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Abstract

We describe an approach taken for the creation of animated and interactive graphics
using the grid graphics engine for the statistical software package R. In order to create
these graphics an existing package for R, gridSVG, is extended from a proof-of-concept
into a usable solution. gridSVG produces SVG images that are animated, interactive and
can be included within web pages.
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1 Aim

The statistical software package R (R Development Core Team, 2011) is freely available
and widely used amongst statisticians. The intention of this project is to produce
animated and interactive plots on web pages using R. These plots can convey more
information and engage a reader better than regular static graphics. Currently, the
creation of these plots is not possible in R without difficulty. A package for R does exist
that can create the type of plots we want, but it is not capable of producing any but the
most basic of statistical graphics. This package, gridSVG (Murrell, 2011), needs to be
improved upon in order to create useful animated and interactive graphics.

As a first step the gridSVG package requires extending so that it is capable of reproducing
the appearance of plots created by R’s native graphics devices. Once this is accomplished,
further work can be done to improve gridSVG’s capacity to include animation and
interactivity to its plots.
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2 Introduction

2.1 What are web-based interactive graphics?

It must be established what are web-based interactive graphics in order to illustrate the
intended goal of this project. Web-based graphics are images that are able to be viewed
within a web page by a web browser. The graphics we intend to produce are not only
web-based, but also have the properties of animation and interactivity. Interactivity
involves changing the behaviour or appearance of an image, most commonly by the use
of a mouse or keyboard.

2.2 Existing solutions

There are currently a few notable packages for R that do allow for the creation of web-
based interactive graphics. A description of how these packages work follows, in order to
explain why gridSVG is being improved upon.

The animation package (Xie, 2011) can create animated graphics in many image and video
formats, most of which are not provided by R. In order to produce animated graphics,
the animation package generates a series of static plots. Each plot shows the animation
at a specific point in time. This means that long and fluid animations will generate a
large amount of static plots in comparison to shorter, “choppy” animations. By piecing
all of the static plots together, the illusion of animation is created.

animation relies heavily on the use of software not present within the package to produce
many of the different graphics formats it supports. In fact, the only formats that do
not have any dependencies on third-party software are on-screen animations and HTML
pages. On-screen animations have the drawback of being unable to be stored in any way.
The GIF, Flash, PDF and video formats that animation supports all require software
additional to R.

Other packages have been released but they leverage other graphics systems to im-
plement any animation or interactivity. These packages include webvis, googleVis and
gWidgetsWWW.
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The webvis package (Conway, 2010) currently uses the Protovis JavaScript library to
produce its plots. The approach that webvis takes is to translate the graphical functions
that R provides into equivalents that utilise the Protovis library. Use of the plot.webvis

function is expected to produce similar results to a plot that is created using R’s plot

function. It is also possible to construct a graph using Protovis-specific functions, e.g.
using pv.line to add a line. This approach requires knowledge of Protovis and the code
to produce plots within R will be very similar to equivalent JavaScript code.

The googleVis package (Gesmann and de Castillo, 2011) provides an interface for R
to Google’s Visualisation API. googleVis allows the creation of plots that use Google’s
graphics library. This means that any plot that can be created with this library can be
used by googleVis. An example of the graphics that googleVis can create is an interactive
map that places markers at locations on the map. Many of the types of plots available in
googleVis are widely used in highly visible Google products. This ensures that the plots
are going to be highly polished in both appearance and behaviour.

gWidgetsWWW (Verzani, 2011) is a package that provides an HTML and JavaScript
implementation of the gWidgets package for R. gWidgets implements a generic interface
for creating interactive GUIs allowing the same R code to work in multiple GUI toolkits.
This means that we can use gWidgetsWWW to create a graphical user interface that
responds to user input. When used in conjunction with RApache, an R module for the
Apache HTTP Server, gWidgetsWWW can add interactivity to a web page.

A package developed by Lang (2010) that generates animated, interactive graphics via
the R graphics system is SVGAnnotation. It leverages R’s svg() graphics device by post-
processing its output to see which SVG elements correspond with specific components of
a plot. After performing the post-processing, animation can occur along with interactivity
via JavaScript. Many functions have been provided that allow for interactivity in processed
plots. Examples of these functions include adding tooltips, animating graphical elements
and linking related points.

2.3 Motivation for gridSVG

Here we discuss why the currently available R packages are not suitable for our needs
when creating web-based interactive graphics.

We deem animation to be unsuitable for our needs because it does not provide any means
of interactivity, only animation. Moreover, the animation is does produce is unsuitable.
Rather than drawing several plots to generate an animated image, we would rather draw
a plot only once that has animation embedded within it. The distinction is similar to the
difference between a cartoonist who has to draw every single frame, and a director that
simply tells people what to do.

The packages webvis and googleVis are also unsuitable because they do not use R’s
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graphics system to create their plots. We would like to use the facilities R provides with
its powerful graphics system to create animated and interactive graphics. This method
ensures that the graphics we see in R are what is actually going to be drawn when we
create our interactive plots.

gWidgetsWWW does create the kind of graphics we want to create, with facilities present
for powerful interactivity. What it does not provide is any means of animating a plot
once it has been created. It can only be done in a manner similar to animation, which is
impractical to serve frame by frame over the internet due to latency and network speed.

SVGAnnotation can also create the kind of graphics we desire, but it is difficult to
understand how it works. The approach SVGAnnotation takes to match SVG elements
with graphical objects in R requires knowledge of the expected SVG output of the svg()

device. This introduces a lack of transparency because it relies on reverse engineering
R’s svg() device’s output. Because of this, it is challenging to extend SVGAnnotation’s
features to create animated and interactive graphics that are not provided out-of-the-box.
Another issue to consider is that if SVGAnnotation does not work as expected then there
is little that a user can do.

None of the existing solutions produce the kind of graphics we wish to create. However,
a package exists that has the potential to create animated and interactive graphics in a
transparent manner. This package, gridSVG, can only produce basic plots as it is currently
little more than a proof-of-concept. By extending gridSVG to be capable of producing
more complex plots we should be able to create sophisticated web-based interactive
graphics.
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3 The design of gridSVG

3.1 What is grid? How does it work?

In order to explain how gridSVG works, we must first explain how grid works. grid
(Murrell, 2005) is a graphics system that is provided by R along with the base graphics
system. Two key features of grid separate it from the base graphics system. The first of
these features is the concept of viewports. Viewports are a convenient way of defining
a plotting region and setting a drawing context. When using viewports, all drawing is
relative to the coordinate system within the current viewport.

> library(grid)

> grid.newpage()

> grid.rect(gp = gpar(lty = "dashed" )) # Showing viewport size

> grid.circle() # Draws a circle as large as the root viewport

> # Moving into a new viewport

> pushViewport(viewport(x = 0.5, y = 0.5, height = 0.5,

+ width = 0.5, just = c("left" ,"bottom" )))

> grid.rect(gp = gpar(lty = "dashed" )) # Showing viewport size

> grid.circle() # Draws a circle as large as the current viewport

> popViewport() # Leaving the viewport

Listing 3.1: Using viewports to change the location and dimensions of the plotting region.

Listing 3.1 demonstrates how the code used to produce a circle remains constant, but the
position and dimensions of the circles are dependent on the viewports they were drawn in.
This is shown by first drawing a dashed rectangle to show the size of the entire plotting
region. A circle is then drawn as large as the size of the viewport it occupies. The root
viewport is as large as the entire plotting region, because of this, so is the circle that is
being drawn by grid.circle(). Following this, a new viewport is created that occupies
the top-right quadrant of the plot. Now when we use the same code to produce the
dashed rectangle and the circle, it only draws within the top-right quadrant. The final
line, calling popViewport(), leaves the viewport positioned in the top-right quadrant
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and returns to the root viewport. The code in Listing 3.1 produces the plot shown in
Figure 3.1.

Figure 3.1: An example of grid viewports, produced by Listing 3.1.

The application of viewports allows trellis graphics to be created relatively easily. Several
packages provide high level functions that can create these complex plots, notably lattice
(Sarkar, 2008) and ggplot2 (Wickham, 2009). lattice uses viewports to create strips and
panels within its plots, where each strip and panel is a viewport for graphics objects to
be drawn in.

Another feature of grid is that grid graphics functions also produce graphics objects. A
graphics object stores all of the information necessary for the object to be drawn. For
example, grid.rect() creates a graphics object that gives grid enough information to
draw a rectangle, then draws it. Associated with every graphics object is a name, this
name is an identifier that we can use to inspect or modify a graphics object. Each time a
graphics object is drawn, it is recorded on grid’s display list. This display list stores all of
the graphics objects necessary for an image to be drawn.

> library(grid)

> grid.newpage()

> grid.rect()

> grid.ls()

GRID.rect.1

Listing 3.2: Inspecting grid’s display list.

We can inspect grid’s display list using the command grid.ls() to see which graphics
objects have been drawn. The output of grid.ls() shows the names of these objects.

6



Observing the example in Listing 3.2 we can see that the name of the rectangle object
that was produced by grid.rect() is in fact GRID.rect.1.

> grid.ls()

GRID.rect.1

> grid.edit("GRID.rect.1" , gp = gpar(fill = "yellow" ))

Listing 3.3: Modifying a grid graphics object.

The record of graphics objects in the display list also allows us to modify them. Listing 3.3
demonstrates object modification by changing the colour of the rectangle that was drawn
in Listing 3.2. This is possible through the use of grid.edit(), which modifies existing
graphics objects by specifying the name of the object to be modified as its first parameter.
Any parameters following the object name are properties of the graphics object that
being modified. In Listing 3.3, the rectangle called GRID.rect.1 will be filled with
yellow instead of being transparent. Figure 3.2 shows the effect of grid.edit() on
GRID.rect.1.

(a) A rectangle produced by
grid.rect().

(b) The same rectange modi-
fied to be filled with yellow.

Figure 3.2: Modifying an existing graphics object, produced by Listing 3.3.

The naming of graphics objects is particularly important, as we have a way of identifying
graphics objects. If we can identify an object, then modifying it is possible. This is the
main reason why we are targetting the grid graphics engine and cannot use the base
graphics engine. To demonstrate this, if we were to draw a plot using functions provided
by the graphics package, e.g. the plot() function, we cannot modify elements of the plot
once it is drawn. Figure 3.3 creates a plot of random variates but if we wanted to change
the x and y axis labels we are forced to draw a new plot.
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> plot(rnorm(10), rnorm(10))
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Figure 3.3: A basic plot created using the graphics package.

When saving grid plots, we would like to retain the ability to identify graphics objects on
plots we have saved. There are few image formats that R supports that can do this, and
only one of these formats is viable for use on the web. This format is SVG.

