push.viewport(vp)

+ push.viewport(plot.vp)

+ data.vp <- viewport(layout.pos.row = 2, layout.pos.col = 2,

+ xscale = range(x) + c(-0.05, 0.05) * diff(range(x)),

+ yscale = range(y) + c(-0.05, 0.05) * diff(range(y)))

+ splot.draw.data(x, y, xlabel, ylabel, data.vp)

+ title.vp <- viewport(layout.pos.row = 1)

+ grid.text(title, gp = gpar(fontsize = 16), vp = title.vp)

+ pop.viewport()

+ if (!is.null(vp))

+ pop.viewport()

+ }

It is now possible to use the plot in other graphics functions. For example, the
following code produces a very crude scatterplot matrix (shown below).

Aside: Again this may appear laborious com-
pared to standard R graphics, but this is only
because the notions of “par(mfrow)” and such
like have not yet been programmed into Grid
- not that they necessarily will ever be, but I
intend to program them into a package built
on top of Grid eventually. As mentioned pre-
viously, the idea of these demonstrations is to

6

show the power and flexibility not to compare
with the convenience of a predefined high-level
function.

> w <- runif(50)

> x <- rnorm(50)

> y <- rexp(50)

> z <- rbinom(50, 10, 0.5)

> data <- data.frame(w, x, y, z)

> top.vp <- viewport(layout = grid.layout(4, 4))

> push.viewport(top.vp)

> for (i in 1:4) for (j in 1:4) if (i != j) splot(data[, j], data[,

+ i], title = "", xlabel = "", ylabel = "", margins = unit(c(3,

+ 3, 0, 0), "lines"), vp = viewport(layout.pos.row = i, layout.pos.col = j),

+ add = TRUE)

> pop.viewport()

