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Introduction

In the last several decades, various form of skew and asymmetric distribution
have appeared in the literature, see McGill (1962), Azzalini(1985,1986),
John(1982), Fernandez & Steel (1998), Zhu and Walsh (2009).

In fact, this topic has many various applications in the theory and applied
statistics such as biostatistics, economics, physics, geology, and even
psychology and etc.

Two important classes of these split families are,

I the two-piece normal family.

I the two-piece Laplace family.

Here we introduce,

two-piece normal-Laplace (TPNL) distribution as a two-piece skew
distribution, and we investigate some properties, applications and estimation
of it .
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Two-Piece Normal Family

John (1982) introduced the two-piece split normal distribution, also
Mudholkar and Hutson (2000) considered another representation of this
family, with density

Epsilon-Skew Normal (ESN)

f (x , µ, σ, ε) =
1

σ
√

2π

 exp
(
− (x−µ)2

2σ2(1+ε)2

)
, x ≤ µ

exp
(
− (x−µ)2

2σ2(1−ε)2

)
, x > µ

(1)

where σ > 0, −1 ≤ ε ≤ 1, µ ∈ R.

The ESN can also be reparametrized, p = (1 + ε)/2, in the form µ is the
pth quantile of X ; i.e. P (X ≤ µ ) = p. Here we have called it two-piece
normal (TPN) distribution.

This distribution can be interpreted as a skew distribution with short tails.
The most important application of this class is in “Expectile Regression”, see
Newey and Powell (1987).
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Two-Piece Laplace Family

Statistical literature seems to reveal many asymmetric forms of the Laplace
distribution.

One of the oldest forms considered by McGill (1962). In addition, Holla and
Bhattacharya (1968) and also Hinkley and Revankar (1977) have considered
another form of the two-piece Laplace distribution.

One of the important representation, considered by Koeneker and Machado
(1999) in the context of “Quantile Regression”,

Two-Piece Laplace (TPL)

f (x , µ, σ, p) =
p(1− p)

σ

 exp
(
− |x−µ|

σ (1− p)
)
, x ≤ µ

exp
(
− |x−µ|

σ p
)
, x > µ

, (2)

where 0 < p < 1, σ > 0 , and µ ∈ R, is the pth quantile of X .

For other representations of the two-piece Laplace distribution you can see
Kotz et al. (2001) and also Kozubowski and Nadarajah (2010).

The most important application of this class is in Quantile Regression.
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General Form of Two-Piece Generalized Exponential

The more general class of two-piece exponential distribution has been defined:

Two-Piece Generalized Exponential

f (x ; k1, k2, p, µ, σ) =
C

σ


exp{−

∣∣ x−µ
σ

∣∣k1
g1(p)} x ≤ µ,

exp{−
∣∣ x−µ

σ

∣∣k2
g2(p)} x > µ,

(3)

where −∞ < µ <∞, σ > 0, gi (p) > 0, i = 1, 2, ki > 0, i = 1, 2

The functions gi (p) > 0, i = 1, 2 are the measures that by use of them one
can determine the location parameter µ as a statistical tendency such as the
quantiles (median), the expectiles (mean) and etc.

C , is the normalized coefficient that must be satisfy the following condition:

1

C
=

Γ(1/k1)

k1g1(p)1/k1
+

Γ(1/k2)

k2g2(p)1/k2

Zhu and Walsh (2009) have discussed some properties of this distribution
and also investigated some application of it in economic.
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Two-Piece Normal-Laplace (TPNL)

Here, we introduce the two-piece normal-Laplace (TPNL) distributions, with
density

Two-Piece Normal-Laplace (TPNL)

f (x ;µ, σ, p) =
1

σ
√

2π

 exp
(
− (x−µ)2

8p2σ2

)
, x ≤ µ

exp
(
− (x−µ)

(1−p)σ
√

2π

)
, x > µ,

(4)

where 0 < p < 1, σ > 0, and µ ∈ R .