3.2 What are SVG and JavaScript?

SVG (Scalable Vector Graphics) is an XML-based format for describing two-dimensional
vector images. SVG images are described using text, therefore we can use the facilities
present in R to write text to a file to create SVG images.

<svg height="100" width="100" >

<rect id="example"

x="30" y="20" height="50" width="30" />

</svg>

Listing 3.4: A basic SVG image.
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Figure 3.4: The rendered image produced by Listing 3.4.

We can see that the XML code used to produce the image in Figure 3.4 is quite readable.
An SVG image has been created that is 100 by 100 units. It contains a <rect> element
that is positioned at (30, 20) and is 30 units wide by 50 units high. Note that in SVG, the
origin is located at the top-left of the plotting region, while in R it is at the bottom-left
of the plotting region. This means that higher y values correspond to lower positions on
the plotting region. Another important thing to note is the id attribute, which gridSVG
will use when naming SVG elements.

SVG can also be modified after it has been loaded in a browser through the use of
JavaScript. JavaScript is a web-based scripting language that is well-supported by
modern web browsers. gridSVG makes use of JavaScript to provide interactivity with the
graphics it produces by embedding it within an SVG image. By extending the example
from Listing 3.4 we can demonstrate how JavaScript can modify an SVG image.

<svg height="100" width="100" >

<rect id="example" onmouseover="setYellow(evt)"

x="30" y="20" height="50" width="30" />

<script type="text/ecmascript" >

function setYellow(evt) {

var rect = evt.target;

rect.style.setProperty("fill", "yellow");

}

</script>

</svg>

Listing 3.5: An interactive SVG image.
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The image in Listing 3.5 features a couple of additions that require explanation. The first
of these changes is the addition of a <script> element. Within this <script> element
is the definition of a setYellow() function. It takes a single parameter, evt, which
contains information about the event that triggered its execution. The first line of the
function finds out which element triggered the event, and refers to it as rect. The second
line modifies rect so that instead of being coloured black, it is coloured yellow.

The other change to the image is the addition of an onmouseover attribute to the
rectangle element. This is a special attribute that executes any JavaScript code assigned
to it when a mouse cursor hovers over the element. In this example, when a mouse
cursor hovers over the <rect /> element, the JavaScript function setYellow() will be
executed.

The effect of both of these changes is that this new SVG image appears the same as
Figure 3.4 until a mouse hovers over the rectangle. When this occurs its colour changes
from black to yellow. This is shown in Figure 3.5.

This combination of JavaScript and SVG is how gridSVG is going to implement interactivity
in its plots.

(a) The rendered image prior to any
changes.

(b) Triggering a colour change by mov-
ing the cursor over the rectangle.

Figure 3.5: The SVG image produced by Listing 3.5.

3.3 Mapping of grid graphics to SVG elements

The task we would like to accomplish is creating SVG images in R with the ability to
animate and interact with these images. Unfortunately we cannot use R’s svg() device
to create these plots. The reason for this is that the svg() device is only concerned
with ensuring that the appearance of SVG output is accurate. This means that plots
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created using the svg() device are not animated, nor are they able to be modified using
JavaScript because the device does not provide the ability to include this information.

gridSVG intends to write to SVG, but with the ability to include information necessary
for animation and interactivity to occur. This requires us to write directly from grid to
SVG and avoid the svg() device altogether. An illustration of how gridSVG differs from
most graphics devices is provided in Figure 3.6.

grDevices

graphics grid

svg pdf gridSVG

Figure 3.6: Instead of using grDevices to create an SVG image for a grid plot, gridSVG
creates the image directly.

The approach gridSVG takes when creating an SVG image is to first capture all of the
graphics objects and viewports present in a grid plot. Extra information can then be
added to specific graphics objects if interaction or animation is to occur on them. Once
the additional annotation of graphics objects has taken place, gridSVG attempts to write
out the information it has available to it.

Additional information is added to graphics objects through the provision of functions that
modify existing graphics objects. An example of one of these functions is grid.garnish()
which “garnishes” a graphics object with extra attributes. grid.garnish() takes as its
first parameter the name of the graphics object that is being modified. Any additional
named parameters are additional SVG attributes that the graphics object will have. This
is how we can add attributes such as onmouseover to implement interactivity.

> library(gridSVG)

> grid.rect(gp = gpar(fill = "black" ))

> grid.ls()

GRID.rect.1

> grid.garnish("GRID.rect.1" , onmouseover = "setYellow(evt)" )

Listing 3.6: Adding an onmouseover attribute to a graphics object.

11



Listing 3.6 shows how we would typically use grid.garnish(). First a black rectangle is
being drawn, and we find out that it is named GRID.rect.1. We then use grid.garnish()
to add an onmouseover attribute to GRID.rect.1. This attribute holds the value of
setYellow(evt). Now gridSVG is aware that there is an additional attribute associated
with GRID.rect.1.

After modifying graphics objects, gridSVG’s next task is to translate the graphics objects
to SVG. Writing to SVG requires that for each grid graphics object, there is a mapping
to SVG elements that adequately represent the grid graphics object. For many graphics
objects, this task is simple as there is a direct mapping between a grid graphics object and
an SVG element. An example of this is a rectGrob (produced by grid.rect()) mapping
to a <rect />. However, for other elements this is not so straightforward because the
mapping is not obvious. This will be further explained in Section 4.

When writing to SVG, gridSVG can annotate SVG elements with the same names as the
grid graphics objects on the display list. This means that if we have a graphics object
named GRID.rect.1, we can identify the SVG element(s) that the object translates to.
By retaining object names, we can use JavaScript to target these names and interact
with the objects the names are associated with.

The extra attributes that are annotated to grid graphics objects also require translating
to SVG. This can mean adding attributes on the SVG element that the graphics object
maps to. This is the case when “garnishing” a graphics object with extra attributes.
However, when animating graphics objects, additional SVG elements must be used to
store animation information.
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4 gridSVG grows up

While gridSVG was able to produce basic plots, it lacked the ability to handle many of
grid’s graphics objects. Moreover, gridSVG did not have any understanding of many of
the properties that grid graphics objects have. This section details the processes and
decisions made when extending gridSVG.

4.1 Mapping of grid graphics objects to SVG elements

4.1.1 Graphics objects and sub graphics objects

When translating grid graphics objects to SVG, there are cases where a one-to-one
mapping cannot occur. The reason why this happens is because one grid graphics object
can require many SVG elements to represent it. Multiple elements are necessary due
to grid graphics objects being able to represent what appears to be multiple graphics
objects. This happens when a single call to a grid function produces several visually
distinct graphical objects.

Some grid graphics functions provide a way of producing what appears to be multiple
graphics objects through the use of an id parameter. The reason for this parameter is
because multiple graphics are unable to be produced in a single function call without
it. An example of one of these functions is grid.polyline(). A polyline is a collection
of lines, meaning that a single call to grid.polyline() can produce the same results
as several calls to grid.lines(). The id parameter is significant in grid.polyline()

because it provides a way of separating the list of xs and ys into different lines.

> grid.polyline(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

+ y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),

+ id=rep(1:5, 4),

+ gp=gpar(col=1:5, lwd=3))

Listing 4.1: Using the id parameter to specify multiple lines.
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Listing 4.1 features three notable parameters, x, y and id. Both x and y are point
coordinates for a line to follow. This means that each element of x corresponds with
an element in y. The id parameter specifies which line each point belongs to. In this
example, the vector that id holds is 1..5, repeated four times. This means that for the
line with the id of 1, we expect the point coordinates to have indices of 1, 6, 11 and
16 because those the the indices where 1 appears in the id vector. Given that the id

parameter has 5 unique values we can determine that 5 lines are being drawn. Using the
mechanism described earlier we can determine which points belong to each of these 5
lines. When drawn, the code from Listing 4.1 produces what appears in Figure 4.1.

Figure 4.1: Creating a polyline using the id parameter, produced by Listing 4.1.

While it is the case that some grid graphics functions are able to create what appear to be
multiple objects by using the id parameter, this is not the case with most grid graphics
functions. Most grid graphics functions are vectorised so that they can handle a vector for
a parameter instead of a scalar value. An example of such a function is grid.circle().
grid.circle() has three key parameters, x, y and r. These parameters govern the x
position, y position and radius of the circle respectively. If we provide more than one
value for any of these parameters, more than one circle will be drawn. An example of
this in action is provided in Listing 4.2

> grid.circle(x = c(0.2, 0.7), y = c(0.2, 0.7),

+ r = 0.1, gp = gpar(fill = "black" ))

Listing 4.2: Using vectorised parameters to create multiple circles.

By providing two values for the x and y parameters, we are determining the locations of
the two circles that are to be drawn. These locations are (0.2, 0.2) for the first circle and
(0.7, 0.7) for the second circle. Given that the r parameter is a constant of 0.1, we know
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that both circles are going to have the same radius. This produces the plot shown in
Figure 4.2.

Figure 4.2: Multiple circles created using one grid function call, produced by Listing 4.2.

In both of the cases where a single grid graphics object produces multiple graphical
elements we are presented with a problem when writing to SVG. The issue is that SVG
has no single elements which can represent the graphics objects that grid produces. We
are forced to produce multiple elements for graphics objects where more than graphical
element is produced.

The response to the multiple element problem was to create new graphics objects, one
for each of the graphical elements that was produced by the function call. These new
graphics objects are what is written to SVG, not the object that originally produced it.
For example, if a call to grid.circle() produces four circles, then we create four circle
objects that produce the same result as the call to grid.circle().

Unfortunately this introduces a problem relating to the naming of SVG elements. We
would like the names of the SVG elements to match the names of our grid graphics
objects. If we create multiple SVG elements for a single grid graphics object, the original
name cannot be applied to multiple SVG elements. This is because SVG requires the
name of each SVG element to be unique. This problem can be resolved by determining
an appropriate naming scheme for cases where multiple SVG elements are produced.

When multiple SVG elements are produced by a grid graphics function with an id

parameter, the naming scheme is simple. We name each of the resulting elements by
using the original name of the graphics object, suffixed by a full stop and the id of the
graphics object. For example, if a grid polyline is named GRID.polyline.1, then the
line created using an id of 2 creates an SVG element with the name GRID.polyline.1.2.

grid graphics functions that lack an id parameter have a similar naming scheme. Instead
of having an id determine the new name, we instead use the order in which the new
graphical objects are created. For example, returning to Listing 4.2, we know that two
circles are being created. The first circle is determined to be the circle located at (0.2,
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0.2), because of this it would be given a suffix of 1. If the name of the grid circle object
is GRID.circle.1, then the first circle that is being produced is going to be named
GRID.circle.1.1.