●
●●

●

●

●

●

●

●
●

●

●

●

● ●
●●
●

●
●

●
●

●
●

●
●●

●

●

●●
●

●
●●

●

●

●

●

●

●
●●

●

●

●

●
● ●

●

−2−1 0 1 2

0
0.2
0.4
0.6
0.8

1

●
●●
●

●

●

●

●

●
●

●

●

●

●●
● ●

●

●
●

●
●

●
●

●
●●
●

●

●●
●

●
● ●

●

●

●

●

●

●
● ●
●

●

●

●
●●
●

0 2 4 6 8

0
0.2
0.4
0.6
0.8

1

●
●●

●

●

●

●

●

●
●

●

●

●

●●
●●
●

●
●

●
●

●
●

●
●●
●

●

●●
●

●
●●

●

●

●

●

●

●
●●

●

●

●

●
●●
●

1 2 3 4 5 6 7

0
0.2
0.4
0.6
0.8

1

●
●

●
●

●●
●

●●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●

●

●
●●

●
● ●

●
●

●

●

●●

●
●

●

● ●

●

●

●

●

●

00.2 0.6 1

−2
−1

0
1
2

●
●

●
●

●●
●

●●
●

●
●

●

●

●

●

●

●
●

●
●
●

●

●●
●

●

●

●
●●

●
●●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

0 2 4 6 8

−2
−1

0
1
2

●
●

●
●

●●
●

● ●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

● ●
●

●

●

●
●●

●
●●

●
●

●

●

● ●

●
●

●

● ●

●

●

●

●

●

1 2 3 4 5 6 7

−2
−1

0
1
2

●●●● ●● ●

●

● ● ● ●●
●●●

●

●
●

●
●●
●

●

●●●● ●●●

●

● ●

●

●
●● ●

● ●
●

●

●
●●
●

●
●

●

00.2 0.6 1

0
2
4
6
8

●●●● ●●●

●

●●●● ●
● ● ●

●

●
●

●
● ●
●

●

● ●●● ●●●

●

●●

●

●
●● ●

● ●
●

●

●
●●

●
●

●
●

−2−1 0 1 2

0
2
4
6
8

●●● ●●●●

●

●●●● ●
●●●

●

●
●

●
●●

●

●

●●●●●●●

●

●●

●

●
●●●

●● ●

●

●
●●

●
●

●
●

1 2 3 4 5 6 7

0
2
4
6
8

●

●
●

●

●●
●

●

●
●

●
●

●
●●

●
●
● ●

●

●

● ●
●

●●
●

●
●

●
●●
●

●●

●

●
●

●

● ●

●

●

●

●●
●

●
●

●

00.2 0.6 1

1
2
3
4
5
6
7

●

●
●

●

●●
●

●

●
●

●
●

●
● ●

●
●

●●

●

●

●●
●

● ●
●

●
●

●
● ●

●
●●

●

●
●

●

● ●

●

●

●

●●
●

●
●

●

−2−1 0 1 2

1
2
3
4
5
6
7

●

●
●

●

●●
●

●

●
●

●
●

●
●●
●

●
●●

●

●

●●
●

●●
●
●
●
●
● ●
●
● ●

●

●
●
●

●●

●

●

●

●●
●

●
●

●

0 2 4 6 8

1
2
3
4
5
6
7

Making a Grid Graphics Function Customisable

In the previous example, our scatterplot was used as a component of a scat-
terplot matrix. The scatterplot matrix was able to control things such as the
margins of the plot, the text used for labels and titles, and where the plot was
drawn. However, functions which call splot() might want a lot more control

7

than that over the appearance of the plot. For example, we might want to con-
trol the colour of different elements of the plot, or we might want to control the
size of the labels.

One simple approach to allowing this sort of customisation is to extend the list
of arguments to the splot function. This is reasonable for simple graphical
objects which have few aspects to control. However, the scatterplot object is
relatively complex and it would require a very long list of arguments to cover
all possible customisations.

Another approach is to provide a single argument for each of the components of
the scatterplot: the data, the axes, the labels, and the title. The default values
for these arguments are either functions or graphical objects. If you want to
override the default components then you can substitute your own functions or
graphical objects. Here we see for the first time that Grid Graphics functions
produce graphical objects as well as graphical output.

We will use the following set of scatterplot components:

xaxis, yaxis These will just be graphical objects. splot() will set up the ap-
propriate viewport and then draw the given object in that viewport. The
default values are the objects returned by grid.xaxis() and grid.yaxis()
respectively.

xlabel, ylabel, title These will also be graphical objects. We will, however,
allow the caller to specify either a string or a graphical object. If a string
is given, we will turn it into a graphical object ourselves. A small helper
function for this is given below.

data This will be a function. splot() will set up a viewport then call this
function to draw the data points and the bounding box. The default
function is shown below.

Aside: Of course, this is only one possible
break down of the scatterplot object. There are
infinitely many alternatives; for example, you
could just have an axes function rather than
separate xaxis and yaxis grahical objects.

> draw.str.or.obj <- function(text, ...) {

+ if (is.character(text))

+ grid.text(text, ...)

+ else grid.draw(text)

+ }

> splot.data <- function(x, y) {

+ grid.points(x, y)

+ grid.rect()

+ }

Another issue with customisation is being able to add extra graphics to the
scatterplot; in other words annotating the plot. The main assistance that you

8

can provide for this purpose is to make the viewports created by the scatterplot
available to others by returning them as the value of the function.

With all this in mind, it is convenient to package the layout creation within its
own function, as shown below.

> splot.viewports <- function(x, y, margins) {

+ plot.layout <- grid.layout(ncol = 3, nrow = 3, widths = unit.c(margins[2],

+ unit(1, "null"), margins[4]), heights = unit.c(margins[3],

+ unit(1, "null"), margins[1]))

+ plot.vp <- viewport(layout = plot.layout)

+ data.vp <- viewport(layout.pos.row = 2, layout.pos.col = 2,

+ xscale = range(x) + c(-0.05, 0.05) * diff(range(x)),

+ yscale = range(y) + c(-0.05, 0.05) * diff(range(y)))

+ title.vp <- viewport(layout.pos.row = 1)

+ list(plot.vp = plot.vp, data.vp = data.vp, title.vp = title.vp)

+ }

With all of these support functions in place we can now rewrite the splot
function with customisation in mind. Note that we specify draw=FALSE for
grid.xaxis() and grid.yaxis(). This is because we are only using these
functions to produce graphical objects as parameters to splot(); we want to
control when we produce graphical output from these objects.

> splot <- function(x = runif(10), y = runif(10), xlabel = "x axis",

+ ylabel = "y axis", title = "A Simple Plot", margins = unit(c(5,

+ 5, 3, 2), "lines"), xaxis = grid.xaxis(draw = FALSE),

+ yaxis = grid.yaxis(draw = FALSE), data = splot.data, vp = NULL,

+ add = FALSE) {

+ if (!add)

+ grid.newpage()

+ vps <- splot.viewports(x, y, margins)

+ if (!is.null(vp))

+ push.viewport(vp)

+ push.viewport(vps$plot.vp, vps$title.vp)

+ draw.str.or.obj(title, gp = gpar(fontsize = 16))

+ pop.viewport()

+ push.viewport(vps$data.vp)

+ data(x, y)

+ grid.draw(xaxis)

+ grid.draw(yaxis)

