
Object Oriented Programming in
S-PLUS

Robert Gentleman

Short Course

Auckland, New Zealand

February 2003

c©Copyright 2003, all rights reserved

1



Outline

• Abstract Data Types

• Classes

• Methods

• S3 Classes and Methods

• S4 Classes and Methods

• Examples

2



Introduction

This module deals with advanced programming concepts. The tools
we will discuss can help you to write better programs and functions
and can help you to understand how and why good programmers
function.

Writing good programs is very much an art of applied abstraction.
Once the correct abstraction is found the programming often is
quite simple.

Wirth: Algorithms plus data structures = programs.

One thing to remember about object oriented programming is that
working in this style transfers a great deal of the programming
effort from actual programming to design.

3



Introduction

Over the next few hours we will explore some of the basic concepts
involved in object oriented programming.

I will first introduce the necessary ideas in an abstract setting and
then show how they relate to the two systems available in the S
language.

I have a prejudice, the old S3 class system (it isn’t an object
system) is very nice for interactive programming but is not
sufficiently robust to support real software engineering.

4



Introduction

Some reasons to perform object oriented programming:

1. productivity increase

2. easier to maintain code

3. reusable code

4. the design tends to follow the objects being modeled

5



Object Oriented Design

One identifies real objects and the operations on them that are
interesting.
These operations can then by systematically implemented.

For example: we might have pdfs and cdfs as different objects.
methods might be means, median, maxima and so on.

A basic principle (or perhaps hope) is that by faithfully
representing the objects we get easier to implement functions.

A cdf object should know how to answer all the cdf questions.

6



Abstract Data Type

This is a simple idea that can make your programs much more
modular and can make it relatively easy to change them.

Using abstract data types is little more than ensuring that your
programs do not depend on the representation (or implementation)
of a particular data structure, but rather on the functionality that
it is intended to provide.

Suppose that we have fit the following model, lm1 <- lm(y~x) and
you want to get the residuals.

7



Abstract Data Type

You can do one of:

• lm1$residuals

• resid(lm1)

Which is better?

Good arguments can be made to suggest that the second approach
is better. The first relies on the fact that the returned value from
the function lm is a list with a component named residuals. This
is not likely to always be true.

8



Abstract Data Type

A program that relies on the functional approach to retrieving the
residuals will be more robust.

When lm is modified to come in line with the new modeling code
the output will be an instance of an S4 class, not a list.

All code that relies on it being a list will be broken.

All code that relies on the function resid will still work. Because a
new version will be written that does work.

9



Abstract Data Types

We want to think of the object in terms of what we would do with
it, not in terms of how we have implemented it.
Think of a probability density – what sorts of things do you want
to do?
plot, integrate, find the max, find the mode

Do you care how it is implemented?

10



Programming Tip One

Avoid any dependence on implementation.

If need be write your own accessor functions.

Suppose that you are about to embark on a project that uses needs
to access components of a data structure then you should think
about writing the accessors as functions.

This simple device will let you completely change the data
structure at will with very little impact on your program.

11



Classes

A class is an abstract definition of a concrete real world object.

Suppose you are writing software to help a company manage its
human resources. Then the objects are people and any program
that implements those objects in format that reflects that will be
both easier to write and easier to maintain.

A class system is software infrastructure that is designed to help
construct classes and to provide programmatic support for dealing
with classes.

12



Classes: HR Example

To implement a class structure for our HR example we do not need
a lot of support (and in fact, what we need more than anything is
adherence to an abstract data type).

We could implement the class using lists in the S language.

Each employee will be represented by a list. The list will have
named components, name, salary, capabilities.

We call the named components slots.

13



Classes: HR Example

An employee (virtual) is said to be an instance of the employee
class.

It is important to distinguish between the class definition and the
objects that represent that class.

14



Classes: HR Example

Now, clearly there could be some advantage to making capabilities
a class of its own (and the same could hold true for the other two).

If we are careful never to assume much about the actual format of
the data in the capabilites slot we may be able to exchange its
representation quite painlessly.

In S3 there is no way to formally define a class. An object is
determined to be an instance of a particular class by examining its
class attribute.

This attribute is a character string and it has one entry for each
class that the object represents.

15



Classes

A second major aspect of classes is the use of inheritance or of
extension.

Suppose on our HR example we have employees and bosses. Now a
boss is simply an employee with some extra attributes.

A good way to design this is to have the boss class extend the
employee class.

In most object systems (but not S3) there are mechanisms for
having one class extend another. In S3 the programmer is largely
left to manage the details.

16



Classes

The basics of a class system are:

• some way to define the class and to create instances of the class

• some way to specify that a class extends one or more other
classes.