These naming schemes do solve the problem of non-unique names but we no longer have
the original name of the graphics object available to us. The solution to this is to use an
SVG group element (<g>). A group element does not change the appearance of an SVG
image, but it allows the collection of related elements. This means we can group the
multiple elements produced by a graphics object under one group element. The group
element can then be assigned the name of the grid graphics object and is guaranteed to
be unique.

We can demonstrate this naming scheme by showing the SVG that gridSVG produces
from Listing 4.2. The relevant subset of the resulting SVG image is shown in Listing 4.3.

<g id="GRID.circle.1" >

<circle id="GRID.circle.1.1" ... />

<circle id="GRID.circle.1.2" ... />

</g>

Listing 4.3: Demonstrating the naming scheme applied when creating multiple elements.

To ensure consistency in the SVG output that gridSVG produces, every graphics object
will be grouped. This is the case even when multiple elements are not produced from a
single grid graphics object. If we observe Listing 4.3, the output would only be slightly
different if GRID.circle.1 only produced one circle. The effect of this would be that
the line containing the <circle> named GRID.circle.1.2 will be absent. The modified
example does not require multiple elements to be created because only a single circle is
created, but grouping it regardless ensures consistent output.

4.1.2 Opacity

A feature of grid graphics that gridSVG was not previously aware of is opacity. Without
the support of this feature, semi-transparent graphics objects cannot be drawn.

grid has three ways of applying opacity to graphics objects. All of these methods use the
gp parameter that is present in all grid graphics objects to apply the opacity. The gp

parameter takes a gpar() object that determines the appearance of a graphics object. It
is with this gpar() object that we can apply semi-transparency to a graphics object.

The gpar() object has three parameters that we are concerned with, col, fill and
alpha. col determines the colour of lines and borders. We can assign to this parameter
a colour created by R’s rgb() function. The rgb() function allows us to specify colours
by its RGB components, but we also have access to an alpha parameter. This is where
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we determine how transparent a colour can be. By creating a colour with an alpha value
less than 1, a colour can be semi-transparent.

fill behaves in some way as col, only differing in how the colour is applied. Rather
than defining the colour of lines and borders, it defines the colour used to fill graphics
objects like rectangles and polygons.

alpha is the graphical parameter that applies opacity to the entire graphics object. This
parameter is applied on top the colours set for col and fill. This means that a rectangle
with semi-transparent borders will be even more transparent after applying an alpha

parameter lower than 1.

> library(grid)

> grid.newpage()

> grid.circle(r = 0.2, gp = gpar(col = rgb(0, 0, 0, 0.5),

+ fill = "black" ,

+ lwd = 30))

> grid.newpage()

> grid.circle(r = 0.2, gp = gpar(col = "black" ,

+ fill = rgb(0, 0, 0, 0.5),

+ lwd = 30))

> grid.newpage()

> grid.circle(r = 0.2, gp = gpar(col = "black" ,

+ fill = rgb(0, 0, 0, 0.5),

+ alpha = 0.5,

+ lwd = 30))

Listing 4.4: Creating circles with semi-transparent components.

Listing 4.4 illustrates the difference between each of these parameters. All three of the
circles that are being drawn would be a solid black circle if not for semi-transparency. In
all three examples, the background is white, but it could be any colour.

The first circle draws a grey border because it has an alpha component of 0.5. This
means that half of its colour is provided by the black colour, and half by the white
background. The second circle does the same thing but has a semi-transparent fill instead
of a semi-transparent border.

The final circle that is being drawn is the same as the second circle but with the alpha

parameter set to 0.5. The effect this has is multiplying the alpha components of the col

and fill colours by 0.5. This means that a circle will be drawn as if it had a black
border with an alpha component of 0.5. The circle will also be drawn as if the fill colour
had alpha component of 0.25.

The circles drawn from Listing 4.4 produce the figures in Figure 4.3.
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(a) A circle with a semi-
transparent border be-
ing applied.

(b) Filling the circle
with a semi-transparent
colour.

(c) A circle with a semi-
transparent fill, with an
alpha parameter of 0.5.

Figure 4.3: Circles with semi-transparency applied, produced by Listing 4.4.

gridSVG must therefore translate the grid graphical parameters to SVG, but also ensure
the same behaviour is applied when semi-transparency is present. Conveniently, the
translation is a simple mapping with the same behaviour being applied to semi-transparent
elements in SVG. This translation is shown in Table 4.1.

grid Graphical Parameters SVG Styling Parameters

col stroke & stroke-opacity

fill fill & fill-opacity

alpha opacity

Table 4.1: Mapping colours and opacities from grid to SVG.

While the mapping from alpha is a straightforward and one-to-one, the col and fill

parameters require explanation. SVG requires that colours be specified separately from
the associated opacity. This is explains why col (and similarly fill) needs to be
translated to both stroke and stroke-opacity.

4.1.3 X-splines

The grid graphics system has the capacity to draw a curved line using a set of control
points. These lines are known as x-splines. gridSVG was not able to draw x-splines at all
prior to extending the functionality this package.

A key feature of x-splines is the ability to define whether an x-spline is open or closed.
This has a significant effect on what will be drawn by grid. An open x-spline will draw
the line relative to any control points, but no fill colour will be applied. A closed x-spline
behaves similarly to an open x-spline, however, a curve is also drawn between the last
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control point and the first control point. This closes the spline and allows for a fill colour
to be set. A comparison of the two types of splines is shown in Figure 4.4.
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Figure 4.4: Multiple x-splines created using grid.xspline(). X-splines on the left and
right are almost equivalent, differing only by being open or closed.

We are presented with a problem when translating the behaviour of x-splines to equivalent
SVG code. While SVG paths can draw curved paths, the types of curves that SVG
supports are elliptical arcs and variations of Bézier curves. X-splines drawn in grid can
support more complex curves. As a result it is not possible to represent all grid x-splines as
SVG paths. The solution to this is to use a function provided by grid, xsplinePoints().
This function returns a set of points that can be used to draw an approximation of an
x-spline as a line.

If the positions that an x-spline passes through is known, emulating the behaviour of
the open and closed x-splines is the next logical step. The decision was made to re-use
existing gridSVG functionality by implementing an open x-spline as a grid line and a
closed x-spline as a grid path. This means that when translating an x-spline graphics
object, we inspect the object to see whether it is an open or closed x-spline.

If the x-spline is open, we create a new graphics object that represents a line. Line
graphics objects are used because they do not draw a fill colour, and as a result they
behave similarly to an evaluated open x-spline. Relevant information from the x-spline
graphics object is translated or copied to create the line graphics object. An example of
the translation that occurs is using the xsplinePoints() function to provide the line
coordinates. Most other information is copied, such as the name of the graphics object
and the graphical parameters that the x-spline has.
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> grid.xspline(c(0.25, 0.25, 0.75, 0.75),

+ c(0.25, 0.75, 0.75, 0.25),

+ shape = 1, open = TRUE,

+ name = "openSpline" )

(a) Creating an open x-spline in grid.

(b) The x-spline in (a) when
drawn.

<g id="openSpline" >

<polyline id="openSpline.1"

points="..." />

</g>

(c) The SVG code that the open x-spline translates to.

Figure 4.5: An open x-spline being processed by gridSVG.

Figure 4.5 demonstrates the steps that gridSVG takes to translate an open x-spline to
SVG code. First, an x-spline is created with four control points. The x-spline is given
a name of openSpline, but more importantly the open parameter is set to TRUE. This
ensures an open x-spline is drawn and appears as the image shown in Figure 4.5b. The
SVG code that was produced uses a <polyline /> element because that is what a grid
line translates to. In creating the <polyline /> element, the points attribute takes
values returned from xsplinePoints().

When an x-spline is closed, a path graphics object is created instead of a line graphics
object. The path graphics object is created in the same manner as the line graphics
object is for open splines. The reason for using grid paths is that paths in grid are closed.
A consequence of this is that a line will always be drawn between the last control point
and the first control point. If a path is closed, as is the case with grid, then it can be
filled with a colour.
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> grid.xspline(c(0.25, 0.25, 0.75, 0.75),

+ c(0.25, 0.75, 0.75, 0.25),

+ shape = 1, open = FALSE,

+ name = "closedSpline" ,

+ gp = gpar(fill = "grey" ))

(a) Creating a closed x-spline in grid.

(b) The x-spline in (a) when
drawn.

<g id="closedSpline" >

<path id="closedSpline.1"

d="..." />

</g>

(c) The SVG code that the closed x-spline translates to.

Figure 4.6: A closed x-spline being processed by gridSVG.

Figure 4.6 provides a similar example to Figure 4.5. The key difference here is the change
in the open parameter. It is now FALSE. This ensures a closed x-spline is drawn and
to further illustrate this, the x-spline is filled with grey. As the x-spline is closed and
that a grid path is used to represent it, the SVG code uses a <path /> element. The
d attribute of the <path /> element uses output from xsplinePoints() to define the
path. Comparing figures 4.5 and 4.6, we can see that decision to use different graphics
objects has only a minor effect to the resulting SVG code. More importantly, the output
that is produced by x-splines is visually accurate.

4.1.4 Arrows

Within the grid graphics system, some graphics objects have the option of being drawn
with an arrow. All graphics objects that support arrows are some variation of a line.
With an arrow applied a line, it could be used to illustrate a direction or perhaps show
an outlier in a plot.

An arrow in grid can appear at the beginning or end of a line or both. There are three
ways in which the appearance of an arrow can be changed. The first of these is the angle
of the arrow head, this controls how wide an arrow head is. By using larger angles, the
arrow head is going to appear wider. The length of an arrow head is defined by the
distance from the tip of the arrow to the base. Lastly, an arrow can be either open or
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closed which indicates whether the arrow head is a closed triangle or not.

When translating arrows, there is a clear mapping to an SVG element, the <marker>

element. A useful attribute of the <marker> element is orient, which takes a value of
auto by default. This means gridSVG can offload the work of orienting the marker to an
SVG renderer. The task for gridSVG is therefore to define how the marker is to appear
and linking a <marker> element to the corresponding SVG element.

In order to define how the marker appears we use an SVG <path /> element. Therefore,
when we refer to a marker, it is actually a path that is drawn relative to a marker’s
position and orientation.

SVG provides a slightly different definition for a marker than grid’s arrows. A marker is
placed at the end of a line, while in grid an arrow is positioned within a line. This means
that a marker’s position will need to be adjusted to match grid’s behaviour.

(a) How a marker is de-
fined, prior to orienta-
tion with a line. Dashes
indicate marker bound-
aries.