+ draw.str.or.obj(xlabel, y = unit(-4, "lines"), gp = gpar(fontsize = 14))

+ draw.str.or.obj(ylabel, x = unit(-4, "lines"), gp = gpar(fontsize = 14),

+ rot = 90)

+ pop.viewport(2)

+ if (!is.null(vp))

+ pop.viewport()

+ invisible(vps)

+ }

9

The code below demonstrates how this new function can be used. The first
example just shows that the function still works :) The second example shows
a simple customisation of the data argument using our own function to add a
smooth line through the points in the scatterplot. Note that the it will often be
convenient to call the default function from your custom function (e.g., my.data
calls splot.data). The third example shows a customisation of the title
argument by specifying a new text object. This makes the title bigger and
right-justifies it 1" in from the right-hand edge of the plot. The fourth example
demonstrates the use of the viewports produced by splot(). The default title
is horizontally centred within the entire plot region; we turn off the default title
and annotate the plot with our own title which is horizontally centred relative
to the data region of the plot.

> splot()

> library(modreg)

> my.data <- function(x, y) {

+ splot.data(x, y)

+ lo <- (loess(y ~ x))

+ grid.lines(lox, lofitted, default.units = "native")

+ }

> splot(1:100, 1:100 + runif(100, -10, 10), data = my.data)

A Simple Plot

●

●

●

●
●

●
●
●

●

●
●

●

●

●
●
●

●

●●

●●
●

●●

●

●●

●
●
●●●

●

●●●

●

●

●

●

●

●
●

●

●

●
●

●●●
●

●

●

●●

●

●
●

●
●
●
●
●

●

●
●

●
●

●

●

●●●

●
●

●●

●
●
●
●

●

●●
●

●
●
●

●
●

●

●

●

●

●●
●●
●

●

0 20 40 60 80 100

0

20

40

60

80

100

x axis

y
ax

is

> splot(title = grid.text("Custom Title", just = "right", gp = gpar(fontsize = 24),

+ x = unit(1, "npc") - unit(1, "inches"), draw = FALSE))

10

Custom Title

●

●

●

●

●

●

●

●

●

●

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

x axis

y
ax

is

> svps <- splot(title = "")

> push.viewport(svps$plot.vp)

> grid.text("Title Centred on Data Region", gp = gpar(fontsize = 16),

+ vp = viewport(layout.pos.row = 1, layout.pos.col = 2))

11

●

●

●

●

●

●
●

●

●

●

0 0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

x axis

y
ax

is
Title Centred on Data Region

Making a Grid Graphics Object

The function splot is now a highly customisable, embeddable graphical building
block. However, it is still only useful for the production of graphics output; it
is still only for procedural use.

In the previous section we made use of grid.text(), grid.xaxis(), and grid.yaxis()
for their ability to produce graphical objects, which we used as default argument
values to splot(). In this section we look at how we need to change splot so
that it produces a graphical object too.

The main thing to do is to split splot() into a function which does the drawing
and a function which creates an object. The object which we create is going to
be derived from the class "grob". This is the base class of all Grid graphical
objects. The purpose of deriving it from "grob" is that we then inherit lots of
useful functionality which is shared by all Grid graphical objects. We will give
it its own class, "splot", so that we can write special methods that will allow
an "splot" object to behave differently to other "grob"s6.

The drawing function is one such method. It is a method for the generic Grid
function draw.details() and it allows us to control exactly what gets drawn
by an "splot" object. It basically consists of all of the drawing operations in

6Technically, the "splot" object is actually wrapped within a "grob" object, but this detail
is hidden from the user.

12

the old splot() function7.

> draw.details.splot <- function(sp, grob, recording = TRUE) {

+ if (!sp$add)

+ grid.newpage(recording = FALSE)

+ push.viewport(sp$plot.vp, sp$title.vp, recording = FALSE)

+ grid.draw(sp$title, recording = FALSE)

+ pop.viewport(recording = FALSE)

+ push.viewport(sp$data.vp, recording = FALSE)

+ grid.draw(sp$data, recording = FALSE)

+ grid.draw(sp$xaxis, recording = FALSE)

+ grid.draw(sp$yaxis, recording = FALSE)

+ grid.draw(sp$xlabel, recording = FALSE)

+ grid.draw(sp$ylabel, recording = FALSE)

+ pop.viewport(2, recording = FALSE)

+ }

The splot() function is now responsible for creating an object of class "splot".
This consists of creating a list of all of the components of the object and then
calling the function grid.grob() to turn this into an object.

Because we are now creating a list of objects rather than simply calling func-
tions to produce graphics output, we require a couple of changes to the helper
functions so that they return objects and do not do any drawing.

