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Statistical Models in SStatistical Models in SStatistical Models in SStatistical Models in S

The template is a multiple linear regression model:

In matrix terms this would be written

where
• y is the response vector,
• β is the vector of regression coefficients,
• X is the model matrixmodel matrixmodel matrixmodel matrix or design matrixdesign matrixdesign matrixdesign matrix and
• e is the error vector.
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Model formulae

General form: yvar ~ term1 + term2 + …
Examples:
y ~ x – Simple regression
y ~ 1 + x – Explicit intercept
y ~ -1 + x – Through the origin
y ~ x +x^2 – Quadratic regression
y ~ x1 + x2 + x3 – Multiple regression
y ~ G + x1 + x2 – Parallel regressions
y ~ G/(x1 + x2) – Separate regressions
sqrt(Hard) ~ Dens+Dens^2– Transformed
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More examples of formulae

y ~ G – Single classification

y ~ A + B – Randomized block

y ~ B + N*P – Factorial in blocks

y ~ x + B + N*P – with covariate

y ~ . - X1 – All variables except X1

. ~ . + A:B – Add interaction (update)

Nitrogen ~ Times*(River/Site) - more complex design
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Generic functions for inference

The following apply to most modelling objects

residual sum of squaresdeviance(obj)

predict for new datapredict(obj,newdata = ndat)

analysis summary summary(obj)

fitted valuesfitted(obj)

residualsresid(obj)

regression coefficientscoef(obj)
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Example: TheExample: TheExample: TheExample: The JankaJankaJankaJanka datadatadatadata

Hardness and density data for 36 samples of Australian 
hardwoods.

Source: E. J. Williams, “Regression Analysis”, Wiley, 
1959. [ex-CSIRO, Forestry.]

Problem: build a prediction model for Hardness using 
Density.
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JankaJankaJankaJanka data data data data ---- initial model buildinginitial model buildinginitial model buildinginitial model building

We might start with a linear or quadratic model
(suggested by Williams) and start checking the fit.

> jank.1 <- lm(Hard ~ Dens, janka)

> jank.2 <- update(jank.1, . ~ . + Dens^2)

> summary(jank.2)$coef

Value Std. Error t value Pr(>|t|)

(Intercept) -118.00738 334.96690 -0.35230 0.726857

Dens 9.43402 14.93562 0.63165 0.531970

I(Densˆ2) 0.50908 0.15672 3.24830 0.002669
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Janka data: a cubic model?

To check for the need for a cubic term we simply add one more term 
to the model

> jank.3 <- update(jank.2, . ˜ . + Densˆ3)

> summary(jank.3)$coef

Value Std. Error t value Pr(>|t|)

(Intercept) -6.4144e+02 1.2357e+03 -0.51911 0.60726

Dens 4.6864e+01 8.6302e+01 0.54302 0.59088

I(Densˆ2) -3.3117e-01 1.9140e+00 -0.17303 0.86372

I(Densˆ3) 5.9587e-03 1.3526e-02 0.44052 0.66252

A quadratic term is necessary, but a cubic is not supported.
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JankaJankaJankaJanka data data data data ---- stability of coefficientsstability of coefficientsstability of coefficientsstability of coefficients

The regression coefficients should remain more stable 
under extensions to the model if we standardize, or 
even just mean-correct, the predictors:

> janka$d <- scale(janka$Dens, scale=F)

> jank.1 <- lm(Hard ~ d, janka)

> jank.2 <- update(jank.1, .~.+d^2)

> jank.3 <- update(jank.2, .~.+d^3)
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summary(jank.1)$coef

Value Std. Error t value Pr(>|t|)

(Intercept) 1469.472 30.5099 48.164 0

d 57.507 2.2785 25.238 0

> summary(jank.2)$coef

Value Std. Error t value Pr(>|t|)

(Intercept) 1378.19661 38.93951 35.3933 0.000000

d 55.99764 2.06614 27.1026 0.000000

I(d^2) 0.50908 0.15672 3.2483 0.002669

> round(summary(jank.3)$coef, 4)

Value Std. Error t value Pr(>|t|)

(Intercept) 1379.1028 39.4775 34.9339 0.0000

d 53.9610 5.0746 10.6336 0.0000

I(d^2) 0.4864 0.1668 2.9151 0.0064

I(d^3) 0.0060 0.0135 0.4405 0.6625

Why is this so?  Does it matter very much?
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Checks and balances

> xyplot(studres(janka.lm2) ~ fitted(janka.lm2),

panel = function(x, y, ...) {

panel.xyplot(x, y, col = 5, ...)

panel.abline(h = 0, lty = 4, col = 6)

}, xlab = "Fitted values", ylab = "Residuals")

> qqmath(~ studres(janka.lm2), panel =
function(x, y, ...) {

panel.qqmath(x, y, col = 5, ...)

panel.qqmathline(y, qnorm, col = 4)

}, xlab = "Normal scores",

ylab = "Sorted studentized residuals")
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JankaJankaJankaJanka data data data data ---- trying a transformationtrying a transformationtrying a transformationtrying a transformation

The Box-Cox family of transformations includes square-root and log 
transformations as special cases.

The boxcox function in the MASS MASS MASS MASS library allows the marginal 
likelihood function for the transformation parameter to be 
calculated and displayed. It’s use is easy. (Note: it only applies
to positive response variables.)

> library(MASS, first = T)

> graphsheet() # necessary if no graphics device open.

> boxcox(jank.2,

lambda = seq(-0.25, 1, len=20))
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JankaJankaJankaJanka data data data data ---- transformed datatransformed datatransformed datatransformed data
The marginal likelihood plot suggests a log transformation.
> ljank.2 <- update(jank.2, log(.)˜.)