(b) Applying the marker
to a line.

(c) A grid line with an
arrow.

Figure 4.7: Comparing the definition and application of the SVG <marker> element to
grid’s arrows.

We can see in Figure 4.7 that although the SVG marker is oriented correctly, it is
not positioned at the right place. In order to position the marker correctly, there are
two attributes we can use. These attributes are refX and refY. The effect that these
attributes have is they modify the origin of the coordinates used in a marker. For example
if we set refX to be −3, then the x values of the points in our marker will be increased
by 3. The formula we use to reposition markers depends on whether the marker is placed
at the end of a line or the beginning of a line. The formulae used are shown in Table 4.2.
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Line end refX and refY Formula

Start

(
−width, −height

2

)
End

(
width, height

2

)
Table 4.2: Formulae used to reposition a marker. Width and height refer to the dimensions
of the marker.

An issue when repositioning is that markers by default do not draw outside of their
defined dimensions. This means that when we use refX and refY to change where the
marker path is drawn, at least some of the path will be drawn outside of the defined
dimensions. This leaves us with an arrow that is partially obscured. To correct this,
we change an attribute on the <marker> element. This attribute is overflow, which is
hidden by default and we will change this to visible. The effect is that now a marker
can be repositioned and will also be completely visible.

Now that we know how to draw markers that appear the same as grid arrows, implementing
this functionality is the next logical step. The way gridSVG approaches this task is to
first identify if an arrow is present on a graphics object. If there is an arrow present, we
note the name of the graphics object that has the arrow. This allows us to give the arrow
a reasonable name so that a graphics object can refer to the resulting marker.

To define how the SVG marker appears we use the angle and length properties of grid
arrows. By applying basic trigonometry these properties allow us to calculate the marker’s
height and width. We can create a <path /> element that reproduces the arrow using
this information. This path would appear similar to Figure 4.7a.

As an arrow can be applied to either end of a line, the markers that we draw in SVG
should be able to handle both line ends. This requires producing a <marker> element
for each line end that arrows appear on. The decision was made to always create two
<marker> elements so that it is possible in JavaScript to enable or disable arrows at either
end.

Once again the issue of a naming scheme is raised as we cannot create two markers
with the same name. The naming scheme that is applied to markers is we first take
the name of graphics object that contains arrows and suffix it with one of markerStart
or markerEnd. These refer to arrows positioned at the start of a line and end of a line
respectively.
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> grid.lines(arrow =

arrow(ends = "both"),

name = "example-line")

(a) A grid line with arrows at both ends.

(b) A line with arrows at
both ends, produced by Fig-
ure 4.8a.

<defs>

<marker id="example-line.1.markerStart" ... >

<path d="..." />

</marker>

<marker id="example-line.1.markerEnd" ... >

<path d="..." />

</marker>

</defs>

(c) The SVG code that produces arrows.

Figure 4.8: Demonstrating the naming scheme applied to arrows.

Figure 4.8 shows how a grid line named example-line is created with arrows at both
ends of the line. When this is written out to SVG, the <marker> elements created have
the name example-line, but are suffixed with markerStart or markerEnd. We can see
that paths are drawn within each of the marker elements. In our implementation, the
paths are in fact identical to each other. An SVG element that has yet to be mentioned
is the <defs> element. This element allows us to define elements that are able to be used
by other elements. This allows us to refer to markers from our line elements.

Given that a reasonable method of creating arrows and referring to them has been
established, they must be applied to lines. The way in which SVG allows this to occur
is by adding SVG attributes to our line elements. The two attributes we are concerned
with are marker-start and marker-end. These attributes correspond with the arrow
that is positioned at the start of the line and the end of the line respectively. If an arrow
is only defined as existing at the end of a line, then the marker-start attribute is not
included. An example of how these attributes are used is included in Listing 4.5
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<g id="example-line" >

<polyline id="example-line.1"

marker-start="url(#example-line.1.markerStart)"

marker-end="url(#example-line.1.markerEnd)"

... />

</g>

Listing 4.5: SVG code that applies markers to the line produced by Figure 4.8a.

In Listing 4.5 we can see the use of the url() function in the marker-* attributes. The
purpose of this function is to be able to refer to another element within the SVG image. In
this case we are referring to the <marker> elements that we created earlier in Figure 4.8.
Knowing that a consistent naming scheme was in use allowed us to know in advance
what the names of the <marker> elements would be. Note that the # within the url()

function simply means to search for an element with the given id.

We have been able to extend gridSVG to be able to include arrows on line graphics objects.
By applying <marker> elements and referring to these elements through SVG attributes,
the result appears equivalent to what grid draws.

4.1.5 Multi-line text

When drawing text in grid through the grid.text() function, there is the ability to split
text over multiple lines. This is achieved by including a newline character (\n) within a
text label. Every time a newline character is encountered, a line break occurs. gridSVG
lacked the ability to handle line breaks when manipulating grid text objects. The effect
of \n was it introduced a newline in the SVG code, splitting the text over multiple lines
in SVG. However, whitespace is not significant in SVG code and as a result the SVG text
appeared as if it was all one line. This incorrect behaviour is demonstrated in Figure 4.9.
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> grid.text("Hello,\nworld!" )

(a) A grid command that produces text with two
lines.

Hello,
world!

(b) The expected image produced by Fig-
ure 4.9a.

<text ... >

<tspan>Hello,

world!</tspan>

</text>

(c) The effect that the newline character had on
the SVG code.

Hello,world!

(d) The output that was produced by
gridSVG instead of Figure 4.9b.

Figure 4.9: Demonstrating the incorrect newline behaviour previously present in gridSVG.

The reason for the incorrect behaviour demonstrated in Figure 4.9 is that gridSVG treated
every character in a text label as literal text. This means that gridSVG assumed that
\n simply meant the characters \n and not a newline character. gridSVG therefore had
to remove this assumption and recognise that some characters have a special meaning
associated with them.

To implement multi-line text in SVG, the SVG specification offers two solutions. One
solution is to use multiple <text> elements to hold the text; one element per line of text.
The other solution is to use one <text> element but use a <tspan> element for each
line of text. Both of these methods require the position of each line to be calculated,
however the latter option is going to be used. The reason is by having a single <text>

element, the SVG images that gridSVG creates will be able to support text selection over
multiple lines. The first option, using multiple <text> elements, cannot provide this
feature. Shown below in Figure 4.10 is a comparison of the expected output from the
two alternatives.
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<text>Hello,</text>

<text>world!</text>

(a) Multi-line text solution using multiple
<text> elements.

<text>

<tspan>Hello,</tspan>

<tspan>world!</tspan>

</text>

(b) Using multiple <tspan> elements to
achieve multi-line text.

Figure 4.10: Comparing the expected SVG code produced from using two different
multi-line text solutions.

It is now known which elements gridSVG is going to use and how they are going to be
applied. The general approach is that each time a newline character is encountered,
create a new <tspan> element. This method ensures that each line holds a line of text.
The key step remaining is that each line now needs to be positioned correctly.

The issue of line positioning requires mitigating two problems. The first of these is the
calculation of a line’s height, which depends on a few factors. Secondly, because SVG
does not provide a way of vertically justifying multiple lines of text, we must perform
this in gridSVG.

Calculating line heights appeared to be reasonably simple. This is because grid’s graphical
parameters defines a line’s height to be fontsize× cex× lineheight. These represent
the font size in points, the character expansion and the line height multiplier. The
character expansion is a multiplier applied to fontsize that determines the height of the
characters in a text label. After calculating the character height, the result is multiplied
by the value of lineheight to get a line’s height. These are all numeric values that result
in a size measured in points. While this calculation is straightforward, the resulting line
height was incorrect for three reasons.

One reason why the line height calculation is inaccurate is due to how fonts are handled
in SVG. When a font is specified in SVG, there is no guarantee that it is the font that is
used when the image is rendered. This is due to SVG using Cascading Style Sheets (W3C,
2011) for font selection. Font specification in SVG is merely a declaration of the preferred
font for text. If we cannot guarantee which font is being used, we can only make a best
guess at positioning with the fonts that we know are available in R. Consequently the
spacing between lines may be relatively larger or smaller, depending on the font selected
by the web browser.

When the size of a line is calculated in terms of points, as is the case in grid, we run
into a problem. Although there is a typographical definition for the size of a point (1/72
inches), points as a unit of measurement do not translate well to computer displays. In
order to get the correct height of a line we need to apply a workaround in gridSVG.

We first obtain the height of the characters in the line, hereafter referred to as the
character height. This involves creating a grid text graphics object with a label consisting
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solely of an “M”. The new text graphics object is given the same fontsize and cex as
the text we wish to draw. The reason why an “M” is used is because it allows us to
approximate the size of the largest character in a line. In other words, the “M” will have
the same height as what grid calls a char. By using grid’s unit conversion functions we
can translate the actual height of the “M” into usable SVG units. The resulting height of
the “M” text object is the character height within a line.

While grid defines lineheight to be a multiplier on the height of the characters in a
text label, doing this in SVG produces incorrect output. An example of this is shown in
Figure 4.11.

> grid.text("Hello,\nworld!" ,

+ gp = gpar(fontsize = 144,

+ cex = 1,

+ lineheight = 1))

(a) A grid command that produces text with two lines.

Hello,
world!

(b) An SVG image using line heights cal-
culated from graphical parameters, using
Figure 4.11a.

Hello,
world!

(c) The output from Figure 4.11a as it ap-
pears in R.

Figure 4.11: Comparing line heights between gridSVG creates and what is expected.

Observing the two images in Figure 4.11, we can see that the line height from the SVG
image is too small. This is because the character height has been set to 144 points, and
the line height is set to be the same as the character height. While the calculation used
to arrange text in Figure 4.11b is correct according to our earlier definition, we need
it to match the output shown in Figure 4.11c. The reason for the discrepancy in the
line heights is due to the behaviour of the R graphics engine. As a result, the line height
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does not match what is calculated using graphical parameters. By using the R graphics
engine’s method of calculating line height we can create the correct output.

While the issue of line height has been discussed, the other key problem in multi-line text
is the correct justification of text. grid text graphics objects can be justified vertically to
the top, centre and bottom; and horizontally to the left, centre and right. SVG does not
provide a way of vertically justifying text so this must be calculated in gridSVG. Curiously,
horizontal justification for multi-line text is supported in SVG and gridSVG required no
changes to be able to support it. Given that vertical justification is not provided by SVG,
gridSVG needed to implement justification algorithms to be able to justify text for three
key cases: top, centre and bottom.

