
Lecture 11, Object Oriented Programming,
Part II

December 4, 2001

Reminders

Object oriented programming is a style of programming that relies on five main
things

• Classes

• Objects (these are instances of the class)

• Methods/Generic functions. Generic functions are dispatcher while meth-
ods are thereal functions. Making methods available only through the
generic functions is considered to be a good design feature.

• Inheritance – we will consider that next.

• Polymorphism – more on that later.

A major reason for using OO programming is that it supports (and in fact
encourages) code reuse. That is, the same code (functions, procedures, data struc-
tures) can be used in many different places. This is a good thing because it means
that you can do not have to always reimplement something.

Code reuse is mainly encouraged through inheritance. Inheritance is slightly
confusing because the terminology is a new (and sort of goes in the wrong direc-
tion).

1

Inheritance

Suppose that I define a class shape (or geometric-shape, but we’ll use shape). Now
one of the interesting features of our shapes is area. So we will define shapes to
have areas.

setClass("shape", representation(area = "numeric"))

Now, we might want to define a number of shapes such ascircle , triangle ,
rectangle , polygon , square . If we define a new class for each one of these
shapes and we say that they extend the shape class then we get two things,

• We have anarea slot which is inherited fromshape .

• Any one of these objects can be used where ashape object is required.

setClass("triangle", representation("shape", a = "numeric",
b="numeric", c="numeric"))
tr1 <- new("triangle", a=3,b=4,c=5)

setClass("rectangle", representation("shape", a = "numeric",
b="numeric"))
rtgl1 <- new("rectangle", a=3,b=4)

setClass("square", representation("shape", a = "numeric"))
sq1 <- new("square", a=3)

So that even though squares and rectangles have a lot on common it is not
clear how to use that to advantage.

Some terminology. The classsquare is said toinherit from the classshape .
In Splus you should always use the functioninherits to determine inheritance.
Another common description is thatshape is asuperclassof square and hence
thatsquare is asubclassof shape . Now some people find this confusing since
square has more slots thanshape since it gets all ofshape ’s and any of its
own. Sosquare is in some sense bigger – but it is still the subclass. The reason
for that is that we calling something a subclass or a superclass we generally are
thinking of the inheritance tree.

In a good class system the classes form a tree–like structure. The top of the tree
is the base element (often calledobject) and inherited by all classes (unfortunately
S does not quite work this way). Then you can think of a new class as a node and

2

it has an edge to every class that itextends(or that is a superclass of that class).
This gives us a tree structure. Most good implementations prevent there from
being cycles in that graph (or tree). We don’t want to say that A inherits from B
and that B inherits from A. That doesn’t really make any sense and causes some
programmatic as well as logical difficulties.

Virtual Classes

It is sometimes convenient to link together classes into a hierarchy underneath a
virtual class. This class does nothing more than provide a common ancestor for
all of the derived classes. Consider theshape class described above. We never
want to have an instance of a shape. It would make no sense really. Shape is
an abstract concept that ties together our notions of rectangle, circle, and so on.
Generally, a virtual class cannot be instantiated.

In the S methods system there is a virtual class calledvector . This class is
extended by all the different types of vectors. Integer vectors, character vectors
etc. These different flavors all share a common structure and will respond to some
common questions. Examples of common functions:

[The subset operator (and of course,[<- , the subset assignment operator).

length All vectors should be able to tell us how long they are.

The list is much longer of course, but you should see the idea. I can implement
these methods once for all vectors. Other methods, such as printing will be han-
dled differently for the different vector–types.

This is an example of code reuse, or perhaps of good design which prevented
code explosion.

Notice that inheritance and abstraction are closely related. One of the most
powerful tools we can bring to bear on any problem is abstraction (not just pro-
gramming problems). Inheritance helps me out because it allows me to think of
shape–type solutions for shapes and about circle–type solutions for circles.

1 Polymorphism

One of the real strengths of generic functions is that they support polymorphism.
If you have done any plotting in SPlus or R you have used polymorphism. The

3

codeplot(x) does not know until run time whatx will be and hence it does not
know whichplot method will be called.

In the S system polymorphism is used a lot byplot , summary andprint
(or show in Splus6).

There is another set of polymorphic operators (functions in some sense but not
quite).

> get("+")
function(e1, e2)
if(missing(e2)) e1 else .Internal(e1 + e2, "do_op", T, 5)

Notice that+ is simply a function. Now, many of these operators can be
grouped together. Then, methods can be defined for the group.