This distribution consist of two pieces, one piece is half normal and other
piece is exponential distribution.

It provides a better fit in many applications.

Note that in this parametrization, µ is the pth quantile of X ; i.e.

P (X ≤ µ ) = p.

It is equivalent to k1 = 2, k2 = 1, g1(p) = 1/(8p2) and
g2(p) = 1/(

√
π(1− p)) in two-piece generalized exponential.
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TPNL Graph and Comparison with Two-Piece Normal
and Laplace
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Basic Statistical Properties

The standard two pieces normal Laplace distribution, TPNL(0, 1, p), is a
mixture of a half-normal distribution and an exponential distribution.

T = (1− U) (1− p) E − U2p |N| where U, N, E are independent, and
P (U = 1) = p = 1− P(U = 0), and N is a standard normal and E is a
standard exponential distribution with parameter

√
2π .

If X ∼ TPNL(µ, σ, p) then W = −X is distributed as TPNL(−µ, σ, 1− p),
and we namely it two-pieces Laplace-normal (TPLN) distribution.

Furthermore, if Y ∼ TPNL(0, 1, p) we can consider the model X = σY + µ
and X has distribution TPNL(µ, σ, p).

In addition if X ∼ TPNL(µ, σ, p) and, W = α+ βX then if β > 0,
W ∼ TPNL(α+ βµ, βσ, p), if β < 0, W ∼ TPLN (α+ βµ, |β|σ, 1− p).
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Basic Statistical Properties

E [Y ] = − 4p2

√
2π

+ (1− p)2
√

2π, (5)

Var (Y ) = 4
(
p3 + π(1− p)3

)
−

[
− 4p2

√
2π

+ (1− p)2
√

2π

]2

, (6)

E [Y m] =
1√
2π

{
(−1)m

2
Γ

(
m + 1

2

) (
8p2

)m+1
2 + Γ (m + 1)

[
(1− p)

√
2π

]m+1
}

for m = 1, 2, . . . .
In addition

−1 < skewness < 2 0.59 < kurtosis < 6

also

skewness (0.72) = 0
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Illustrate the usefulness of the TPNL

In this section, we illustrate the usefulness of the TPNL family by showing
that it provides a suitable fit to some real data.

Comparison TPNL with the two-piece normal, given by (1), and the
two-piece Laplace distribution, given by (2).

For each family, the three parameters were estimated by the method of
maximum likelihood and the fit was assessed by the Kolmogorov-Smirnov
(KS) statistic.

For each example we also considered the non-parametric estimator of the
density function and then compared the fit of the estimated density with the
nonparametric density estimator by computing absolute error distance (AED).

AED =
∑n

i=1
|f̂ (xi )− f̃ (xi ) | (7)

where f̂ and f̃ are the parametric and non-parametric estimates of the
density.
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Flow Data

The data concern the maximum
flow of flood water on a river for a
period of 20 years., in million cu. ft.
per second. The flood data taken
from Gilchrist (2000, Table 1.1).

Yu and Zhang (2006) applied the
two-piece Laplace distribution to
this data.

Although all the three families seem
to fit the data, it appears that the
TPNL gives the best fit.

Dist K-S AED
A-Laplace 0.81 199.43

TPNL 0.92 145.26
A-normal 0.84 247.72 Maximum flow of flood watr
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Happy Data

This set of data were collected to
test of conditions that “love” and
“work” are the important factors for
an individual’s happiness (Happy
data) that was used by George and
McCulloch (1993).

We use the distribution of “income”
(the annual income of 40 families in
thousands of dollars).

The TPNL distribution is more
suitable for this data.