The way in which justification occurs in gridSVG requires some explanation. The method
of line breaking used is shown in Figure 4.10b. Because we are using a <tspan> element
for each line, we have useful SVG attributes available to us. These attributes, dx and dy,
refer to the offset relative to the previous line. A dy value of 10 on a <tspan> element
means that we position it 10 units lower than the previous line. Given this information,
we only need to justify the position the first line because every line after the first line
will have a dy equal to the line height. The formulae used to justify the first line of text
is shown in Table 4.3.

Justification First Line Offset Formula

Top charheight

Centre −
(

((n− 1) × lineheight) − charheight
2

)
Bottom −(n− 1) × lineheight

Table 4.3: Formulae used to vertically position the first line of text. charheight and
lineheight refer to the character height and line height respectively. n is the number of
lines in a text label.

After implementing solutions to the two key problems relating to multi-line text we are
able to accurately draw grid text graphics objects. We can observe the SVG output that
gridSVG produces given the code from Figure 4.9a. This is shown in Listing 4.6.

<text text-anchor="middle" ... >

<tspan dy="-4.65" >Hello,</tspan>

<tspan dy="19.44" >world!</tspan>

</text>

Listing 4.6: SVG code that appears as multi-line text, produced by Figure 4.9a.

The SVG code shown in Listing 4.6 has text that is justified to the centre of the image,
both horizontally and vertically. Horizontal justification to the centre is declared by
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gridSVG setting the text-anchor attribute to middle. Vertical justification relative to
the position of the text is demonstrated by the use of the dy attributes on the <tspan>

elements. The value of 19.44 for the second dy attribute indicates that the line height
that gridSVG calculated was 19.44. The first dy attribute was also calculated to be −4.65
after applying the formula for centre justification in Table 4.3. Upon rendering, the image
produces correctly positioned text, as shown in Figure 4.11c.

4.1.6 Fonts

A feature of grid’s text graphics objects that has been briefly mentioned is that of fonts.
A text graphics object can be drawn using a font specified by the fontfamily graphical
parameter. The font can also be modified to be drawn in bold, italic, oblique or both
bold and italic. To map these features to SVG, we translate grid graphical parameters
to CSS code. This CSS code is then applied to <text> elements through the use of the
style attribute.

The fontfamily graphical parameter provides the font that is used to draw a text
graphics object. There is a direct mapping from the fontfamily parameter to a CSS
property, font-family. This means that the translation is quite transparent, and an
example of the translation is shown in Figure 4.12.

> grid.text("Hello, world!" ,

+ gp = gpar(fontfamily = "Helvetica" ))

(a) grid text using the Helvetica font.

<text style="font-family: Helvetica;" >

<tspan>Hello, world!</tspan>

</text>

(b) SVG text that uses the Helvetica font.

Figure 4.12: Demonstrating the translation between grid and CSS within SVG.

A key point to note about fonts in SVG is that they are not embedded within the
document at any point. The font-family property simply declares the preferred font to
use, if it is available. This means if you were to view the image that contains the code in
Figure 4.12b on a different machine, you may not see the Helvetica font in use.

To ensure that a suitable font is used when viewing SVG text we can assign multiple
fonts to the font-family property. The set of fonts that we assign to the font-family

is known as a font stack. The reason we use a font stack is because of the behaviour of
the font-family property when multiple fonts are present. The first font in the stack
is applied if it is possible, otherwise the next font is used, and so on until the stack is
exhausted.
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The Helvetica font that was referenced earlier can only be guaranteed in an Apple OSX
operating system. Fonts with a similar appearance exist on other platforms, such as
Arial for Microsoft Windows and FreeSans for open source operating systems like Linux.
With this information, we can construct a font stack that makes a reasonable attempt
at drawing text that looks similar on most platforms. This improves our example from
Figure 4.12b to Listing 4.7.

<text style="font-family: Helvetica,

Arial,

FreeSans,

sans-serif;" >

<tspan>Hello, world!</tspan>

</text>

Listing 4.7: SVG text that uses a Helvetica-like font on most platforms.

The application of font stacks, as shown in Listing 4.7 allows us to be confident that
the appearance of our text is consistent across most platforms. The example shows that
Helvetica is first attempted to be used, then Arial, then FreeSans. If none of these fonts
are present on a system, we use the web browser’s default for a sans serif font. Because
we would like gridSVG images to appear consistent across all platforms, a default set of
font stacks has been provided. These font stacks cater for the three common types of
fonts that are used within R, sans serif, serif and monospace. The output from gridSVG
using these fonts stacks appears similar to Figure 4.13.

Hello, world!

Hello, world!

Hello, world!

Figure 4.13: The appearance of different types of fonts in SVG.

While it is useful for gridSVG to be able to handle common fonts, when a font unknown to
gridSVG is encountered unexpected behaviour may occur. The reason why this happens
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is because it is not known what type of font is being used. If the type of the font is
unknown, we cannot provide reasonable fallback fonts. We therefore assume the font is
sans serif and will show a reasonable sans serif font in the event that the user-specified
font is not present. Figure 4.14 demonstrates this behaviour using the non-existent font
“Example”.

> grid.text("Hello, world!" ,

+ gp = gpar(fontfamily = "Example" ))

(a) grid text using the nonexistent font “Example”.

<text style="font-family: Example, Helvetica,

Arial, ..., sans-serif;" >

<tspan>Hello, world!</tspan>

</text>

(b) SVG code that attempts to use the “Example” font prior to rest of the sans-serif font stack.

Figure 4.14: Demonstrating the behaviour when using an unknown font.

Rather than assuming that all fonts unknown to gridSVG are sans serif in nature, two
functions were created that allow font stacks to be modified. These functions are
getSVGFonts() and setSVGFonts().

getSVGFonts() returns a list of font stacks currently in use for sans serif, serif and
monospace fonts. By editing these font stacks we can choose which fonts we want to
appear in our SVG image. Once the list has been modified, we apply the changes by
passing the list to setSVGFonts(). This allows us to know in advance the effect setting
a font has on the resulting CSS applied to an SVG <text> element. A typical example
of the usage of these functions is shown in Figure 4.15.
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> fonts <- getSVGFonts()

> # Showing the names of the font stacks we can modify

> names(fonts)

[1] "sans" "serif" "mono"

> # Setting the monospaced font to be Inconsolata

> fonts$mono <- "Inconsolata"

> # Applying the modified font stack

> setSVGFonts(fonts)

> grid.text("Hello, world!" , gp = gpar(fontfamily = "mono" ))

> gridToSVG()

(a) A basic workflow for modifying a font stack.

Hello, world!

(b) The “Inconsolata” font as it appears
in SVG.

<text style="font-family:

Inconsolata, monospace;" >

<tspan>Hello, world!</tspan>

</text>

(c) The SVG code produced from Figure 4.15a.

Figure 4.15: Setting SVG images to use “Inconsolata” as the default monospaced font.

The code in Figure 4.15a shows how the use of getSVGFonts() and setSVGFonts() can
influence gridSVG’s output. The first step taken is to first grab the font stacks that
gridSVG is currently using. We then inspect the list of font stacks to see the types of font
stacks we can modify. Because we wish to draw monospaced text using the Inconsolata
font, we set the monospaced font stack to store only Inconsolata. The font changes are
then applied to gridSVG and then written out to SVG. The image shown in Figure 4.15b is
the result of the operations, showing that the Inconsolata font is in use. This is confirmed
by a subset of the output visible in Figure 4.15c, where the font-family property shows
Inconsolata being present.

The other grid graphical parameter that controls the appearance of fonts is fontface.
This is the parameter that determines whether a font is bold or italic. The mapping
from grid to SVG is quite clear, though it requires two CSS properties to be used instead
of just fontface. These properties are font-weight and font-style. font-weight

determines the thickness of a font’s text. This is used to embolden text. The font-style

property is used to modify the shape of the text, for example italicise text. Table 4.4
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shows the complete mapping from fontface to CSS properties in SVG.

fontface Parameter font-weight Value font-style Value

plain normal normal

bold bold normal

italic normal italic

oblique normal oblique

bold.italic bold italic

Table 4.4: Mapping the fontface parameter to CSS properties.

With the added support of two grid graphical parameters, fontfamily and fontface,
gridSVG can now draw text in SVG that reproduces the appearance of grid text.

4.1.7 Raster Graphics Objects

grid has the ability to include raster images into its plots. This presents a problem when
writing to SVG because raster images cannot be represented as a vector graphic, even in
SVG. Fortunately, SVG can import raster images (e.g. PNG, JPEG, GIF) through the
use of the <image /> element. This element imports a raster image that is not embedded
within the SVG image itself.

When translating grid’s raster graphics objects to SVG, producing the SVG code is
reasonably simple. However, complications in the translation process arise when we
attempt to store raster graphics objects in a raster image format. The reason for the
complication is the due to interpolation of raster images. Interpolation is the process of
approximating the appearance of an image when it is scaled. Figure 4.16 shows the effect
of interpolation using the interpolate parameter that is available on raster graphics
objects.

(a) A raster image that is resized without
interpolation.

(b) A raster image after resizing with inter-
polation.

Figure 4.16: The appearance of resized raster images.
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We can see in Figure 4.16 the behaviour of grid’s interpolation. It turns the two pixel
image into a gradient. When interpolation is absent, the two pixels are simply scaled to
larger dimensions. If we were to scale the same image in a web browser, interpolation is
always applied. There is no way of telling a browser, through SVG, not to interpolate an
image.

The approach that is taken by gridSVG when there is no interpolation on raster graphics
objects is to first write the raster to a PNG image. The PNG image is assumed to have
the same dimensions as the space that is occupied by the largest appearance of the raster
image in SVG. Despite SVG being resolution independent, we can make this assumption
because the SVG images gridSVG produces nominally use pixels for dimensions. The
result of the decision to write to SVG dimensions results in PNG images that are not as
small as possible. For example, in Figure 4.16 the raster object has only two pixels of
data. This could be written to a PNG image that is two pixels high by one pixel wide.
Instead, to avoid interpolation we write to a PNG image with larger dimensions, e.g. 200
pixels high by 100 pixels wide.

When a raster graphics object has interpolation enabled, we use the same method of
writing to a PNG file as if it were disabled. The reason for this is because a web browser
may not interpolate an image in the same way that R does. This is why we don’t simply
write a PNG image with the same dimensions as the raster graphics object.

The PNG file that is produced is given the same file name as the grid raster object,
suffixed by .png. This is a clear naming scheme that allows us to reliably know the
location that a raster image is saved to. Knowing the location of the raster image is
necessary for SVG’s <image /> element, as it imports a raster image into the SVG image
from a known location. A demonstration of the SVG image that gridSVG produces from
raster graphics objects is shown in Figure 4.17.

