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Notation

I y = (y1, ..., yn), observations with density p(y)

I θ ∈ RI d , parameter vector

I p(y|θ), the model

I p(θ), prior

I z, future realizations from true distribution of y.

I D(θ) = −2 log p(y|θ), deviance function

I −2 log p(z|θ), predictive deviance function



Expected predictive loss

The predictive deviance for future observations, −2 log p(z|θ), is a
commonly used loss function.

We don’t know θ or z, so use the expected (with respect to future
observations) posterior mean of this predictive deviance

G(y) = −2EZEθ|y [log p(z|θ)] = −2EZ

[∫
log p(z|θ)p(θ|y)dθ

]
.

DIC is motivated by the idea that G(y) can be estimated using the
within-sample version:

D(θ) = −2Eθ|y [log p(y|θ)] = −2

∫
log p(y|θ)p(θ|y)dθ .

Note that D(θ) uses the data twice, and hence underestimates G(y).



The Dirty information criterion, DIC

DIC can be written as
DIC = D(θ) + p ,

where p is a penalty term to correct for using the data twice.

A Taylor series expansion of D(θ) around θ = Eθ|y[θ] suggests that p

can be estimated as the posterior expected value of D(θ)− D(θ), giving

pD = D(θ)− D(θ) .

Yikes! Not invariant to re-parameterization due to use of θ. ///

Also, pD can be negative if deviance is not concave. ///



The Dirty information criterion, DIC

If D(θ)− D(θ) has an approximate chi-square distribution then its
posterior variance is approximately twice its posterior mean, leading to
the alternative estimate

pV = 0.5Varθ|y(D(θ))

= 2Varθ|y(log p(y|θ)) .

This gives re-parameterization invariance, but is more reliant on the
deviance being approximately quadratic in shape, and pV can be
numerically unstable in MCMC simulations.

These justifications of DIC assume the model is regular. That is,
identifiable with non-singular Fisher information (i.e., Hessian) matrix at
θ. Then p → d as n→∞.
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Problems with DIC

Mixture models are known to be problematic for DIC. E.g.,

p(y |µ1, µ2, σ1, σ2, b) = bN(µ1, σ
2
1) + (1− b)N(µ2, σ

2
2) .

I Mixture models are not identifiable due to label switching, i.e.,

p(y |µ1, µ2, σ1, σ2, b) = p(y |µ2, µ1, σ2, σ1, 1− b)

- although this can be addressed by imposing parameter constraints

I The likelihood is not concave (i.e., deviance is not convex) and
hence pD may be negative and pV may be erroneous.



Problems with DIC

Several works have argued that DIC under-penalizes model complexity
(van-der Linde 2005; Ando, 2007, 2011; Plummer 2008 ) and have
argued the use of

DIC∗ = DIC + p

= D(θ) + 2p .

DIC∗ can be justified on the basis that it is the unbiased estimator of the
unconditional expected predictive loss

G(n) = EY [G(y))] = −2EYEZEθ|y [log p(z|θ)] .

Note the additional expectation with respect to the data y.

DIC is a negatively biased estimator of G(n).



Widely Applicable Information Criteria

Sumio Watanabe (2009) developed a singular learning theory derived
using algebraic geometry results developed by Heisuke Hironaka (who
earned a Fields medal in 1970 for his work).

It is assumed that p(yi |θ) are independent.

Watanabe calls D(θ) Gibbs training loss, and denotes it GT . He defined

WAICG = GT + 2V = D(θ) + 2V

where

V =
n∑

i=1

Varθ|y(log p(yi |θ)) .

Watanabe showed that EY [WAICG ] is an asymptotically unbiased
estimator of G(n) under very general conditions, including for singular
and unrealizable models.

For regular realizable models, V → d .
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Widely Applicable Information Criteria

Watanabe also considered the unconditional expected predictive loss

B(n) = EY (B(y)) ,

where
B(y) = −2

n∑
i=1

EZi [log pi (zi |y)]

= −2
n∑

i=1

EZi

[
log

∫
p(zi |θ)p(θ|y)dθ

]
.

Define WAICB = BT + 2V , where

BT = −2
n∑

i=1

log p(yi |y)

= −2
n∑

i=1

log

∫
p(yi |θ)p(θ|y)dθ .

Watanabe showed that EY [WAICB ] is asymptotically unbiased for B(n).



WAICB and Bayesian leave-one-out cross validation

Proofs in Watanabe (2009) are very inaccessible.

However, Watanabe (2010) showed that WAICB is asymptotically
equivalent to Bayesian leave-one-out cross-validation loss.

Define Fi (α) = − log

∫
pi (yi |θ)α

∏
j 6=i

pj(yj |θ)p(θ)dθ .

Then,

−2 log p(yi |y−i ) = −2 log

∫ ∏n
i=1 pi (yi |θ)p(θ)dθ∫ ∏
j 6=i pj(yj |θ)p(θ)dθ

= 2(Fi (1)−Fi (0))

−2 log p(yi |y) = −2 log

∫
pi (yi |θ)2

∏
j 6=i pj(yj |θ)p(θ)dθ∫ ∏n

i=1 pi (yi |θ)p(θ)dθ
= 2(Fi (2)−Fi (1))

The equivalence is deduced from Taylor series expansions around α = 1.
The second order difference between −2 log p(yi |y) and −2 log p(yi |y−i )
is −2F ′′

i (1) = 2Varθ|y (li (θ)).
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Closing remarks: Where to from here?

I Current work is looking at extending WAIC to models where yi are
not conditionally independent. E.g., times series, spatial networks.

I For hierarchical models, y can be partitioned into conditionally
independent groups (one level below that of the model focus).

I In worst case, where y considered as 1 independent group, V
reduces to pV . That is, WAICG reduces to DIC∗ in worst case.

I WAICB has been used in a handful of published works and appears
to be the more popular of the two WAICs - likely due to its
equivalence with Bayesian LOO-CV.

I However, WAICB has been shown to be asymptotically equivalent
to DIC for regular realizable models, and DIC is known to overfit.
So, there may be some justification for preferring WAICG (i.e., it
may be better to target G(n) rather than B(n)).
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More widely applicable information criterion?

MWAICB = −2
n∑

i=1

log

∫
p(yi |θ, y−i )p(θ|y)dθ

+ 2
n∑

i=1

Varθ|y(log p(yi |θ, y−i )) . (1)