> getGroupMembers("Arith")
[1] "+" "-" "*" "ˆ" "%%" "%/%" "/"
> getGroupMembers("Ops")
[1] "Arith" "Compare" "Logic"

So you can define methods specifically for any operator, eg a+ method, or a
method for theArith group or for theOps group.

Lets consider the following example. Suppose that I have some longitudinal
data. Say, some time points and some values. For example blood pressure mea-
sured at specific times for a bunch of people. A class for this might be

setClass("lgtdl", representation(times="numeric", values="numeric"))

lgtdl1 <- new("lgtdl", times=1:10, values=rnorm(10))
lgtdl2 <- new("lgtdl", times=1:10, values=runif(10))

Now, suppose I want to write a method for adding two together. What might
that mean? Well, I guess if thetimes are the same then we could add the
values . So something like:

setMethod("+", signature(e1="lgtdl", e2="lgtdl"),
function(e1, e2) {

if(!identical(e1@times, e2@times))
stop("can only add lgtdl’s with identical times")

e1@values = callGeneric(e1@values, e2@values)
e1

})

4

If I wanted to have code for subtraction, multiplication etc. I could do that. How-
ever, I can simply define a method for theArith class and by inheritance it will
apply to all the operators.

\begin{verbatim}
setMethod("Arith", signature(e1="lgtdl", e2="lgtdl"),

function(e1, e2) {
if(!identical(e1@times, e2@times))

stop("can only add lgtdl’s with identical times")
e1@values = callGeneric(e1@values, e2@values)
e1

})
#now you can use

lgtdl1/lgtdl2

You can always define a specific method for any one of these operators. That
specific method will have precedence over anyArith method, which will have
precedence over anyOps method. Again, inheritance plays a role. When S de-
cides which method to use it takes the most specific one it can find. That makes
sense because you have written that specific method and want it to be used.

Here again, we have real code reuse (or viewed differently a lack of code prop-
agation). For a more complete version oflgtdl seewww.cran.r-project.org

The generic function,+ and friends, can be thought of aspolymorphic. They
determine the types of their arguments and dispatch on them. This allows us to
think of a natural set of generic functions such asplot , print , without having
to think of how the name has been mangled to get a different plot for each type of
object that we want to plot.

Some important steps in any object oriented design process:

1. identify the objects and their attributes.

2. determine what sorts of things can be done to each object.

3. determine what the objects do to each other (how do they interact?)

4. determine which parts of an object should be visible

5. decide on a public interface to the object

Some of these are not available in the current S methods system. But hopefully
over time they will become available (this system is now under active development
and is evolving).

5

A problem

I want to store the results of a simulation that I have done into a list. I also want
to be sure that that list contains only the results of alm fit. If that is true then it is
much simpler to write other functions (methods) that operate on the list.

We define a container to be any list whose elements are all of a specific type
(we will change this slightly a little bit later).

If you look in the file calledcontainer.R in

˜rgentlem/SplusExamples

you will see some code to implement this class.
Basically a container is simply a list and I have done two things to it. I have

controlled what can go into the list and I have controlled whether what is in the
list can be changed (locked prevents changes).

In both cases I have implemented that behaviour by controlling access to the
replacement method for lists. The replacement method is actually the function
[[<- which is very special. It is hard to get this to work correctly so don’t be too
discouraged if you try and it doesn’t work.

The problems are caused by the fact that S is basically a pass–by–value lan-
gauge and that this is a function. So the function gets a copy of the list and we want
to change the list, not its copy. These calls are rearranged in a special way (details
provided to the curious) and then evaluated. There are two important things when
writing one of these functions. First, the last argument must be namedvalue
and second the last line of the function must return the copy of the list (it isx in
the current case).

Containers are interesting and useful because they allow you to keep objects
of a certain type together. They can indicate, by error messages when you try to
put the wrong type object into the container.

Some old code

Some triangle functions from last day, they are repeated here for completeness.

tr1 <- new("triangle", a=3, b=4, c=5)

##Law of cosines: aˆ2 = bˆ2+cˆ2-2*b*c*cos(A)
threesidestoangle <- function(a=a, b=b, c=c)

6

acos((bˆ2+cˆ2-aˆ2)/(2*b*c))

angleA <- function(object)
threesidestoangle(a=object@a,b=object@b, c=object@c)

angleB <- function(object)
threesidestoangle(object@b, object@c, object@a)

angleC <- function(object)
threesidestoangle(object@c, object@a, object@b)

if(! isGeneric("area"))
setGeneric("area", function(object) standardGeneric("area"))

setMethod("area", signature(object="triangle"),
function(object)

object@a*object@b*sin(angleC(object))/2)

area(tr1)

7