> grid.raster(matrix(1:2/3, ncol=1))

(a) A basic raster image consisting of two pixels, identical in appearance to Figure 4.16b.

<g id="GRID.rastergrob.1" >

<image id="GRID.rastergrob.1.1"

width="284" height="566"

xlink:href="GRID.rastergrob.1.png" />

</g>

(b) The SVG code produced from Figure 4.17a.

Figure 4.17: The mapping of a grid raster image to SVG.

The example in Figure 4.17 shows how a two pixel image, stored in a raster graphics object
named GRID.rastergrob.1 translates to SVG. Firstly, because there may be multiple
appearances of the same raster image, we need a group element. The <image /> element
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is given the name GRID.rastergrob.1.1 because it is the first (and only) appearance
of the raster image. The raster image has been turned into a PNG file with the name
GRID.rastergrob.1.png, with a height and width of 566 and 284 respectively. In order
to import this image into SVG, the xlink:href attribute uses the predetermined file
name.

4.1.8 gTrees, viewports, frames and cellGrobs

In the grid graphics system, almost all graphics objects directly produce graphical content.
However, a graphics object that does not do so is a gTree. A gTree is a graphics object
that contains other graphics objects. These graphics objects may be common graphics
objects like rectangle objects, but they can also be gTrees. An example where this might
be applied is drawing text with a rectangular border. This is illustrated in Figure 4.18.

> rg <- rectGrob(height = 0.1, width = 0.3)

> tg <- textGrob("gTree Example" )

> ex <- gTree(children = gList(rg, tg),

+ name = "example-gTree" )

> grid.draw(ex)

> grid.ls()

example-gTree

GRID.rect.1

GRID.text.2

(a) A basic gTree consisting of two graphics objects.

gTree Example

(b) The image produced from Figure 4.18a.

Figure 4.18: Using a gTree to create bordered text.
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Figure 4.18 requires explanation in order to understand the behaviour of gTrees. In
the first two lines of Figure 4.18a we are creating a rectangle graphics object and a
text graphics object. These graphics objects, rg and tg, have not been drawn yet and
consequently are not on grid’s display list. When creating the gTree on line 3, we use
the children parameter to include the graphics objects in the gTree. The gList()

function that is used on the children parameter simply groups the graphics objects
together. Because the gTree graphics object we created has not been drawn yet, we draw
it using grid.draw(). This gives the appearance of drawing both the rectangle and the
text using one graphics object. Given that the gTree has been drawn, we can inspect
it in grid’s display list. The display list shows that our gTree has in fact been drawn,
however, the names of the rectangle and text graphics objects are also present. The extra
indentation applied to GRID.rect.1 and GRID.text.2 shows that they are children of
our gTree named example-gTree.

When using a gTree, we can determine the viewport it is drawn in using the vp parameter.
This parameter, while supported on regular graphics objects, was not supported correctly
on gTree objects. Without this support, plots created using the ggplot2 library would
fail to draw at all. This is because ggplot2 plots are created by drawing a gTree that
contains everything necessary to draw the entire plot. The detailed solution to the vp

problem will not be discussed here.

There are common grid graphics objects that are also gTrees. These graphics objects are
frames and cellGrobs. The lattice package often uses frames and cellGrobs to create
legends. In order to support these two graphics objects, only slight modifications needed
to be made given that generic gTrees have been implemented. This was to support the
parameters framevp and cellvp that are used instead of vp. The effect of this change is
shown in Figure 4.19.
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(a) A lattice demo plot before support-
ing frame and cellGrob graphics ob-
jects.
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(b) A lattice demo plot with a correct
legend.

Figure 4.19: Demonstrating the effect of frame and cellGrob support.
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We can see in Figure 4.19b that several graphics objects are being drawn. There is in fact
one frame that contains several cellGrobs, each containing the graphics objects that
are components of the legend.

4.1.9 Points

A common feature of plots is that they often use points to represent observations. gridSVG
was lacking in its support of points for a few reasons. Firstly, it only supported two
plotting characters, whereas grid is able to support over 100. Secondly, it was assumed
that when drawing a set of points, all points would have the same plotting character.
Finally, gridSVG was deficient in its support of points in that the size of its points were
often incorrect.

To fix the first problem, the task of observing plotting characters present in R and
translating them to grid graphical objects was undertaken. The reason why this translation
is necessary is because SVG does not have an equivalent of a plotting character. This
means that to draw a plotting symbol like a dot, we must use a grid circle, which can
map to an appropriate SVG element. For some plotting characters, it was necessary to
produce multiple graphics objects. In this case we apply the same grouping rules as in
Section 4.1.1. A demonstration of this is shown in Figure 4.20.

(a) Plotting character #10.

<g id="GRID.points.4" >

<g id="GRID.points.4.1" >

<polyline id="GRID.points.4.1.1" ... />

<polyline id="GRID.points.4.1.2" ... />

<circle id="GRID.points.4.1.3" ... />

</g>

</g>

(b) SVG code used to produce the plotting character in Figure 4.20a.

Figure 4.20: Demonstrating the use of multiple elements when translating a plotting
character.
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We can see the grouping rules from Section 4.1.1 being applied through the use of the <g>

element along with the naming scheme. The name of the graphics object must therefore
be GRID.points.4 and the point that we see is the first (and only) point produced from
this graphics object. We then see three SVG elements in use, two of these are lines
and one is a circle. The reason is because the plotting character is implemented as a
grid circle along with a vertical grid line and a horizontal grid line. By implementing
this method for several of the plotting characters, gridSVG gains the ability to plot all
characters to a reasonable degree of accuracy. A comparison of grid’s implementation of
plotting characters versus gridSVG’s is shown in Figure 4.21.

●

●

●

●

●

●

●

(a) Plotting characters 0 − 25 as shown in grid.

(b) gridSVG drawing plotting characters 0 − 25.

Figure 4.21: Comparing the implementations of plotting characters between grid and
gridSVG.

Although not all of the plotting characters shown in Figure 4.21 are identical, we can
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now draw any plotting character and have an implementation of it in SVG.

Now that we can draw many plotting characters, it would be useful to be able to use more
than one when plotting a set of points. The correction to gridSVG required vectorising
the code so that it checked which plotting character to use for each point. Previously it
would only check for the plotting character that would be used on the first point and
applied it to every point.

The final fix to points is the point sizes. Often point sizes are defined using grid’s char

unit, as is the case with lattice plots. This is reasonable because after all, it’s a plotting
character that is being drawn. However, when the char unit is used, we cannot use the
information present using a graphics object’s graphical parameters to determine its actual
size. This issue arose when we tackled the problem of multi-line text and the solution is
much the same. Again, to find the height of a character we create a text object with
the text “M”. The point object’s graphical parameters are applied to the text object for
correct sizing. We then use grid’s unit conversion functions to turn the height of the “M”
into a more usable unit. This process allows us to produce more accurately sized points.

4.2 Viewport clipping

While viewports in gridSVG were supported, they lacked the ability to apply the clip

parameter. This parameter allows for clipping to occur on viewports. If a viewport
enables clipping, then anything that attempts to draw beyond the boundaries of a
viewport will not be shown. An example of clipping is shown in Figure 4.22.
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> # Creating a new viewport in the middle of the plot

> pushViewport(viewport(width = 0.5,

+ height = 0.5,

+ clip = "on" ))

> # Showing the size of the viewport

> grid.rect(gp = gpar(lty = "dashed" ))

> # Drawing large text that exceeds the size of the viewport

> grid.text("Hello, world!" , gp = gpar(fontsize = 56))

> # Leaving the viewport

> popViewport()

(a) Code used to produce a viewport with clipping enabled.

Hello, world!

(b) An example of viewport clipping in grid, using code from Figure 4.22a.

Figure 4.22: Demonstrating viewport clipping in grid.

We can see that because the text “Hello, world!” is drawn large enough to exceed the
dimensions of the viewport, it is partially obscured. The application of clipping on
viewports allows drawing to be restricted to a defined region.

There are three options that a grid viewport can take on its clip parameter. These
options are “on”, “inherit” and “off”. If clip is set to “on”, then no output will be drawn
outside the dimensions of the viewport. When clip is set to “off”, all graphical output
will be drawn regardless of whether it appears within the regions of the viewport. Lastly,
the clip option of “inherit” means that a viewport will clip to the same region as any
viewports it exists within. For example if a viewport has clip set to “on”, then any
viewport created within that viewport which uses “inherit” will clip to the same region
as the parent viewport. We can demonstrate this by modifying Figure 4.22 to produce
Figure 4.23.
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> # Creating a new viewport in the middle of the plot

> pushViewport(viewport(width = 0.5, height = 0.5, clip = "on" ))

> # Showing the size of the viewport

> grid.rect(gp = gpar(lty = "dashed" ))

> # Creating aviewport in the middle of the current viewport

> pushViewport(viewport(width = 0.5, height = 0.5,

+ clip = "inherit" ))

> # Showing the size of the viewport

> grid.rect(gp = gpar(lty = "dashed" ))

> # Drawing text larger than the current viewport

> grid.text("Hello, world!" , gp = gpar(fontsize = 56))

> # Leaving both viewports

> popViewport()

> popViewport()

(a) Code used to demonstrate a viewport that inherits a clipping region.

Hello, world!

(b) An example of viewport clipping using “inherit” in grid, using code from Figure 4.23a.

Figure 4.23: Demonstrating viewport clipping using “inherit” in grid.

We can see in Figure 4.23b that the text does not get clipped to the viewport it is in.
However, the viewport the text was drawn within inherited the clipping region of its
viewport. This is why the text is drawn outside its viewport dimensions but is still
partially clipped.

When gridSVG begins its process of creating SVG images, it parses what is present in
the current plot and attempts to recreate it. In doing so, when gridSVG moves into a
viewport, its clip parameter is inspected. If the parameter is set to “on”, then we need
to implement the clipping region in SVG. This does not require much extra work because
gridSVG has already created a <g> element to group all of the graphics objects together
that are drawn within it. The reason this is useful is because SVG allows us to define a
clipping region on a <g> element, which affects all of the elements within the <g> element.
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A clipping region implemented in gridSVG produces output similar to Listing 4.8.

<defs>

<clipPath id="VP.clipPath" >

<rect x="142" y="142" width="283" height="283" />

</clipPath>

</defs>

<g id="VP" clip-path="url(#VP.clipPath)" >

...

</g>

Listing 4.8: SVG code that clips a group of elements to the area of a rectangle.