Notice that splot.data creates a grid.collection. This is just the simplest
sort of graphical object. Its draw.details method just draws all of its elements.
It is just a convenient way of dealing with several graphical objects all at once.

> make.str.or.obj <- function(text, ...) {

+ if (is.character(text))

+ grid.text(text, ..., draw = FALSE)

+ else text

+ }

> splot.data <- function(x, y) {

+ grid.collection(points = grid.points(x, y, draw = FALSE),

+ box = grid.rect(draw = FALSE), draw = FALSE)

+ }

> splot <- function(x = runif(10), y = runif(10), xlabel = "x axis",

+ ylabel = "y axis", title = "A Simple Plot", margins = unit(c(5,

+ 5, 3, 2), "lines"), xaxis = grid.xaxis(draw = FALSE),

+ yaxis = grid.yaxis(draw = FALSE), data = splot.data, draw = TRUE,

+ add = FALSE, vp = NULL) {

+ vps <- splot.viewports(x, y, margins)

+ title <- make.str.or.obj(title, gp = gpar(fontsize = 16))

+ xlabel <- make.str.or.obj(xlabel, y = unit(-4, "lines"),

7Note that we do not have to push the vp slot of our object; Grid treats a slot of that name
specially and automatically pushes and pops it as part of the default drawing process

13

+ gp = gpar(fontsize = 14))

+ ylabel <- make.str.or.obj(ylabel, x = unit(-4, "lines"),

+ gp = gpar(fontsize = 14), rot = 90)

+ sp <- list(x = x, y = y, title = title, xlabel = xlabel,

+ ylabel = ylabel, data = data(x, y), data.func = data,

+ xaxis = xaxis, yaxis = yaxis, plot.vp = vps$plot.vp,

+ data.vp = vps$data.vp, title.vp = vps$title.vp, add = add,

+ vp = vp)

+ grid.grob(sp, "splot", draw)

+ }

Once again, the first example below is just a check that things still work, al-
though it does also show that the new, object-oriented splot() can still be
used procedurally, basically ignoring the fact that it returns an object. The sec-
ond example demonstrates that "splot" objects can be used as arguments to
graphics functions; this allows other people to write highly customisable graph-
ics which includes "splot"s as components. The third example shows "splot"
grobs being used as components of another graphical object. The output of the
second example is shown below the code.

> splot()

> framer <- function(any.old.grob = grid.text("An Unexciting Default",

+ draw = FALSE)) {

+ grid.newpage()

+ grid.rect(gp = gpar(border = NULL, fill = "grey"))

+ vp <- viewport(width = 0.8, height = 0.8)

+ push.viewport(vp)

+ grid.rect(gp = gpar(fill = "white"))

+ grid.text("Frame around ...", y = unit(1, "npc") + unit(1,

+ "cm"), gp = gpar(fontsize = 20))

+ grid.draw(any.old.grob)

+ pop.viewport()

+ }

> framer()

14

Frame around ...

An Unexciting Default

> framer(splot(add = TRUE, draw = FALSE))

> draw.details.simple <- function(simple, grob, recording = TRUE) {

+ grid.draw(simple$splot, recording = FALSE)

+ }

> simple <- function() {

+ splot <- splot(draw = FALSE)

+ grid.grob(list(splot = splot), "simple")

+ }

> simple()

15

Frame around ...

A Simple Plot

●

●

●

●●●
●

●

●

●

0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

x axis

y
ax

is

Making an Interactive Grid Graphics Object

We do not only produce graphical objects for providing default argument values
or providing components for other graphical objects. It is also useful to be able
to keep a record of what you have drawn and to be able to edit that record and
possibly even have the graphical output automatically updated8.

The only thing we have to add to make this possible with our "splot" object is
an edit.details method. Grid provides an edit.grob function which allows
us to specify changes to any "grob" object.

It is actually already possible to edit the components of an "splot" object,
because the components already have methods written. For example,

grid.edit(splot.obj, "title", gp=gpar(col="red"))
grid.edit(splot.obj, "axis", at=0.5)

However, it is not possible to edit the description of the scatterplot itself.

For example, suppose that we want to change the values that are being plotted.
This will require altering the plot viewport for the new x- and/or y-range and
redrawing all of the points (and anything else that may have been specified in
the "splot"’s data argument).

8This is a requirement for implementing a GUI interface for graphics with, for example,
dialog boxes for editing components of a graph.

16

The code below shows a breakdown of the function to create splot viewports,
just so that we don’t have to recreate all of the viewports unnecessarily.