> round(summary(ljank.2)$coef, 4)

Value Std. Error t value Pr(>|t|)

(Intercept) 7.2299 0.0243 298.0154 0

d 0.0437 0.0013 33.9468 0

I(d^2) -0.0005 0.0001 -5.3542 0

> lrs <- studres(ljank.2)

> lfv <- fitted(ljank.2)

> xyplot(lrs ~ lfv, panel =

function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.abline(h=0, lty=4)

}, xlab = "Fitted (log trans.)",

ylab = "Residuals (log trans.)", col = 5)
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Plot of transformed data
> attach(janka)

> plot(Dens, Hard, log = "y")
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Selecting terms in a multiple regressionSelecting terms in a multiple regressionSelecting terms in a multiple regressionSelecting terms in a multiple regression

Example: The Iowa wheat data.
> names(iowheat)

[1] "Year" "Rain0" "Temp1" "Rain1" "Temp2"

[6] "Rain2" "Temp3" "Rain3" "Temp4" "Yield"

> bigm <- lm(Yield ~ ., data = iowheat)

fits a regression model using all other variables in the 
data frame as predictors.

From the big model, now check the effect of dropping 
each term individually:
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> dropterm(bigm, test = "F")

Single term deletions

Model:

Yield ~ Year + Rain0 + Temp1 + Rain1 + Temp2 + Rain2 +

Temp3 + Rain3 + Temp4

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 1404.8 143.79

Year 1 1326.4 2731.2 163.73 21.715 0.00011

Rain0 1 203.6 1608.4 146.25 3.333 0.08092

Temp1 1 70.2 1475.0 143.40 1.149 0.29495

Rain1 1 33.2 1438.0 142.56 0.543 0.46869

Temp2 1 43.2 1448.0 142.79 0.707 0.40905

Rain2 1 209.2 1614.0 146.37 3.425 0.07710

Temp3 1 0.3 1405.1 141.80 0.005 0.94652

Rain3 1 9.5 1414.4 142.01 0.156 0.69655

Temp4 1 58.6 1463.5 143.14 0.960 0.33738
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> smallm <- update(bigm, . ~ Year)

> addterm(smallm, bigm, test = "F")

Single term additions

Model:

Yield ~ Year

Df Sum of Sq RSS AIC F Value Pr(F)

<none> 2429.8 145.87

Rain0 1 138.65 2291.1 145.93 1.8155 0.18793

Temp1 1 30.52 2399.3 147.45 0.3816 0.54141

Rain1 1 47.88 2381.9 147.21 0.6031 0.44349

Temp2 1 16.45 2413.3 147.64 0.2045 0.65437

Rain2 1 518.88 1910.9 139.94 8.1461 0.00775

Temp3 1 229.14 2200.6 144.60 3.1238 0.08733

Rain3 1 149.78 2280.0 145.77 1.9708 0.17063

Temp4 1 445.11 1984.7 141.19 6.7282 0.01454
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Automated selection of variables

> stepm <- stepAIC(bigm,

scope = list(lower = ~ Year))

Start: AIC= 143.79

....

Step: AIC= 137.13

Yield ~ Year + Rain0 + Rain2 + Temp4

Df Sum of Sq RSS AIC

<none> NA NA 1554.6 137.13

- Temp4 1 187.95 1742.6 138.90

- Rain0 1 196.01 1750.6 139.05

- Rain2 1 240.20 1794.8 139.87

>
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A Random Effects model

• The petroleum data of Nilon L Prater, (c. 1954).
• 10 crude oil sources, with measurements on the 

crude oil itself.
• Subsamples of crude (3-5) refined to a certain end 

point (measured).
• The response is the yield of refined petroleum (as a 

percentage).
• How can petroleum yield be predicted from properties 

of crude and end point?
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A first look: Trellis display

For this kind of grouped data a Trellis display, by group,
with a simple model fitted within each group is often 
very revealing.
> names(petrol)

[1] "No" "SG" "VP" "V10" "EP" "Y"

> xyplot(Y ~ EP | No, petrol, as.table = T,

panel = function(x, y, ...) {

panel.xyplot(x, y, ...)

panel.lmline(x, y, ...)

}, xlab = "End point", ylab = "Yield (%)",

main = "Petroleum data of N L Prater")

>
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Fixed effect Models
Clearly a straight line model is reasonable. 
There is some variation between groups, but parallel lines is also a 

reasonable simplification.
There appears to be considerable variation between intercepts, 

though.
> pet.2 <- aov(Y ~ No*EP, petrol)
> pet.1 <- update(pet.2, .~.-No:EP)
> pet.0 <- update(pet.1, .~.-No)
> anova(pet.0, pet.1, pet.2)
Analysis of Variance Table

Response: Y

Terms Resid. Df RSS Test Df Sum of Sq F Value Pr(F)
1 EP 30 1759.7
2 No + EP 21 74.1 +No 9 1685.6 74.101 0.0000
3 No * EP 12 30.3 +No:EP 9 43.8 1.926 0.1439
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Random effects

> pet.re1 <- lme(Y ~ EP, petrol, random = ~1+EP|No)
> summary(pet.re1)
.....

AIC BIC logLik
184.77 193.18 -86.387

Random effects:
Formula: ~ 1 + EP | No
Structure: General positive-definite

StdDev Corr
(Intercept) 4.823890 (Inter

EP 0.010143 1
Residual 1.778504

Fixed effects: Y ~ EP
Value Std.Error DF t-value p-value

(Intercept) -31.990 2.3617 21 -13.545 <.0001
EP 0.155 0.0062 21 24.848 <.0001

Correlation:
.....
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The shrinkage effectThe shrinkage effectThe shrinkage effectThe shrinkage effect

> B <- coef(pet.re1)
> B
(Intercept) EP

A -24.146 0.17103
B -29.101 0.16062
C -26.847 0.16536
D -30.945 0.15674
E -30.636 0.15739
F -31.323 0.15595
G -34.601 0.14905
H -35.348 0.14748
I -37.023 0.14396
J -39.930 0.13785
> xyplot(Y ~ EP | No, petrol, as.table = T, subscripts = T,

panel = function(x, y, subscripts, ...) {
panel.xyplot(x, y, ...)
panel.lmline(x, y, ...)
wh <- as(petrol$No[subscripts][1], "character")
panel.abline(B[wh, 1], B[wh, 2], lty = 4, col = 8)

}, xlab = "End point", ylab = "Yield (%)")
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General nGeneral nGeneral nGeneral notesotesotesotes on modellingon modellingon modellingon modelling

1. Analysis of variance models are linear models but usually fitted 
using aov rather than lm. The computation is the same but the 
resulting object behaves differently in response to some 
generics, especially summary.