• some way to access and alter the values in the slots of a class

• some way to identify the class that an object belongs to

Notice that you need remarkably few constructs to have a working
class system.

17



Classes vs Objects

An object is a specific entity that exists at run time.

A class is a static entity that exists in the program code.

A class describes how to create an object (and in some languages
how to interact with that object)

We instantiate an object with a call to a constructor. Usually it
has a nice name like new.

x <- new("circle", r=3.3)

Now x is an instance of the circle class.

18



Methods

A method is very much like an ordinary function. About the only
difference is how it is invoked.

Both S3 and S4 rely on the notion of a generic function and
method dispatch.

Generic functions are the way in which the S language provides
polymorphism. Polymorphism is the property that the same
function provides different outputs depending on the types of its
arguments.

19



Methods

The argument list of a method is often called its signature.

The signature of the generic controls the signatures of the methods
defined for the generic.

It is common (especially in S3) to include ... as an argument in all
generics and methods. This ensures that others can extend the
definitions without too many restrictions.

20



Method Dispatch

The basic idea is that the generic function contains (or controls
access to a set of methods).

When call is made to the generic function three things are done:

1. the list of available methods is obtained

2. the methods are arranged in order from most specific to least
specific

3. the most specific method is called

21



Method Dispatch

The determination of which method is most specific is made based
on the classes of the arguments to the methods (and on the class
structure that they induce – ie. who do they inherit from)

Different programming languages have different ways of defining
this. The specific details are not yet fully documented for S.

In S3 dispatching is done on the first argument only (most of the
time). In S4 dispatching is done on all arguments.

There is a function called NextMethod that can be used to call the
next most specific method from within the body of any method.

22



Method Dispatch

Getting the right semantics can be difficult. In S, where the
language is dynamic and the inheritance tree could change during
the course of evaluation, it is particularly difficult.

In S3 the dispatch mechanism is quite loose. Objects can change
their class (or have it changed for them). This is quite bad
programming style.

In S4 the mechanism is much tighter and objects cannot change
their type or class (except through coercion).

23



The S3 Class System

This is a very loose collection of functionalities that can be used to
achieve certain goals.

I don’t like to call it an object system since there is no real notion
of objects within this system.

Any S3 object can become an instance of any class it wants to
simply by attaching a class attribute with the correct name.

There is no notion of one class extending another (at least in terms
of which slots are available).

24



The S3 Class System

Method dispatch is done entirely by convention. The generic
functions have no notion of which methods are associated with
them.

The location of methods is determined by string concatination. A
function named foo.bar is presumed to be a bar method for the
class foo.

There is no way to prevent that presumption.

There is no way to know what the role of a function named
foo.bar.baz is. It will be interpreted as both a bar.baz method
for the class foo and as a baz method for the class foo.bar.

25



The S3 Class System

When a method is accessed through the generic function the type
of the first argument is known.

In many cases the programmer would like to take advantage of that
and not do much checking.

Since S3 methods are just ordinary functions this is not possible.
They can be called directly and so all checking must be done.

There is no safety. You cannot presume that because you got an
object of class matrix that it is a matrix. It can be anything.

26



S4 Object System

The object system in S4 is much richer.
It has:

• a way of defining classes, handling inheritance

• generic functions that register specific methods

• multiple dispatch

It should be possible to develop large scale extensible software
systems using this functionality. There is a reasonable amount of
effort being expended to both define the langauge and to implement
a version that satisfies both the users and the developers.

27



S4 Object System

Defining classes in S4 is done with the function setClass which
has the following arguments (in order):

• Class: a character string to name the class

• representation: the names and types of all slots.

• prototype: a specification of what new instances should look
like at creation time. This can also be controlled by an
initialize method for the class.

• validity: a function that checks the validity of an instance (is
it a valid member of the class.

• access, where, version, left for the interested reader to
explore.

28



S4 Object System

We can define a class and create an instance from that class.

setClass("foo", representation(a="character"),

prototype=list(a="ccc"))

x1 <- new("foo")

x1

An object of class "foo"

Slot "a":

[1] "ccc"

29



S4 Object System

This class foo can easily be extended:

setClass("bar", representation("foo", b="numeric"))

x2 <- new("bar")

x2

An object of class "bar"

Slot "a":

[1] "ccc"

Slot "b":

numeric(0)

To include foo in the class definition we simply gave its name.
Notice that the prototype for foo was used in initializing the new
instance of bar.

30



Slot Access

Access to the values in a slot in S4 is via the @ operator for getting
values and via @<- for setting values.

For example, x2@a will return "ccc".

