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Posterior densities for an inspiral’s coalescence time, dis-
tance, its individual masses, and a 99% confidence region
for its sky position (preliminary results).

· Outlook
Further work is required on the implementation’s accuracy and
efficiency.
Convergence of the MCMC sampler to the actual stationary dis-
tribution still is very slow; the most promising approach to the
solution of this problem at the moment is the use of parallel tem-
pering [7].
By now the method has only been run on simulated data sets,
‘real’ measurements are not yet available but are expected in the
near future.
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Assuming that the noise is independent across different interfer-
ometers, the detector network likelihood is the product of the
individual likelihoods:

p(z|ϑ) =
∏
I

p(I)(z|ϑ).

Likelihood computation in the frequency domain allows to easily
filter out the signal frequencies that fall into the interferometers’
operational ranges.
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Two interferometer noise curves and the times a binary sys-
tem spends orbiting at corresponding frequencies.

A binary inspiral will be detectable within today’s interferome-
ters’ operational ranges for its last 20–100 seconds before coa-
lescence.
Due to the signal’s nature, some parameters (e.g. direction) re-
quire measurements from different detector sites in order to be
estimable.

· Results so far
The estimation procedure is still under development and has by
now been tested by investigating simulated data sets. A first stage
was to implement a simplified model including only 5 parameters
and processing data from one interferometer. This model was
used to figure out appropriate procedures for different stages es-
pecially of the likelihood computation, including downsampling,
filtering, Fourier transformation and windowing, and eventually
sensible tuning of the MCMC algorithm.
After this model worked satisfactorily, it is now being extended
to the realistic case of 9 parameters and processing data from sev-
eral detector sites. Some methods applied in the simpler model
to improve the efficiency of the MCMC sampler evidently are
not appropriate for the extended model, mostly due to the much
larger parameter space.
The plots in the upper right illustrate marginal posterior distri-
butions for some of the parameters for the extended model; the
posteriors are still slightly off the true values indicated in red.

· Bayesian Analysis
The parameter estimation problem for binary inspirals has by
now usually been addressed through the Maximum - Likelihood
approach [3]; a Bayesian analysis however, might provide more
sensible results [4].
Bayesian estimation has already been tried and proved promising
in a simplified setting, i.e. using fewer parameters and data from
a single interferometer [5]; our aim is to extend this approach to
the complete parameter set and multiple interferometers.
The posterior distribution (that does not have a simple, closed
form) is investigated using an MCMC algorithm.

· Priors
The a priori information about the parameters can be formulated
(as ‘proper’ priors) given both theoretical or observational re-
sults, assuming e.g. that different orientations are equally likely,
potential locations are evenly spread across time and space, and
neutron star masses comply with observed frequencies.

· Model
Assumptions made for the analysis are:
•measurement is signal plus superimposed interferometer noise
• signal follows the ‘(2.0) post-Newtonian’ approximation [2]
• interferometer noise is Gaussian with a certain (interfero-

meter specific) spectrum
• noise is independent between different interferometers

time (seconds)
−0.10 −0.08 −0.06 −0.04 −0.02 0.00

A binary system’s last 10th second before coalescence, mea-
sured by an interferometer as a ‘chirp’.

· Likelihood
The Likelihood for a single interferometer I is computed based
on the (complex-valued) Fourier-Transformation (z̃) of the da-
ta (z) and also depends on the interferometer’s noise spectrum:

p(I)(z|ϑ) ∝ exp

(
− 2

δt

iU∑
i=iL

|
data︷ ︸︸ ︷

z̃(I)(i×∆f)−
template︷ ︸︸ ︷

s̃(I)(i×∆f , ϑ) |2

S(I)
n (i×∆f)︸ ︷︷ ︸

noise spectrum

)

The ‘template’ s̃(I) denotes the Fourier-transformed (theoretical)
response of detector I depending on the parameter vector ϑ [6].

“Gravitational Radiation?”
General Relativity Theory introduced the idea that
space-time is curved by the presence of mass, ener-
gy and momentum within it. It also implies the ex-
istence of gravitational waves, which can be thought
of as ‘ripples’ in space-time, caused by rapidly mov-
ing heavy objects, and propagating at light speed.
By now this effect has only been observed indi-

rectly, when the observed slight deceleration of the rotation of
a binary pulsar matched exactly with the predicted deceleration
due to the loss of energy through gravitational radiation [1].
The effect of gravitational radiation is very weak, so it takes very
sensitive instruments to detect and measure it. The most promi-
nent approach towards the measurement of gravitational waves
at the moment is by means of Laser Interferometers: instruments
that measure the effect of a passing gravitational wave by deter-
mining the phase shift of two laser beams that are sent through
two orthogonal tubes of lengths of up to several kilometres.
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Layout sketch and actual interferometer with 4-km arms.

Measurement of Gravitational Radiation would not only confirm
the General Relativity Theory, but also complement to ‘tradi-
tional’ observations in the electromagnetic spectrum.

· Chirps in space-time
Gravitational radiation is emitted by all kinds of objects and pro-
cesses, but one of the first events expected to be detected are
binary inspirals, that is, a pair of heavy objects (neutron stars or
black holes) that orbit each other rapidly at a decreasing distance
and eventually collide. The non-constant orbit again is caused
by the emission of energy through gravitational radiation, which
causes the two objects to slightly slow down and approach each
other until the system finally collapses.
The gravitational wave signal emitted by such an inspiral is a
so-called ‘chirp’, an oscillation with increasing frequency and
amplitude; its exact shape is determined by nine parameters like
• masses of the involved objects (2 parameters),
• orientation of inspiral and interferometer (3 parameters),
• distance and direction to the inspiral (3 parameters), and
• coalescence time (1 parameter),

which in turn are to be estimated from the measured signal [2].
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