2. Generalized linear modelling (logistic regression, log-linear 
models, quasi-likelihood, &c) also use linearlinearlinearlinear modelling formulaemodelling formulaemodelling formulaemodelling formulae
in that they specify the model matrix, not the parameters.
Generalized additive modelling (smoothing splines, loess 
models, &c) formulae are quite similar.

3. Non-linear regression uses a formula, but a completely different 
paradigm: the formula gives the full model as an expression,
including parameters.
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GLMs and GAMs: An introduction

• One generalization of multiple linear regression.

• Response, y, stimulus variables 

• The distribution of Y depends on the x's through a single linear function, 
the 'linear predictor'

• There may be an unknown 'scale' (or 'variance') parameter to estimate 
as well

• The deviance is a generalization of the residual sum of squares.

• The protocols are very similar to linear regression.  The inferential logic 
is virtually identical.

1 1 2 2 p px x xη β β β= + + +�

1 2, ,..., px x x
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Example: budworms (MASS, Ch. 7)

Classical toxicology study of budworms, by sex.

> Budworms <- data.frame(Logdose = rep(0:5, 2),

Sex = factor(rep(c("M", "F"), each = 6)),

Dead = c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10,
12, 16))

> Budworms$Alive <- 20 - Budworms$Dead

> xyplot(Dead/20 ~ I(2^Logdose), Budworms,

groups = Sex, panel = panel.superpose,

xlab = "Dose", ylab = "Fraction dead",

key = list(......), type="b")
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Fitting a model and plotting the results
Fitting the model is similar to a linear model
> bud.1 <- glm(cbind(Dead, Alive) ~ Sex*Logdose,

binomial, Budworms, trace=T, eps=1.0e-9)

GLM linear loop 1: deviance = 5.0137

GLM linear loop 2: deviance = 4.9937

GLM linear loop 3: deviance = 4.9937

GLM linear loop 4: deviance = 4.9937

> summary(bud.1, cor = F)

…

Value Std. Error t value

(Intercept) -2.99354 0.55270 -5.41622

Sex 0.17499 0.77831 0.22483

Logdose 0.90604 0.16710 5.42207

Sex:Logdose 0.35291 0.26999 1.30713

…

(Residual Deviance: 4.9937 on 8 degrees of freedom
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> bud.0 <- update(bud.1, .~.-Sex:Logdose)

GLM linear loop 1: deviance = 6.8074

GLM linear loop 2: deviance = 6.7571

GLM linear loop 3: deviance = 6.7571

GLM linear loop 4: deviance = 6.7571

> anova(bud.0, bud.1, test="Chisq")

Analysis of Deviance Table

Response: cbind(Dead, Alive)

Terms Resid. Df Resid. Dev Test Df

1 Sex + Logdose 9 6.7571

2 Sex * Logdose 8 4.9937 +Sex:Logdose 1

Deviance Pr(Chi)

1

2 1.7633 0.18421
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Plotting the results
attach(Budworms)

plot(2^Logdose, Dead/20, xlab = "Dose",

ylab = "Fraction dead", type = "n")

text(2^Logdose, Dead/20, c("+","o")[Sex], col = 5,

cex = 1.25)

newdat <- expand.grid(Logdose = seq(-0.1, 5.1, 0.1),
Sex = levels(Sex))

newdat$Pr1 <- predict(bud.1, newdat, type = "response")

newdat$Pr0 <- predict(bud.0, newdat, type = "response")

ditch <- newdat$Logdose == 5.1 | newdat$Logdose < 0

newdat[ditch, ] <- NA

attach(newdat)

lines(2^Logdose, Pr1, col=4, lty = 4)

lines(2^Logdose, Pr0, col=3)
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Janka data, first re-visit

From transformations it becomes clear that 

– A square-root makes the regression straight-line,

– A log is needed to make the variance constant.

One way to accommodate both is to use a GLM with

– Square-root link, and

– Variance proportional to the square of the mean.

This is done using the quasi family which allows link and variance 
functions to be separately specified.

family = quasi(link = sqrt, variance = "mu^2")
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> jank.g1 <- glm(Hard ~ Dens, quasi(link = sqrt,

variance = "mu^2"), janka, trace=T)

GLM linear loop 1: deviance = 0.3335

GLM linear loop 2: deviance = 0.3288

GLM linear loop 3: deviance = 0.3288

> range(janka$Dens)

[1] 24.7 69.1

> newdat <- data.frame(Dens = 24:70)

> p1 <- predict(jank.g1, newdat, type = "response",

se = T)

> names(p1)

[1] "fit" "se.fit" "residual.scale"

[4] "df"
> ul <- p1$fit + 2*p1$se.fit
> ll <- p1$fit - 2*p1$se.fit
> mn <- p1$fit
> matplot(newdat$Dens, cbind(ll, mn, ul),

xlab = "Density", ylab = "Hardness",
col = c(2,3,2), lty = c(4,1,4), type = "l")

> points(janka$Dens, janka$Hard, pch=16, col = 6)
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Negative Binomial Models

• Useful class of models for count data cases where the variance 
is much greater than the mean

• A Poisson model to such data will give a deviance much greater 
than the residual degrees of freedom.

• Has two interpretations

– As a conditional Poisson model but with an unobserved 
random effect attached to each observation

– As a "contagious distribution": the observations are sums of 
a Poisson number of "clumps" with each clump 
logarithmically distributed.
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The quine data

• Numbers of days absent from school per pupil in a 
year in a rural NSW town.