And x2@b <- 10 will set the b slot to have value 10. You can then
print x to see this.

Accessing slots directly breaks the data abstraction. You are now
relying on the implementation.

31



Abstract Data Types: Revisited

Consider a class that represents triangles (which we will do some
exercises on shortly).

That class can represented in many different ways; the three angles
involved, the lengths of the three sides, two sides and one angle and
so on.

We might want to do some calculations based on triangles (find
their area).

If we use x@area then we are relying on there being an area slot.

32



Abstract Data Types: Revisited

If we use area(x) then we are free to implement it as we see fit.

It could be a slot,

setMethod("area", "triangle", x@area)

33



S4 Object System

If instead you wanted to have a slot in your class that contained an
object of class foo that is different. Then you do

setClass("baz", representation(a="foo", b="numeric"))

new("baz")

A baz instance has two slots (like a bar instance) but one of those
slots is a foo instance, while for a bar instance the slot is a
character.

There is in principle no problem with having self-referential
definitions (although the S-PLUS implementation seems to get
annoyed),

setClass("xx", representation(a="xx", b="numeric"))

34



Virtual Classes

A virtual class is a class for which no instances can be made.

The purpose of a virtual class is to provide some common stucture
that is shared by a number of classes for which instances can be
created.

There are two ways to create a virtual class

1. have no representation in the call to setClass.

2. include the class VIRTUAL in the representation.

35



Virtual Classes

The "vector" class is a virtual class.

All the specific types of vectors, e.g. character, numeric extend
the vector class.

Try getClass("vector").

Then getMethods("length") will show a method for the virtual
class.

By using a virtual class, we can show the common structure
inherited by all vectors and allow each of them to extend that
structure in appropriate ways.

36



S4 Generic Functions

Defining generic functions is quite simple.

setGeneric("myFoo", function(object)

standardGeneric("myFoo"))

This defines a generic function and installs a default method.

This method is called if no other method is found to handle a call
to the generic function myFoo.

In most cases the appropriate action is to signal an error and
indicate that no method was found. That is basically what the call
to standardGeneric does.

37



S4 Generic Functions

Once the generic function has been defined you can start adding
methods.

The signature of the generic function (and of the methods) is the
set of names and types of arguments.

The choice of arguments for the generic can limit the methods that
can be defined on it, so some care may be needed.

setMethod("myFoo", "character",

function(object) print(object))

Defines a method for the generic myFoo that simply prints its value.

38



S4 Generic Functions

The behavior of the call myFoo(1) is to signal an error. There is no
method for numeric arguments.

On the other hand, myFoo("a") will print a.

You can remove generic functions, removeGeneric, and methods,
either individually (removeMethod) or as a group (removeMethods).

These can be quite handy for program development.

39



S4 Methods

To get some feel for polymorphism. Imagine that in your
application you believe that it is sensible to interpret the addition
operator, +, as operating on strings by concatenating them.

Then defining a method on +:

setMethod("+", c("character","character"),

function(e1,e2) paste(e1,e2, sep=""))

has the desired affect.

Addition on numbers still works as it did before. We say that the
addition function is polymorphic.

40



Replacement Methods

One of the conceptual hurdles in dealing with the S language is
learning to understand the pass-by-value semantics.

If every operation is carried out by a function call and arguments
are always copied then how does x[1]<-10 work?

The understanding of this is important for understanding
replacement methods.

The semantics of x[1]<-10 are:

x<- do.call("[<-", list(x, 1, value=10))

41



Replacement Methods

So what happens is first, x is copied, an the value of the first
element of x is changed to 10.

The function [<- returns an object just like x but with the
appropriate values changed.

Finally, S’s evaluator rebinds the symbol x to this new value.

Thus, you seem to have pass-by-reference in a pass-by-value
language.

42



Replacement Methods

For replacement methods the strategy is similar. First a generic
function needs to be created (with a <- suffix), then the
replacement method defined.

Note that the last argument is named value and that the method
returns the altered copy of its first argument.

These are both necessary for the approach to work.

43



Replacement Methods: Example

setGeneric("a<-", function(x, value)

standardGeneric("a<-"))

setReplaceMethod("a", "foo",

function(x, value) {

x@a <- value

x

})

a(b) <- 32

44



Documentation

There are some tools being developed in the R language for
documentation of S4 methods and classes.

These are at quite an early stage of development, but they should
be ready for users in either S-PLUS or R sometime this year.

There are tools, macros and so on, available at the C level for
working with S4 classes and methods.

See Appendix A.6 in Programming with Data for specific details on
the implementation. You should also consult any on-line materials
as this interface may be implemented in different ways on different
platforms.

45