What is being produced by gridSVG looks similar to the code used to apply arrows to
lines. We can see the use of the <defs> element, which allows the use of its contents to
be referenced. Following this, we observe the <clipPath> element. This is the element
that we reference when we want to clip a <g> element. The clipping path is defined as a
rectangle that is, in this case, positioned at (142, 142) and has a height and width of 283.
This means that anything outside this region will be clipped and therefore not drawn.
We apply this clipping path to the <g> element in the same way we applied markers to
line elements, using the url() function. Again we are required to implement a naming
scheme so that we can reference the clipping path from the <g> element. The naming
scheme used is to take the viewport’s name and suffix it with clipPath.

However, a problem is encountered due to the fact that when we create a group for a
viewport, we would be giving it a non-unique identifier. This is because a viewport may
be used multiple times by gridSVG when drawing a plot. When a viewport was applied
more than once, the result is multiple <g> elements with the same name. In doing so,
when we create multiple clipping paths they all receive the same name. When an SVG
renderer attempts to work out which <g> element to clip, it will make a choice, but this
behaviour is undefined. This means that gridSVG would only be able to clip to a single
usage of a given viewport.

The solution to this problem requires creating another naming scheme to ensure a unique
identifier is applied to a <g> element. gridSVG does this by keeping track of how many
times a viewport has been used. The name that is applied to a <g> element now becomes
the name of the viewport suffixed by the number of times the viewport has been used.
For example, the first appearance of a viewport called VP will produce the name VP.1. A
demonstration of this behaviour is shown in Figure 4.24.
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> # Storing a viewport named "example"

> vp <- viewport(width = 0.5, height = 0.5, name = "example" )

> # First use of the "example" viewport

> pushViewport(vp)

> grid.rect()

> popViewport()

> # Second use of the "example" viewport

> pushViewport(vp)

> grid.circle()

> popViewport()

(a) Code used to demonstrate a viewport that is used more than once.

<g id="example.1">

...

</g>

<g id="example.2">

...

</g>

(b) A subset of gridSVG’s output after processing Figure 4.24a.

Figure 4.24: Demonstrating gridSVG’s viewport naming scheme.

Using Figure 4.24 we can observe that the first use of the viewport named “example”
produced an SVG <g> element with the name of example.1. The second use of the
viewport produced a <g> element with the name example.2. This confirms that gridSVG
is now creating unique identifiers for viewports. We can now clip to <g> elements safely,
using SVG code similar to what is shown in Listing 4.8.

Although gridSVG can now clip to elements, the only cases that have been implemented
are when a viewport’s clip parameter is on or off. This is because we can only get to
inspect one viewport at a time. The only clipping region information we have available
to us when inspecting a viewport is whether or not graphical output can exceed the
viewport’s dimensions. In order to support inherit we need to know the clipping region
of a parent viewport, which gridSVG cannot do at the moment. Further work in this area
may be explored in future.

4.3 Animation

While most of the work involved in the development of gridSVG involved creating accurate
graphical output, a feature of gridSVG that was also improved was its ability to animate
graphical objects. When animating a graphical object, gridSVG is able to write an
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<animate> element that describes the behaviour of the animation. The <animate>

element requires three key pieces of information: the name of an element, the attribute to
be animated and values that the attribute is going to animate through. For example, in
order to move a rectangle right from (2, 0) to (5, 0) the animate element needs to know the
name of the circle, that the x attribute is being changed and that it is being changed from
2 to 5. The function that gridSVG provides that handles this task is grid.animate().

Some of the changes that were made to gridSVG when improving its ability to draw plots
caused grid.animate() to no longer function correctly. The most important of these
changes are that there is no longer the assumption that one graphics object produces one
SVG element. The naming scheme applied to SVG elements means that when we want
to animate a graphics object like a rectangle, we need to know exactly how many visible
rectangles the graphics object produces. For example, assume two rectangles have been
produced from one graphics object named GRID.rect.1. When attempting to animate
this graphics object using gridSVG, the problem we encounter is that although the names
given to SVG elements are known, grid is not aware of them. This means that when
animating the first rectangle in a rectangle object named GRID.rect.1, we cannot simply
attempt to animate GRID.rect.1.1 as it does not exist.

The solution that was applied to gridSVG is that a matrix of values can now be used to
animate a graphics object, rather than a vector. The columns of each matrix refer to each
of the graphical elements that a graphics object produces. Each of the rows is the value to
be shown at a given time. Because a matrix is being used, R’s behaviour regarding matrices
requires us to provide values for every column of the matrix. Consequently, whenever
animation occurs on a graphics object we need to animate every element produced by
that object. An example of animation using a matrix is shown in Figure 4.25.
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> # Creating two rectangles using one graphics object

> grid.rect(x = c(0.3, 0.7), y = 0.4,

+ width = 0.2, height = 0.2,

+ gp = gpar(fill = "black" ))

> # Finding out the name of the object

> grid.ls()

GRID.rect.1

> # A matrix of y values to animate through

> ymat <- matrix(c(rep(0.4, 3), 0.4, 0.7, 0.4), ncol = 2)

> ymat

[,1] [,2]

[1,] 0.4 0.4

[2,] 0.4 0.7

[3,] 0.4 0.4

> # Applying the animation

> grid.animate("GRID.rect.1" , y = ymat)

(a) Code used to animate a single rectangle vertically.

(b) A rectangle moving vertically from y = 0.4 to y = 0.7 and back to y = 0.4.

<animate xlink:href="#GRID.rect.1.1"

attributeName="y" values="170;170;170" ... />

<animate xlink:href="#GRID.rect.1.2"

attributeName="y" values="170;340;170" ... />

<g id="GRID.rect.1" >

<rect id="GRID.rect.1.1" ... />

<rect id="GRID.rect.1.2" ... />

</g>

(c) SVG code produced by gridSVG.

Figure 4.25: Demonstrating the animation of a graphics object that produces more than
one SVG element.
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The rectangle graphics object that was created in Figure 4.25 produces two visual
rectangles. A matrix was then created for the purpose of moving the second rectangle
from y = 0.4 to y = 0.7 and back to y = 0.4. In order to keep the first rectangle
stationary we repeated 0.4 three times, producing the first column of the matrix. The
second column of the matrix is simply the y values we wish to animate the second
rectangle through. We then call grid.animate() in order to declare that animation is to
occur on a graphics object. The first parameter given is the name of the graphics object
that is to be animated, any parameters following this are properties of the graphics object
to be animated. In this case we are animating GRID.rect.1 by its y attribute using
values in our matrix. When gridSVG writes this to SVG we can see that the <animate>

elements refer to each of our rectangle elements. The attributeName states that we are
animating by y, and the values indicate the values we are animating through, separated
by semicolons.

The use of matrices to animate properties of a graphics object is a usable solution to
our initial problem. However, there are some consequences. Our application of matrices
assumes when animating positional or sizing attributes that they fulfil three requirements.
The first of these requirements is that all values of the attribute have the same grid unit.
This means we can’t correctly animate through a set of x values where some of the xs
are being specified in inches while others are in centimetres. Another requirement is that
the units themselves cannot be complex units, i.e. units composed of more than one type
of unit. An example of a complex unit would be where a height is specified as being 3
inches plus 2 centimetres. The third restriction is that the animation values use the same
unit as the attribute they are animating. If a rectangle is one inch wide, anything that
animates the rectangle’s width must be measured in inches.

The reason for these restrictions is the fact that matrices can be composed of either
numeric, boolean or character values. There is therefore no way of using grid’s unit type
to specify values to animate through. These restrictions do not apply to parameters of
graphics objects that have character or boolean values.

When improving grid.animate() another issue that had to be mitigated is that points
can be composed of several types of graphics objects. Consequently, a parameter of a
grid graphics object can map to many different SVG attributes. An example of this is a
plotting character composed of a circle and two lines (see Figure 4.20a). When animating
its x values, we need to move the circle along its cx attribute in SVG, while the line must
be animated by its points attribute. This means when extending animation support for
points graphics objects, we need to know the structure of the plotting character that is
being animated. The current solution is simply to implement support for each plotting
character individually. This means any change in how gridSVG draws a plotting character
may break animation support for that plotting character.

The method of animating grid graphics objects has been revised to account for recent
developments in gridSVG. In addition, several graphics objects can now be animated
along many of their properties.

47



5 Demonstrations

In order to show the progress that has been made and the possibilities of gridSVG, some
demonstrations of animated and interactive graphics have been made. All figures showing
demonstrations are screenshots taken while viewing the images in a modern web browser.

The first example, Figure 5.1, is a lattice plot that demonstrates interactivity. When the
mouse cursor hovers over a graphical element, it shows a tooltip that bears the name of
the grid graphics object that produced the element.

Figure 5.1: A plot showing a tooltip of each graphics object’s name.
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The example shown in Figure 5.2 is another demonstration of interactivity within a lattice
plot. In this case, it is used to show additional information about an observation in the
plot. When hovering over a point on the plot, the point itself doubles its radius while the
text at the bottom of the plot shows the name relating to the observation.

Figure 5.2: Showing the effect of hovering over a point in an interactive plot.
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While interactivity has been shown, animation is a key feature of the types of plots
gridSVG can create. In order to illustrate this, an example, Figure 5.3, was created that
shows a sample being gathered from a population of data. A boxplot is then drawn from
this sample to summarise the data.

The animation shows points from the population “falling” into the sample until all of the
sample points have moved down. The boxplot is then drawn on the sample, and moves
down to its final position.

Figure 5.3: An animated example of points being samples from a population, then
summarised using a boxplot.
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Time series information is an obvious area in which animation can be applied. An
animated plot, Figure 5.4, has been created that plots the log of stock prices for well
known technology companies over a year. The lines that represent the stock prices of the
companies draw over time until the end of the year of data.

Figure 5.4: An animated example of time series data. The lines appear to draw themselves
over time.
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The final demonstration is an implementation of the type of plot made famous by
Hans Rosling and the Gapminder software package (Gapminder Foundation, 2011). In
Figure 5.5 we have several variables to consider. We are plotting life expectancy against
the number of children per woman for each country. This is animated over time so each
“bubble” moves over time. The size of each “bubble” is determined by the population
of the country it represents. There are six plotting regions, one for each continent. We
observe that over time the “bubbles” move towards the top-left, indicating a trend towards
an improvement in life expectancy and a reduction in the number of children per woman.
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Figure 5.5: An example of a Gapminder-like “bubble” plot.
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6 Discussion

Comparison to SVGAnnotation

The development of gridSVG has led not only to visible improvements in the images it
produces, but also to the ability to apply it to real-world grid graphics. It has become a
viable alternative in the area of web-based interactive graphics as it can capably produce
animated and interactive R graphics. The only other solution that offered anything similar
to what has been accomplished is SVGAnnotation. The key issue with SVGAnnotation,
that it lacks transparency, can now be compared against gridSVG.