• Classified by four factors:
> lapply(quine, levels)
$Eth:
[1] "A" "N"
$Sex:
[1] "F" "M"
$Age:
[1] "F0" "F1" "F2" "F3"
$Lrn:
[1] "AL" "SL"
$Days:
NULL
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First consider a Poisson "full" model"

> quine.1 <- glm(Days ~ Eth*Sex*Age*Lrn, poisson, quine,
trace = T)

…

GLM linear loop 4: deviance = 1173.9

> quine.1$df

[1] 118

Overdispersion.  Now a NB model with the same mean structure (and default log 
link):
> quine.n1 <- glm.nb(Days ~ Eth*Sex*Age*Lrn, quine,

trace=T)

…

Theta( 1 ) = 1.92836 , 2(Ls - Lm) = 167.453

> dropterm(quine.n1, test = "Chisq")

Single term deletions

Model:

Days ~ Eth * Sex * Age * Lrn

Df AIC LRT Pr(Chi)

<none> 1095.3

Eth:Sex:Age:Lrn 2 1092.7 1.4038 0.49563



© W. Venables, 2003 Data Analysis & Graphics 44

CSIRO Mathem
atical and Inform

ation Sciences

Manual model building

• Is always risky!
• Is nearly always revealing.

> quine.up <- glm.nb(Days ~ Eth*Sex*Age*Lrn, quine)
> quine.m <- glm.nb(Days ~ Eth + Sex + Age + Lrn,

quine)
> dropterm(quine.m, test="Chisq")
Single term deletions

Model:
Days ~ Eth + Sex + Age + Lrn

Df AIC LRT Pr(Chi)
<none> 1107.2

Eth 1 1117.7 12.524 0.00040
Sex 1 1105.4 0.250 0.61728
Age 3 1112.7 11.524 0.00921
Lrn 1 1107.7 2.502 0.11372
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> addterm(quine.m, quine.up, test = "Chisq")

Single term additions

Model:

Days ~ Eth + Sex + Age + Lrn

Df AIC LRT Pr(Chi)

<none> 1107.2

Eth:Sex 1 1108.3 0.881 0.34784

Eth:Age 3 1102.7 10.463 0.01501

Sex:Age 3 1100.4 12.801 0.00509

Eth:Lrn 1 1106.1 3.029 0.08180

Sex:Lrn 1 1109.0 0.115 0.73499

Age:Lrn 2 1110.0 1.161 0.55972

> quine.m <- update(quine.m, .~.+Sex:Age)

> addterm(quine.m, quine.up, test = "Chisq")
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Single term additions

Model:
Days ~ Eth + Sex + Age + Lrn + Sex:Age

Df AIC LRT Pr(Chi)
<none> 1100.4
Eth:Sex 1 1101.1 1.216 0.27010
Eth:Age 3 1094.7 11.664 0.00863
Eth:Lrn 1 1099.7 2.686 0.10123
Sex:Lrn 1 1100.9 1.431 0.23167
Age:Lrn 2 1100.3 4.074 0.13043
> quine.m <- update(quine.m, .~.+Eth:Age)
> addterm(quine.m, quine.up, test = "Chisq")
Single term additions

Model:
Days ~ Eth + Sex + Age + Lrn + Sex:Age + Eth:Age

Df AIC LRT Pr(Chi)
<none> 1094.7
Eth:Sex 1 1095.4 1.2393 0.26560
Eth:Lrn 1 1096.7 0.0004 0.98479
Sex:Lrn 1 1094.7 1.9656 0.16092
Age:Lrn 2 1094.1 4.6230 0.09911
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> dropterm(quine.m, test = "Chisq")

Single term deletions

Model:

Days ~ Eth + Sex + Age + Lrn + Sex:Age + Eth:Age

Df AIC LRT Pr(Chi)

<none> 1094.7

Lrn 1 1097.9 5.166 0.023028

Sex:Age 3 1102.7 14.002 0.002902

Eth:Age 3 1100.4 11.664 0.008628

The final model (from this approach) can be written in the form
Days ~ Lrn + Age/(Eth + Sex)

suggesting that Eth and Sex have proportional effects nested 
within Age, and Lrn has the same proportional effect on all 
means independent of Age, Sex and Eth.
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Generalized Additive Models: Introduction

• Strongly assumes that predictors have been chosen that are 
unlikely to have interactions between them.

• Weakly assumes a form for the main effect for each term!

• Estimation is done using penalized maximum likelihood where 
the penalty term uses a measure of roughness of the main effect 
forms.  The tuning constant is chosen automatically by cross-
validation.

• Any glm form is possible, but two additional functions, s(x, …)
and lo(x,…) may be included, but only additively.

• For many models, spline models can do nearly as well!
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Example: The Iowa wheat data revisited

Clear that Year is the dominant predictor.
If any others are useful, Rain0, Rain2 and Temp4, at 

most, could be.
> iowa.gm1 <- gam(Yield ~ s(Year) + s(Rain0) +

s(Rain2) + s(Temp4), data = iowheat)

The best way to appreciate the fitted model is to graph 
the components.
> par(mfrow=c(2,2))

> plot(iowa.gm1, se=T, ylim = c(-25, 25))
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Comparison with simpler models

> Iowa.fakeGAM <- lm(Yield ~ ns(Year, 3) + ns(Rain0, 3)
+ ns(Rain2, 3) + ns(Temp4, 3), iowheat)

> Iowa.fakePol <- lm(Yield ~ poly(Year, 3) +
poly(Rain0, 3) + poly(Rain2, 3) + poly(Temp4, 3),
iowheat)

> par(oma = c(0,0,4,0))

> plot.gam(Iowa.fakeGAM, se=T, ylim = c(-25, 25))

> mtext("Additive components of a simple spline model",
outer = T, cex = 2)

> plot.gam(Iowa.fakePol, se=T, ylim = c(-25, 25))

> mtext("Additive components of a cubic polynomial
model", outer = T, cex = 2)
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GLMs with Random Effects
• This is still a controversial area (Nelder, Goldstein, Diggle, …)

• Practice is not waiting for theory!