> splot.plot.vp <- function(margins) {

+ plot.layout <- grid.layout(ncol = 3, nrow = 3, widths = unit.c(margins[2],

+ unit(1, "null"), margins[4]), heights = unit.c(margins[3],

+ unit(1, "null"), margins[1]))

+ plot.vp <- viewport(layout = plot.layout)

+ }

> splot.data.vp <- function(x, y) {

+ data.vp <- viewport(layout.pos.row = 2, layout.pos.col = 2,

+ xscale = range(x) + c(-0.05, 0.05) * diff(range(x)),

+ yscale = range(y) + c(-0.05, 0.05) * diff(range(y)))

+ }

> splot.title.vp <- function() {

+ title.vp <- viewport(layout.pos.row = 1)

+ }

> splot.viewports <- function(x, y, margins) {

+ list(plot.vp = splot.plot.vp(margins), data.vp = splot.data.vp(x,

+ y), title.vp = splot.title.vp())

+ }

Now we can write the editDetails method itself. There are several important
features to note:

1. The arguments to the method are the splot list to be modified, and a list
of named arguments specifying the changes to be made (e.g., gp=gpar(col="red"),
at=0.5, ...).

2. The return value of the method is the altered splot list. This is vital for
the changes we have made to become permanent.

> editDetails.splot <- function(splot, new.values) {

+ slot.names <- names(new.values)

+ x.index <- match("x", slot.names, nomatch = 0)

+ y.index <- match("y", slot.names, nomatch = 0)

+ if (x.index != 0 || y.index != 0) {

+ x <- if (x.index)

+ new.values[[x.index]]

+ else splot$x

+ y <- if (y.index)

+ new.values[[y.index]]

+ else splot$y

+ splot$data.vp <- splot.data.vp(x, y)

+ splot$data <- splot$data.func(x, y)

+ grid.edit(splot$xaxis, at = NULL, redraw = FALSE)

+ grid.edit(splot$yaxis, at = NULL, redraw = FALSE)

+ if (x.index)

+ x.index <- -x.index

17

+ else x.index <- NA

+ if (y.index)

+ y.index <- -y.index

+ else y.index <- NA

+ new.values <- new.values[c(x.index, y.index)]

+ }

+ splot

+ }

The example below produces a standard scatterplot, then edits the x- and y-
values for the scatterplot. The output is shown below the code.

> sp <- splot()

A Simple Plot

●

●

●

●

●

●

●

●

●
●

0.2 0.4 0.6 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x axis

y
ax

is

> sp <- splot(draw = FALSE)

> grid.edit(sp, grid.prop.list(x = 1:10, y = (1:10)^2), redraw = FALSE)

> grid.draw(sp)

18

A Simple Plot

●
●

●

●

●

●

●

●

●

●

2 4 6 8 10

0

20

40

60

80

100

x axis

y
ax

is

The slightly longer example below gives a small taste of how a GUI interface
could be built for the "splot" object. This function produces a scatterplot
and a dialog box (shown below the code). When you click on the radio button
labelled “Green”, the plot turns green and when you click on “Black” it turns
back to black.

> library(tcltk)

> gui.splot <- function() {

+ sp <- splot()

+ colour <- tclVar(init = 1)

+ recolour <- function(...) {

+ if (tclvalue(colour) == 1)

+ grid.edit(sp, "data", "children", "points", gp = gpar(col = "black"))

+ else grid.edit(sp, "data", "children", "points", gp = gpar(col = "green"))

+ }

+ top <- tktoplevel()

+ tktitle(top) <- "splot Dialog"

+ colours <- tkframe(top, borderwidth = 10)

+ tkpack(colours, side = "top")

+ tkpack(tkradiobutton(colours, command = recolour, text = "Black",

+ value = 1, variable = as.character(colour)))

+ tkpack(tkradiobutton(colours, command = recolour, text = "Green",

+ value = 2, variable = as.character(colour)))

+ dismiss <- tkframe(top)

+ tkpack(dismiss, side = "bottom")

+ tkpack(tkbutton(dismiss, text = "Dismiss", command = function() tkdestroy(top)))

19

+ }

Caveats

• This is ONE way to implement a scatterplot. There may be things you
don’t like about it. One of the aims of Grid is to make it so that you don’t
have to think to hard about all the possible things people might want to
do with your graphics functions. I consider that if I write something as
flexible as the example given here and people still want to do something
fancier then (i) they are at a high enough level to consider writing their
own graphics code (ii) there is sufficient support in Grid to make writing
your own graphics code a feasible proposition.

• I have deliberately left out lots of type-checking and bullet-proofing to
avoid cluttering up the examples. Obviously, a function that is going to
be used by lots of people should have these things included.

20