Dist K-S AED
A-Laplace 0.20 0.53

TPNL 0.66 0.28
A-normal 0.10 0.70

Annual income of family in thousands of dollars

D
e

n
s
it
y

0 50 100 150

0.000

0.005

0.010

0.015

0.020

0.025
TP−Laplace
TPNL
TP−Normal
Non−parametric

A. Ardalan (Shiraz University) Two-Piece Normal-Laplace Distribution 13 / 33



Earthquack Data

The data is the distribution on
latitude of 1000 seismic events of
MB > 4.0. The events occurred in
a cube near Fiji since 1964, see
Wasserman (2006).

It seems TPNL is more suitable for
this data.

Dist K-S AED
A-Laplace 0.02 2.62

TPNL 0.21 1.16
A-normal 0.01 2.20

Latitude locations of earthquake near Fiji
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Maximum Likelihood Estimation

In this part:

First, we discuss log-likelihood function of TPNL distribution and we
investigate the properties of it.

After that, we present an algorithm for finding Maximum Likelihood
Estimation (MLE) for the parameters of the TPNL distribution.

Then, we will prove the MLEs are consistent.

Finally, we will prove the MLEs have the asymptotically normal distribution.
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Likelihood Function and Properties

` (X, θ) = −n ln(σ) −
n∑

i=1

[
(Xi − µ)2

8σ2p2
I[Xi≤µ] +

(Xi − µ)

σ (1− p)
√

2π
I[X>µ]

]

The log-likelihood function is not well behaved (in particular it is not
differentiable at µ = Xi ), the same problem is occurred in two-piece Laplace
distribution, see Hinkley and Revankar(1977), and Kotz et all(2002).

Another problem here is that the ` (X, θ) is not a convex function in
θ = (µ, σ, p). However, it will be convex in each parameter for given other
two parameters.

Therefore we have difficulty for finding the ML estimators. Zhu and Walsh
(2009) have proposed that “fmincon” command in Matlab package, can find
the MLE for parameters of the AEP distribution (which contains the TPNL
family, too), there are many examples which show that “fmincon” command
fails to find the global maximum even with excellent initial value.

In the following, we present an efficient algorithm for finding MLE.
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A Contour Plot of the Log-Likelihood Function for Given σ
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An Algorithm for Finding MLE

We propose an algorithm, for finding MLE, but before we need a lemma, some
notations and a Theorem.

Lemma 4.1. Let X1, . . . ,Xn be a sample from TPNL (µ, σ, p); and for given
σ, p µ̂ should lie in the interval

[
x(1), x(n)

]
.

In addition consider:

x (j) = j−1
∑j

i=1 x(i), x(i) is the ith order statistics

`µ− and `µ+ are the left and right derivatives of the log-likelihood function
with respect to µ, respectively.

An = An (µ, p) = 1
8p2

∑n
i=1 (xi − µ)2I[xi≤µ]

Bn = Bn (µ, p) = 1
(1−p)

√
2π

∑n
i=1 (xi − µ) I[xi>µ].

Wn =
√

2π
4σ

Pn
i=1 (xi−µ)2I[xi≤µ]Pn
i=1 (xi−µ)I[xi >µ]

≥ 0.
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Theorem 4.2. Let X1,X2, . . . ,Xn be a sample from TPNL distribution with
parameters µ, σ, and p. Then
(a). If σ and p are known, then

µ̂ = µ̂0 (σ, p) =

{
x(j) `µ+

(
x(j)

)
≥ 0

(n−j+1)
j−1

4p2σ

(1−p)
√

2π
+ x (j−1) `µ−

(
x(j)

)
< 0

j is the first number for which `µ+

(
x(j)

)
< 0.

(b). If µ and p are known, then

σ̂ = σ̂0 (µ, p) =
1

2n

(
Bn +

√
B2

n + 8nAn

)
(c). If µ and σ are known, then the MLE of p is given by the (unique) root of the

equation p3 −Wn(1− p)2 = 0. More precisely,

p̂ = p̂0 (µ, σ) =


0 µ = x(1){

p : p3 −Wn(1− p)2 = 0, 0 < p < 1
}

x(1) < µ < x(n)

1 µ = x(n)

,
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Algorithm.