• Breslow & Clayton two procedures: "penalized quasi-likelihood" 

and "marginal quasi-likelihood (PQL & MQL)

• MQL is rather like estimating equations; PQL is much closer to 

the spirit of random effects.

• glmmPQL is part of the MASS library and implements PQL 

using the B&C algorithm.  Should be used carefully, though for 

most realistic data sets the method is probably safe enough.



© W. Venables, 2003 Data Analysis & Graphics 55

CSIRO Mathem
atical and Inform

ation Sciences

A test: the quine data with Poisson PQL
• The negative binomial model has an interpretation as 

a poisson model with a single random effect for each 
observation.

• If the random effect has a 'log of gamma' distribution 
the exact likelihood can be computed and maximized 
(glm.nb).

• If the random effect has a normal distribution the 
integration is not feasable and approximate methods 
of estimation are needed.  

• The two models, in principle, should be very similar.  
Are they in practice?
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First, re-fit the preferred NB model:
> quine.nb <- glm.nb(Days ~ Lrn +

Age/(Eth + Sex), quine)

Now make a local copy of quine, add the additional component and 
fit the (large) random effects model:

> quine <- quine

> quine$Child <- factor(1:nrow(quine))

> library(MASS, first = T)

> quine.re <- glmmPQL(Days ~ Lrn +

Age/(Eth + Sex), family = poisson(link = log),
data = quine, random = ~1 | Child, maxit = 20)

iteration 1

iteration 2

...

iteration 10
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How similar are the coefficients (and SE)?
> b.nb <- coef(quine.nb)

> b.re <- fixed.effects(quine.re)

> rbind(NB = b.nb, RE = b.re)

(Intercept) Lrn AgeF1 AgeF2 AgeF3

NB 2.8651 0.43464 -0.26946 -0.035837 -0.20542

RE 2.6889 0.36301 -0.24835 -0.058735 -0.30111

AgeF0Eth AgeF1Eth AgeF2Eth AgeF3Eth AgeF0Sex AgeF1Sex

NB 0.012582 -0.74511 -1.2082 -0.040114 -0.54904 -0.52050

RE -0.030215 -0.76261 -1.1759 -0.079303 -0.61111 -0.44163

AgeF2Sex AgeF3Sex

NB 0.66164 0.66438

RE 0.66571 0.77235
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> se.re <- sqrt(diag(quine.re$varFix))

> se.nb <- sqrt(diag(vcov(quine.nb)))

> rbind(se.re, se.nb)

[,1] [,2] [,3] [,4] [,5] [,6]

se.re 0.28100 0.16063 0.33832 0.36867 0.35762 0.29025

se.nb 0.31464 0.18377 0.37982 0.41264 0.40101 0.32811

[,7] [,8] [,9] [,10] [,11] [,12]

se.re 0.22531 0.23852 0.26244 0.30130 0.24281 0.25532

se.nb 0.25926 0.26941 0.29324 0.33882 0.28577 0.28857

[,13]

se.re 0.26538

se.nb 0.29553

> plot(b.nb/se.nb, b.re/se.re)

> abline(0, 1, col = 3, lty = 4)
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Comparing predictions

• The negative binomial fitted values should be 
comparable with the "level 0" predictions from the 
GLMM, i.e. fixed effects only.

• The predict generic function predicts on the link 
scale. For the GLMM we need a correction to go from 
the log scale to the direct scale (cf. lognormal 
distribution).

• An approximate correction (on the log scale) is σ²/2
where σ² is the variance of the random effects (or 
BLUPs).
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> fv.nb <- fitted(quine.nb)

> fv.re <- exp(predict(quine.re, level = 0) +
var(random.effects(quine.re))/2)

> plot(fv.re, fv.nb)

> plot(fv.nb, fv.re)

> abline(0, 1, col = 5, lty = 4)

fv.nb

fv
.re
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30
40

50
GLMM vs NB
predictions on
the original 
scale.
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Non-linear regression

• Generalization of linear regression.

• Normality and equal variance retained, linearity of parameters 
relaxed.

• Generally comes from a fairly secure theory; not often 
appropriate for empirical work

• Estimation is still by least squares (= maximum likelihood), but
the sum of squares surface is not necessarily quadratic.

• Theory is approximate and relies on SSQ surface being nearly nearly nearly nearly 
quadratic in a region around the minimum.
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The Stormer Viscometer Data
SUMMARY:
The stormer viscometer measures the viscosity of a fluid by measuring the time taken for an 
inner cylinder in the mechanism to perform a fixed number of revolutions in response to an 
actuating weight. The viscometer is calibrated by measuring the time taken with varying 
weights while the mechanism is suspended in fluids of accurately known viscosity. The data 
comes from such a calibration, and theoretical considerations suggest a non-linear relationship 
between time, weight and viscosity, of the form 

where β1 and β2 are unknown parameters to be estimated, and E is error. 
DATA DESCRIPTION:
The data frame contains the following components: 

ARGUMENTS:
Viscosity Viscosity of fluid 
Wt Actuating weight 
Time Time taken 

SOURCE:
E. J. Williams (1959) Regression Analysis. Wiley. 

1

2

VT
W

β ε
β

= +
−
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A simple example

• Stormer viscometer data (data frame stormer in 
MASS).  

> names(stormer)

[1] "Viscosity" "Wt" "Time"

• Model:
T = β V/(W – θ) + error

• Ignoring error and re-arranging gives:
WT ≃≃≃≃ β V + θ T

• Fit this relationship with ordinary least squares to get 
initial values for β and θ.
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Fitting the model

Is very easy for this example…
> b <- coef(lm(Wt*Time ~ Viscosity + Time - 1,

stormer))

> names(b) <- c("beta", "theta")

> b

beta theta

28.876 2.8437

> storm.1 <-

nls(Time ~ beta*Viscosity/(Wt - theta),

stormer, start=b, trace=T)

885.365 : 28.8755 2.84373

825.110 : 29.3935 2.23328

825.051 : 29.4013 2.21823
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Looking at the results

> summary(storm.1)

Formula: Time ~ (beta * Viscosity)/(Wt - theta)

Parameters:

Value Std. Error t value

beta 29.4013 0.91553 32.1138

theta 2.2182 0.66552 3.3331

Residual standard error: 6.26803 on 21 degrees of
freedom

Correlation of Parameter Estimates:

beta

theta -0.92
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Self-starting models
Allows the starting procedure to be encoded into the model function.  