Transparency can be demonstrated simply by comparing the output of R’s svg() device
when against gridSVG’s output. Because SVGAnnotation uses images that the svg()

device produces, we can see what information must be used to create animated and
interactive plots. When drawing the text “Hello, world!” in grid, we compare the different
SVG images using Figure 6.1.
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> grid.text("Hello, world!" )

> grid.ls()

GRID.text.1

(a) A simple example using grid graphics.

<defs>

<g>

<symbol id="glyph0-0" >

<path d="..." />

</symbol>

...

<symbol id="glyph0-9" >

<path d="..." />

</symbol>

</g>

</defs>

<g>

<use xlink:href="#glyph0-0" x="218" y="256" />

...

<use xlink:href="#glyph0-9" x="281" y="256" />

</g>

(b) A subset of the SVG code produced by the svg() device to create the image described by
Figure 6.1a.

<g id="GRID.text.1" >

<g id="GRID.text.1.1" >

...

<text>

<tspan>Hello, world!</tspan>

</text>

...

</g>

</g>

(c) A subset of gridSVG’s output from Figure 6.1a.

Figure 6.1: Comparing the output produced by the svg() device and gridSVG.

Observing the different SVG code produced, we can see that SVGAnnotation has little
information to work with. There is no way of knowing directly from the output that the
text object we used was in fact GRID.text.1. We can clearly see in gridSVG’s SVG code
what GRID.text.1 has been translated to. This means that anyone who wishes to write
JavaScript that interacts with the SVG image will know in advance exactly what they
need to target — the name of the grid graphics object.
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The output produced by the svg() device will be more accurate to the image shown
when viewing a plot in R. However, there are several advantages in the approach that
gridSVG takes. Firstly, it maps graphics objects to appropriate SVG elements, while the
svg() device always maps to a <path /> element. By using appropriate SVG elements
we gain features that SVGAnnotation simply cannot provide, primarily regarding text.
Among the additional features are text selection, text search and the ability to use fonts
unknown to R.

Another issue with the svg() device always using the <path /> element is when we
attempt to manipulate it either through animation or JavaScript. An example of a
graphics object where gridSVG makes this task easier is with circles. If we wish to
manipulate the radius of a circle, we can use the fact that SVG’s <circle /> element has
a radius attribute (r) to perform the manipulation. This makes animation straightforward
for grid.animate() and it makes writing JavaScript easy as we just have to change the
value of the attribute. To perform the same manipulation on a <path /> element, it is
necessary to rewrite path data which is a non-trivial task.

The approach that gridSVG takes appears to be more beneficial than the potential cost of
having less accurate images. However, SVGAnnotation is the only option when using R’s
base graphics engine as gridSVG is restricted solely to grid graphics. This is a downside
to gridSVG. However, the fact that popular plotting libraries lattice and ggplot2 use grid
means that many plots will still be able to benefit from gridSVG.

Processing Time

An issue when creating SVG images using gridSVG is the large amount of time taken to
produce an image. This is largely due to the amount of graphics object manipulation
that gridSVG performs. There is no easy solution to this problem. A consequence of
the amount of processing required is that dynamically generated images created and
delivered by a web server are currently infeasible.

Grouping Issues

When developing gridSVG one of the key design decisions was the choice of grouping
elements relating to a graphics object. This meant that in SVG, the name of a graphics
object doesn’t refer to a graphical SVG element, merely a set of graphical elements. A
consequence of this decision is that a user cannot write JavaScript that targets the name
of a graphics object. Instead the children of the element with the name of the graphics
object must be used instead. Because of the naming scheme that is applied, it must be
known in advance exactly which child element is the target. Despite this, the naming
scheme provides a transparent and reliable means of accomplishing this task.

A task that was made easier by the introduction of grouping graphics objects is when
applying JavaScript event attributes to a graphics object. When an attribute like
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onmouseover is added to a <g> element, any children of the <g> element implicitly have
the same event attribute applied along with its associated value. This process is known
in JavaScript as event capturing. An example where this might be useful is if you have a
set of points that you want to highlight when you hover a mouse cursor over them. If the
points object is given the name GRID.points.1, then all we need to do is garnish the
GRID.points.1 object to include the appropriate event handling code. The JavaScript
that is written can then simply change the colour of the element that triggered the event
to perform highlighting.

It is not yet known whether this decision to perform grouping is the best solution. It
provides a means of mitigating many of the problems we have encountered and appears
to have useful and reliable properties for our uses.

X-splines to Lines and Paths

A design decision that may be re-evaluated in future is the decision for x-splines to
become lines or paths, depending on whether the x-spline is open or closed. We used a
line graphics object for open splines because they cannot be filled and because grid path
objects are always closed. It may prove beneficial to always use paths for consistency.
This would mean that the only difference in SVG output between open and closed splines
are attributes of the resulting <path /> element. In this case an open spline would be
an open path with no fill, while a closed spline would be a closed path with a fill. This is
an alternative to the current implementation.

Animation

Although a large amount of progress has been made on gridSVG, there is still room for
improvement. Some of this is due to the incompleteness of the current implementation,
especially with regards to animation. There are still some of graphics objects that do not
support animation, along with their associated parameters. The possible improvements
that will be considered relate to design decisions.

Points as Paths

gridSVG currently implements each plotting character for points objects as a grouped
set of grid graphics objects. Rather than using several graphics objects to implement a
plotting character, we could instead use a single grid path. The benefits of this choice
would be that we would be simplifying the SVG output. It would also make interactivity
via JavaScript a simpler task.

The downsides of this option are that <path /> elements are difficult to modify. This is
because there are no parameters which dictate size and position, only path data is present.
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Therefore, in order to animate the size and position of a point, path data must be parsed
and modified. Alternatively, a <path /> could be scaled and translated appropriately.
This is a viable solution, but it does require some care in ensuring that the line width of
a path does not change after scaling.

Viewports

Viewports are another area in which improvements could be made. Currently there is
no support for clipping on viewports when the clip parameter is set to inherit. This
is due to a viewport not containing information about the region it is clipping to, only
whether it defines its own clipping region. The grid graphics system does internally know
this information. A possible solution may be to expose this information to allow gridSVG
to inspect it. This would make it possible for clipping to occur on all parameters.

Viewports are also written out every time they are visited. While gridSVG works fine
using this approach, an alternative may be to store graphics objects for each viewport in
a queue. This would mean that each time a graphics object is drawn within a viewport,
the graphics object is stored on a viewport-specific queue. The reason why this might be
a better approach is that we would only end up writing out the viewport and its contents
once. This would also mean that a clipping path would only have to be written once. By
implementing this possible solution, the SVG code would be made more concise, but no
visual improvement would occur.

Using the XML package

We could also introduce the use of the XML package (Lang, 2011). This would improve
gridSVG’s ability to write out SVG. Currently the way in which SVG code is produced is
by writing out a string of text for each of the graphics objects and viewports. Rather
than using hard-coded strings of text which are prone to errors, we could use the XML
package to do this for us. This would make the process of writing to SVG a lot more
reliable within gridSVG.

Improvements to grid.garnish() and grid.hyperlink()

The previous suggestions for future improvements have all been regarding cosmetic
improvement to SVG code and not the usage of gridSVG. The functions grid.garnish()
and grid.hyperlink() could be modified to handle sub graphics objects in the same
way that grid.animate() does. Currently they apply their garnishing and hyperlinking
to the <g> element that groups together the graphical elements that are produced from
a graphics object. There is no way to use these functions to affect any of the elements
which are children of the <g> element. In other words, you either garnish and hyperlink
all elements (via the <g> element) or not at all. By using matrices or some other R data
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structure, we could use the functions in the same way that grid.animate() does. This
would provide a consistent interface for modifying graphical objects along with being
able to provide the functionality that is currently lacking.

The grid.*() functions that gridSVG provides either accept a matrix of input for its
parameters or have been suggested to do so when modifying graphical objects. It is
not yet known whether this is the best approach for handling input. A list as input
may prove to be more appropriate, or perhaps a combination of lists and matrices, or
something different altogether. Further investigation into the merits of these approaches
could certainly lead to an improvement in the usability of these functions.

File sizes

An issue with the output of gridSVG is that file sizes increase with the complexity of the
plot. It is easy to produce a plot that is several megabytes in size. Images of this size are
unsuitable for distribution on the web due to the time taken to download such a large
file.

Because SVG is text based and there is a lot of repeated text, SVG compresses well
with tools like GNU zip. This is not immediately useful for distribution because web
browsers cannot view compressed SVG images and simply download the image instead.
However, all the popular web server applications currently in use can be configured to
compress SVG on-the-fly. This means that if a web browser is able to accept compressed
text, it will be sent compressed text, and decompressed automatically by the browser.
Now we can still show and store large SVG files, but they are delivered as if they were
compressed.

A demonstration of the benefits of compression uses the stock ticker demonstration in
Figure 5.4. This image is 8.5MB in size, but it compresses down to just 86kB. This makes
an image that would take several seconds to deliver on a standard internet connection be
delivered almost immediately.

HTML

An interesting feature that was noticed during the development of gridSVG is the behaviour
of JavaScript when SVG is used within an HTML document. JavaScript that originates
from an HTML document can affect the appearance and behaviour of an SVG image.
Conversely, JavaScript that is inserted into an SVG image can affect the state of a web
page. An implication of this is that we can use the user interface controls that are present
in HTML to affect an SVG image. This could be useful if you wish to selectively show
some data in an SVG image, and could accomplish this using a combination of HTML
checkboxes and JavaScript. For example, the stock ticker example in Figure 5.4 could
show and hide each line using checkboxes.
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Implications

The implications of this project are that we can now create our own animated and
interactive grid graphics. These graphics can be extended more easily than previous
methods and allow the possibility of new R packages being created to build upon gridSVG.
These packages could automate the creation of plots like those demonstrated in Section
5. By using gridSVG we can also create statistical reports for distribution on the web
that engage the reader better than with static graphics.
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7 Conclusion

The gridSVG package for R has been extended to create animated and interactive graphics
for the web. It is now capable of producing plots from the lattice and ggplot2 packages
with the ability to animate and interact with them.

We have described the methods and decisions made during the development of gridSVG.
Primarily, the process of mapping grid graphics objects and viewports to SVG code was
discussed.

Applications of gridSVG have demonstrated features that the R graphics engine cannot
produce. These features provide a more engaging method of presenting quantitative and
qualitative information than static graphics.
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http://www.w3.org/TR/CSS2/
http://animation.yihui.name/
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