I- for j = 2, . . . , n − 1 do the following:

1 (µ0,j , p0,j)←
`
x(j),

j
n

´
2 σ0,j ← bσ0 (µ0,j , p0,j)
3 i ← 1
4 While [stable solutions] do the following:

a) µi,j ← bµ0

`
σi−1,j , pi−1,j

´
b) σi,j ← bσ0

`
µi,j , pi−1,j

´
c) pi,j ← p̂0

“
µi,j , σi,j

”
d) i ← i + 1

5 (bµj , bσj , p̂j)← (µi−1,j , σi−1,j , pi−1,j)
6 `j ← ` (x; ; bµj , bσj , p̂j)

II- -`1 ← `
(
x; x(1), σ̂1, 0

)
& `n ← `

(
x; x(n), σ̂n, 1

)
III- - j ← argmin ({`1, `2, . . . , `n})
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Asymptotic Behavior of MLE

In the literature, there are many theorems that establish consistency and
normality of the MLE in the classical way. They usually depend on
restrictions:

I Differentiability of log-likelihood,
I Convexity of log-likelihood,
I Compactness of parameter space.

The ` (X, θ) has a sharp point at x = µ, (it has a cusp at x = µ) and so
some of the differentiability conditions are violated and also the classical
regularity conditions break down.

Another problem here is that the ` (X, θ) is not a convex function in
θ = (µ, σ, p).

We prove consistency of MLE, by modified Wald’s approach for nonregular
case.

The asymptotic normality of MLE, will be established according to Huber
(1967).
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Modified Wald Consistency of the MLE

Wald (1949) handles the non-compact set of parameters by some
assumptions which ensure that the MLE θ̂n is inside a compact set eventually,
almost surely, a modified of Walds consistency is given by Ghosh and
Ramamoorthi (2003)

Let X1, X2, . . . , Xn be a random sample from f (x , θ) and θ0 be the true

value from a parameter space Θ and let T (θ, x) = log
(

f (x, θ)
f (x, θ0)

)
be a real

value function on Θ×R . Suppose the following conditions satisfy:
1. Let Θ = ∪Ui where the Ui s are compact and U1 ⊂ U2 ⊂ . . . .For any
sequence

θi ∈ Uc
(i−1) ∩ Ui , lim

i
f (x , θi ) = 0,

2. For each x , T (θ, x) is continuous in θ, and also for each θ, T (θ, x) is
measurable,
3. Let ϕi (x) = supθ∈Uc

(i−1)
(T (θ, x)) , then Eθ0 [ϕ+

i (X )] <∞, for some i ,

then any MLE θ̂n is consistent at θ0.
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Modified Wald Consistency of MLE

We can not use directly this theorem for the distribution which have more
than one parameter, with one observation.

So, we should reorganize the sample x1, . . . , xn into y1, . . . , yN−1, yN where
N =

[
n
2

]
and yi = (x2i−1, x2i )

′, i = 1, 2, . . . ,N − 1 and

yN =

{
(xn−1, xn)

′ n is even,
(xn−2, xn−1, xn)

′ n is odd .

Note that the likelihood functions of the both samples are the same.

Theorem 4.3. The θ̂n is a consistent ML estimator for θ0, where θ0 is the true
value parameter θ0 = (µ0, σ0, p0) , i.e., θ̂n

a.s−→ θ0.

Proof:
We should check the conditions of (Ghosh and Ramamoorthi, 2003) for
y1, . . . , yN−1, yN .
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Normality of MLE by Huber Conditions

In this part we want to show θ̂n has asymptotic normal distribution, by the Huber
approach, i.e.