(Somewhat arcane but very powerful)
> library(nls) # R only
> library(MASS)
> data(stormer) # R only
> storm.init <- function(mCall, data, LHS) {

v <- eval(mCall[["V"]], data)
w <- eval(mCall[["W"]], data)
t <- eval(LHS, data)
b <- lsfit(cbind(v, t), t * w, int = F)$coef
names(b) <- mCall[c("b", "t")]
b

}
> NLSstormer <- selfStart( ~ b*V/(W-t),

storm.init, c("b","t"))
> args(NLSstormer)
function(V, W, b, t)
NULL …
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> tst <- nls(Time ~ NLSstormer(Viscosity, Wt, beta,

theta), stormer, trace = T)

885.365 : 28.8755 2.84373

825.110 : 29.3935 2.23328

825.051 : 29.4013 2.21823

Bootstrapping is NBD:
> tst$call$trace <- NULL

> B <- matrix(NA, 500, 2)

> r <- scale(resid(tst), scale = F) # mean correct

> f <- fitted(tst)

> for(i in 1:500) {

v <- f + sample(r, rep = T)

B[i, ] <- try(coef(update(tst, v ~ .))) # guard!

}

> cbind(Coef = colMeans(B), SD = colStdevs(B))

Coef SD

[1,] 29.4215 0.64390

[2,] 2.2204 0.46051
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NLS example: the muscle data

• Old data from an experiment on muscle contraction in experimental 
animals.

• VariablesVariablesVariablesVariables:
– Strip: identifier of muscle (animal)
– Conc: CaCl concentrations used to soak the section
– Length: resulting length of muscle section for each concentration

• ModelModelModelModel: L = α + β exp(-C/ θ) + error

where α and β may vary with the animal but θ is constant.

• Note that α and β are (very many) linear parameters.  We use this 
strongly
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First model: fixed parameters

• Since there are 21 animals with separate alpha's and beta's for 
each the number of parameters is 21+21+1=43, from 61 
observations!

• Use the plinear plinear plinear plinear algorithm since all parameters are linear bar 
one.
> X <- model.matrix(~ Strip – 1, muscle)

> musc.1 <- nls(Length ~ cbind(X, X*exp(-Conc/th)),

muscle, start = list(th = 1), algorithm = "plinear",

trace = T)

....

> b <- coef(musc.1)

> b

th .lin1 .lin2 .lin3 .lin4 .lin5 .lin6 .lin7

0.79689 23.454 28.302 30.801 25.921 23.2 20.12 33.595
......
.lin39 .lin40 .lin41 .lin42

-15.897 -28.97 -36.918 -26.508
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Conventional fitting algorithm

• Parameters in non-linear regression may be indexed:
> th <- b[1]

> a <- b[2:22]

> b <- b[23:43]

> musc.2 <- nls(Length ~ a[Strip] +

b[Strip)*exp(-Conc/th),

muscle, start = list(a = a, b = b, th = th),

trace = T)

......

• Converges in one step, now.
• Note that with indexed parameters, the starting values must be 

given in a list (with names).
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Plotting the result

> range(muscle$Conc)

[1] 0.25 4.00

> newdat <- expand.grid(

Strip = levels(muscle$Strip),

Conc = seq(0.25, 4, 0.05))

> dim(newdat)

[1] 1596 2

> names(newdat)

[1] "Strip" "Conc"

> newdat$Length <- predict(musc.2, newdat)
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The actual plot

Trellis comes to the rescue:
> xyplot(Length ~ Conc | Strip, muscle, subscripts = T,

panel = function(x, y, subscripts, ...) {

panel.xyplot(x, y, ...)

ws <- as(muscle$Strip[subscripts[1]], "character")

wf <- which(newdat$Strip == ws)

xx <- newdat$Conc[wf]

yy <- newdat$Length[wf]

lines(xx, yy, col = 3)

}, ylim = range(newdat$Length, muscle$Length),

as.table = T)
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A Random Effects version

• Random effects models allow the parametric dimension to be 
more easily controlled.

• We assume α and β are now random over animals

> musc.re <- nlme(Length ~ a + b*exp(-Conc/th),

fixed = a+b+th~1, random = a+b~1|Strip,

data = muscle, start =

c(a=mean(a), b=mean(b), th=th))

• The vectors a, b and th come from the previous fit; no need to 
supply initial values for the random effects, (though you may).
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A composite plot

> newdat$L2 <- predict(musc.re, newdat)

> xyplot(Length ~ Conc | Strip, muscle, subscripts = T,

panel =

function(x, y, subscripts, ...) {

panel.xyplot(x, y, ...)

ws <- as(muscle$Strip[subscripts[1]], "character")

wf <- which(newdat$Strip == ws)

xx <- newdat$Conc[wf]

yy <- newdat$Length[wf]

lines(xx, yy, col = 3)

yy <- newdat$L2[wf]

lines(xx, yy, lty=4, col=4)

}, ylim = range(newdat$Length, muscle$Length),

as.table = T)
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Tree based methods Tree based methods Tree based methods Tree based methods ---- an introductionan introductionan introductionan introduction

V&R, Ch. V&R, Ch. V&R, Ch. V&R, Ch. 9 (formerly 10).9 (formerly 10).9 (formerly 10).9 (formerly 10).

• A decision treedecision treedecision treedecision tree is a sequence of binary rules leading to one of a 
number of terminal nodeterminal nodeterminal nodeterminal nodessss, each associated with some decision.

• A classification treeclassification treeclassification treeclassification tree is a decision tree that attempts to reproduce a 
given classification as economically as possible.

• A variable is selected and the population is divided into two at a 
selected breakpoint of that variable.

• Each half is then independently subdivided further on the same 
principle, thus recursively forming a binary tree structure.

• Each node is associated with a probabilityprobabilityprobabilityprobability forecastforecastforecastforecast for 
membership in each class (hopefully as specific as possible).
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A < 3

B < 2

A < 1
C < 10B < 1

D = fgFemale

Male

Female
Female

Male
Male

Female

A generic classification 
tree with 7 terminal nodes.
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Trees, more preliminaries

– The faithfulness of any classification tree is measured by a 
deviance measure, D(T), which takes its miminum value at zero 
if every member of the training sample is uniquely and correctly
classified.

– The size of a tree is the number of terminal nodes.
– A cost-complexity measure of a tree is the deviance penalized 

by a multiple of the size:
D(T) = D(T) + α size(T)

where α is a tuning constant. This is eventually minimized.
– Low values of α for this measure imply that accuracy of 

prediction (in the training sample) is more important than 
simplicity.

– High values of α rate simplicity relatively more highly than 
predictive accuracy.
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Regression treesRegression treesRegression treesRegression trees
• Suppose Y has a distribution with mean depending on several 

determining variables, not necessarily continuous.

• A regression treeregression treeregression treeregression tree is a decision tree that partitions the determining 
variable space into non-overlapping prediction regions.

• Within each prediction region the response variable Y is predictied
by a constant.

• The deviance in this case is exactly the same as for regression:
the residual sum of squares.  

– With enough regions (nodes) the training sample can clearly 
be reproduced exactly, but predictions will be inaccurate.

– With too few nodes predictions may be seriously biased.

• How many nodes should we use?How many nodes should we use?How many nodes should we use?How many nodes should we use? This is the key question for all 
of tree modelling (equivalent to setting the tuning constant).
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Some SSome SSome SSome S tree model facilitiestree model facilitiestree model facilitiestree model facilities

ftr <- tree(formula, data = dataFrame, ...)

rtr <- rpart(formula, data = dataFrame, ...)

implements an algorithm to produce a binary tree 
(regression or classification) and returns a tree tree tree tree 
objecobjecobjecobjectttt.

The formula is of the simple form
R ~ X1 +X2 + …

where R is the target variable and X1, X2,... are
the determining variables.
if R is a factor the result is a classification tree,
if R is numeric the result is a regression tree.
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tree or rpart?

• In S-PLUS there is a native tree library that V&R have some 
reservations about.  It is useful, though.

• rpart is a library written by Beth Atkinson and Terry Therneau 
of the Mayo Clinic, Rochester, NY.  It is much closer to the spirit 
of the original CART algorithm of Breiman, et al.  It is now 
supplied with both S-PLUS and R.

• In R, there is a tree library that is an S-PLUS look-alike, but we 
think better in some respects.

• rpart is the more flexible and allows various splitting criteria 
and different model bases (survival trees, for example).

• rpart is probably the better package, but tree is acceptable 
and some things such as cross-validation are easier with tree.

• In this discussion we (nevertheless) largely use tree!
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Some other arguments to tree

There are a number of other optional important arguments, for 
example:

na.action = na.omit

indicates that cases with missing observations on some
requried variable are to be omitted.

By default the algorithm terminates the splitting when the group is 
either homogeneous or of size 5 or less. Occasionally it is useful 
to remove or tighten this restriction, and so

minsize = k

specifics that the groups may be as small as k.
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Displaying and Displaying and Displaying and Displaying and interrogatinginterrogatinginterrogatinginterrogating a treea treea treea tree

> plot(ftr)

> text(ftr)

will give a graphical representation of the tree, as well as text to 
indicate how the tree has been constructed.

The assignment
> nodes <- identify(ftr)

allows interactive identification of the cases in each node.
Clicking on any node produces a list of row labels in the working 

window.
Clicking on the right button terminates the interactive action.
The result is an SSSS list giving the contents (as character string vector

components) of the nodes selected.
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An An An An simplisticsimplisticsimplisticsimplistic example: Theexample: Theexample: Theexample: The JankaJankaJankaJanka datadatadatadata

Consider predicting trees by, well, trees!

> jank.t1 <- tree(Hard ~ Dens, janka)

> jank.t1

node), split, n, deviance, yval

* denotes terminal node

1) root 36 22000000 1500

2) Dens<47.55 21 1900000 890

4) Dens<34.15 8 73000 540 *

5) Dens>34.15 13 220000 1100 *

3) Dens>47.55 15 3900000 2300

6) Dens<62.9 10 250000 1900

12) Dens<56.25 5 69000 1900 *

13) Dens>56.25 5 130000 2000 *

7) Dens>62.9 5 240000 2900 *

The tree has 5 terminal nodes. We can take two views of the model 
that complement each other.
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|Dens<47.55

Dens<34.15 Dens<62.9

Dens<56.25
 540 1100

1900 2000 2900

> plot(jank.t1, lwd = 2, col = 6)
> text(jank.t1, cex = 1.25, col = 5)
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> partition.tree(jank.t1, xlim = c(24, 70))
> attach(janka)
> points(Dens, Hard, col = 5, cex = 1.25)
> segments(Dens, Hard, Dens, predict(jank.t1),

col = 6, lty = 4)
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A classification tree: Bagging

• Survey data (data frame survey from the MASS library).
> ?survey

> names(survey)

[1] "Sex" "Wr.Hnd" "NW.Hnd" "W.Hnd" "Fold" "Pulse"

[7] "Clap" "Exer" "Smoke" "Height" "M.I" "Age"

• We consider predicting Sex from the other variables.

• Remove cases with missing values

• Split data set into "Training" and "Test" sets

• Build model in training set, test in test.