√
n

(
θ̂ − θ0

)
L→ Z ∈ N

(
0, I−1(θ0)

)
,

where I (θ0) is the Fisher information matrix of TPNL. Huber (1967) assumes
that, Θ is an open subset of m-dimensional Euclidean space Rm, (Ω, {,P) is a
probability space, and Ψ : Ω×Θ→ Rm is some function. Assuming that
x1, x2, . . . are independent identically distributed random variables with values in
Ω and common distribution P, he gives sufficient conditions ensuring that every
sequence Tn = Tn (x1, . . . , xn) satisfying,

1√
n

n∑
i=1

Ψ (xi ,Tn)
P−→ 0 , (8)

is asymptotically normal.
Huber’s Theorem requires that (8) and the assumptions (N-1)-(N-4) be satisfied
(Refer to Huber, 1967, Section4).
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Normality of MLE by Huber Conditions

We define

Ψ (x , θ) =

 ψ1 (x , θ)
ψ2 (x , θ)
ψ3 (x , θ)

 =

 1
2

(
gµ− (x , θ) + gµ+ (x , θ)

)
gσ (x , θ)
gp (x , θ)

 ,
Where g (x , θ) = ln f (x , θ) ; and gµ− and gµ+ be the left and right partial
derivative of g with respect to µ; and gσ and gp be the partial derivatives of g
with respect to σ and p, respectively. Note that

gµ− (x , θ) =
x − µ
4p2σ2

I[x≤µ] +
1

(1− p)σ
√

2π
I[x>µ] ,

gµ+ (x , θ) =
(x − µ)

4p2σ2
I[x<µ] +

1

(1− p)σ
√

2π
I[x≥µ].

Lemma 4.4. Let Ψ (x , θ) is defined above, then,

1√
n

n∑
i=1

Ψ
(
Xi , θ̂n

)
p→0.
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The Sketch of Proof for Normality by Huber Approach

Let

Ψ∗
n (θ) =

1

n

n∑
i=1

E [Ψ(Xi , θ)]

has been named it smoothed objective function.
Using the mean value theorem for smoothed objective function and expanding it
in the neighborhood of θ̂ , we have

0 = Ψ∗
n (θ0) = Ψ∗

n

(
θ̂
)

+
∂Ψ∗

n

(
θ
)

∂θT
(θ0 − θ̂),

where θ lies on the line segment joining θ0 and θ̂ and hence

(
θ0 − θ̂

)
= −

[
∂Ψ∗

n

(
θ
)

∂θT

]−1

Ψ∗
n

(
θ̂
)
.

Under suitable assumption on Ψ (X , θ) , one obtains
∂Ψ∗n(θ)

∂θT

p→M.
For the iid case, M = −I (θ0) , see Huber(1969, p-231).
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The Sketch of Proof for Normality by Huber Approach

Therefore, we have

√
n

(
θ̂ − θ0

)
=

(
I−1+op(1)

)√
n Ψ∗

n

(
θ̂
)
,

where op (1) converges in probability to zero as n→∞.
And if

√
n Ψ∗

n

(
θ̂
)

L→ Z ∈ N(0, I(θ0)), then by Slutsky Theorem

√
n

(
θ̂ − θ0

)
L→ Z ∈ N

(
0, I−1(θ0)

)
,

to show it, we can write

−
√

n Ψ∗
n

(
θ̂
)

= −
(√

n Ψn (θ0) +
√

n Ψ∗
n

(
θ̂
))

+
√

n Ψn (θ0)

By ordinary CLT
√

n Ψn (θ0)
L→N(0, I(θ0)) and so if we show(√

n Ψn (θ0) +
√

n Ψ∗
n

(
θ̂
))

p→ 0,

then by Slutsky Theorem we can conclude that −
√

n Ψ∗
n

(
θ̂
)

L→N(0, I(θ0)) .
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Summary

In this article we have introduced a family of split skew distribution that can
be used for analyzing skew data.

Note that this distribution can be applied for the population which from one
side is shrunk (short tail) and from other side is stretched (heavy tail) and
also two-piece normal and two-piece laplace unable cover it.

Obviously much additional work is needed.
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Thank You
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