• Look at simple "bagging" to improve stability and predictions
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Preliminary manipulations

We start with a bit of data cleaning.
> dim(survey)

[1] 237 12

> count.nas <- function(x) sum(is.na(x))

> sapply(survey, count.nas)

Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse Clap Exer Smoke Height

1 1 1 1 0 45 1 0 1 28

M.I Age

28 0

> Srvy <- na.omit(survey)

> dim(Srvy)

[1] 168 12
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|Height<175.13

NW.Hnd<19.35

NW.Hnd<18.45
Wr.Hnd<17.55Age<20.4585

Age<18.25
Height<159.99NW.Hnd<17.2

Wr.Hnd<18.95
Pulse<72

Pulse<68.5

Height<178.25
NW.Hnd<19.55

FemaleFemaleFemale Male
Female

Female Male FemaleFemale
Male Male

Male Male
Male

Initial fitting to all data and display 
of the result

> surv.t1 <- tree(Sex ~ .,
Srvy)

> plot(surv.t1)
> text(surv.t1, col = 5)
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CrossCrossCrossCross----validationvalidationvalidationvalidation

A technique for using internal evidence to guage the size of tree 
warranted by the data.

Random sections are omitted and the remainder used to construct 
a tree. The ommitted section is then predicted from the
remainder and various criteria (deviance, error rate) used to 
assess the efficacy.

> obj <- cv.tree(tree.obj, FUN=functn, ...)

> plot(obj)

Currently functn must be either prune.tree or shrink.tree
(the default). It determines the protocol by which the sequence 
of trees tested is generated. The MASS library also has 
prune.misclass for classification trees, only.
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Cross-validation as a guide to pruning:

> surv.t1cv <- cv.tree(surv.t1,
FUN = prune.misclass)

> plot(surv.t1cv)
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|Height<175.13

NW.Hnd<19.35

NW.Hnd<18.45
Wr.Hnd<18.95

Height<178.25

Female
Female Female

Male

Male Male

Pruning
> surv.t2 <- prune.tree(surv.t1, best = 6)
> plot(surv.t2)
> text(surv.t2, col = 5)
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rpart counterpart

> rp1 <- rpart(Sex ~ ., Srvy,

minsplit = 10)

> plot(rp1)

> text(rp1)

> plotcp(rp1)

See next slide.  This suggests a very small tree See next slide.  This suggests a very small tree See next slide.  This suggests a very small tree See next slide.  This suggests a very small tree –––– two two two two 
nodes.  (Some repeat tests might be necessary.)nodes.  (Some repeat tests might be necessary.)nodes.  (Some repeat tests might be necessary.)nodes.  (Some repeat tests might be necessary.)

> rp2 <- prune(rp1, cp = 0.29)

> plot(rp2)

> text(rp2)
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rpart tree with minsplit = 10

Internal cross-validation and 
the 'one se' rule
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Confusion matrices

• Now to check the effectiveness of the pruned tree on 
the training sample.

• Should be pretty good!

> table(predict(surv.t2, type = "class"),

Srvy$Sex)

Female Male

Female 79 11

Male 5 73

• Next step: build on a training set, test on a test.
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First build the model.
> w <- sample(nrow(Srvy), nrow(Srvy)/2)

> Surv0 <- Srvy[w, ]

> Surv1 <- Srvy[-w, ]

> surv.t3 <- tree(Sex ~ ., Surv0)

Check on training set:
> table(predict(surv.t3, type="class"),

Surv0$Sex)

Female Male

Female 42 2

Male 3 37

Test on test set:
> table(predict(surv.t3, Surv1, type="class"),
Surv1$Sex)

Female Male

Female 34 6

Male 5 39
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Now build an over-fitted model on the training set and check its 
performance:
> surv.t3 <- tree(Sex ~ ., Surv0, minsize = 4)

> table(predict(surv.t3, type="class"),
Surv0$Sex)

Female Male

Female 44 1

Male 1 38

Far too good!  How does it look on the test set?
> table(predict(surv.t3, Surv1, type="class"),

Surv1$Sex)

Female Male

Female 31 9

Male 8 36
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Bagging requires fitting the same model a sequence of 
'bootstrapped data frames'.  It is convenient to have a function to 
do it.
> jig <- function(dataFrame)

dataFrame[sample(nrow(dataFrame), rep = T), ]

Now for the bagging itself

> bag <- list()

> for(i in 1:100)

bag[[i]] <- update(surv.t3, data = jig(Surv0))

Next find the sequence of predictions for each model using the test 
set.  It is convenient to have the result as characters.

> bag.pred <- lapply(bag, predict,

newdata = Surv1, type = "class")

> bag.pred <- lapply(bag.pred, as.character)
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Finding the winner
Using a single call to table(), find the frequency of each 

prediction for each row of Surv1:

> tab <- table(rep(1:nrow(Surv1), 100), unlist(bag.pred))

Now find the maxima, avoiding any "one at a time" method.
> maxv <- tab[,1]
> maxp <- rep(1, nrow(tab))
> for(j in 2:ncol(tab)) {

v <- maxv < tab[,j]
if(any(v)) {

maxv[v] <- tab[v, j]
maxp[v] <- j

}
}

> table(levels(Surv1$Sex)[maxp], Surv1$Sex)
Female Male

Female 36 7
Male 3 38

Now 10 rather than 17 misclassifications.
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Tree models: some pTree models: some pTree models: some pTree models: some prosrosrosros and consand consand consand cons
• Tree based models are easy to appreciate and discuss. The 

important variables stand out. Non-additive and non-linear 
behaviour is automatically captured.

• Mixed factor and numeric variables are simply accommodated.
• The scale problem for the response is no worse than it is in the 

regression case.
• Linear dependence in the predictors is irrelevant, as are 

monotone transformations of predictors.

• Experience with the technique is still in its infancy. The 
theoretical basis is still very incomplete.

• Strongly coordinate dependent in the predictors.
• Unstable in general.
• Non-uniqueness. Two practitioners will often end up with 

different trees. This is not important if inference is not 
envisaged.


