# Application of a Genetic Algorithm to Variable Selection in Fuzzy Clustering

Christian Röver and Gero Szepannek

Fachbereich Statistik Universität Dortmund roever@statistik.uni-dortmund.de gero.szepannek@web.de

March 11, 2004

#### Overview

- **1.** the problem
- 2. tackling the problem / methods
- **3.** application to Dortmund data
- 4. conclusions

### The Problem

- given: huge dataset (many variables) wanted: grouping of observations, clusters
- reduce dimensionality to
  - avoid **overfitting**
  - exclude noise and redundant variables
  - keep data perceptible and interpretable
- use variable subsets (instead of, e.g., linear combinations) for interpretability
- → what is the **optimal** subset of variables?

## **Quality requirements**

- needed: comparable quality measure for variable subsets of
  - different  $\boldsymbol{scales}$  and
  - varying subset size
- restriction: variable subset should be representative of complete data
- → quality measure?
- → what makes a variable subset representative?

#### **Quality measure**

• focus on **fuzzy clustering**:

no fixed cluster assignments, but membership scores:

|            |   | Cluster |      |      |  |  |
|------------|---|---------|------|------|--|--|
| Observatio | n | 1       | 2    | 3    |  |  |
|            | 1 | 0.95    | 0.02 | 0.03 |  |  |
|            | 2 | 0.50    | 0.30 | 0.20 |  |  |
|            | : | •       | •    | •    |  |  |

• compute a measure from **membership matrix**  $\boldsymbol{U}$ 

• classification entropy:

$$CE(U) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{k} (u_{ij} \cdot \log_2 u_{ij})$$

- CE(U) = 0 if all  $u_{ij} \in \{0, 1\}$  (most crisp partitioning) CE(U) greatest if all  $u_{ij} = \frac{1}{k}$  (fuzziest partitioning)
- minimize CE(U) for 'optimal' subset
- number of clusters (k) was fixed and model-based clustering<sup>1</sup> (fitting of a normal mixture model to data) was applied

<sup>&</sup>lt;sup>1</sup>Fraley, C. and Raftery, A.E. (2002): mclust: Software for model-based clustering, density estimation and discriminant analysis. *Technical Report, Department of Statistics, University of Washington*. See http://www.stat.washington.edu/mclust.

#### Representativeness

- variable subset should reflect certain **aspects** of data
- define **subgroups** of variables having to appear in a subset
  - manually (by meaning) or
  - systematically
- systematical selection: groups of **correlated variables**
- motivation: subgroups have a common source of variability;
  by picking from different groups, different sources are covered

- cluster variables by their correlation
- define: **distance** between variables:

$$d(X,Y) = 1 - |\operatorname{Cor}(X,Y)|$$

apply agglomerative hierarchical clustering

- complete linkage: (absolute) correlation within group is bounded below
- **single linkage**: correlation *between* groups is **bounded above**

### Optimization

- problem: minimize function  $f : \mathcal{M} \to \mathbb{R}$ where  $\mathcal{M}$  has varying dimension and further restrictions
- use **genetic optimization algorithm** (applies principle of *survival of the fittest*):
  - fitness  $\longleftrightarrow$  objective function
  - genome  $\longleftrightarrow$  variable subset
  - mutation  $\longleftrightarrow$  change in subset
  - recombination  $\longleftrightarrow$  combination of 2 subsets
  - selection (survival)  $\leftrightarrow \rightarrow$  comparison by objective function

#### Procedure



#### **Application to Dortmund data**

- raw data: 200 variables, 170 observations (subdistricts) constructed data set of 57 (scaled) variables
- 12 observations were considered **outliers**, e.g. districts containing
  - horse race track
  - steel plant being dismantled
  - university
  - . . .
- **systematical selection** of variable subgroups proved to be **impractical**: either huge numbers of variable groups or correlation bounds of insignificant order



#### Clustering of variables by correlation (complete linkage)

Christian Röver and Gero Szepannek: Application of a Genetic Algorithm to Variable Selection in Fuzzy Clustering

- variable groups:
  - i. age distribution
  - ii. births, deaths, migration
  - iii. motoring
  - iv. buildings, housing
  - v. employment, welfare
  - vi. some of above broken down by sex etc.
- final variable subset shall represent groups i, ii, iv and v and have at most 6 variables
- data exploration suggests presence of 4 clusters

#### Results

• variable set and cluster means:

|                                           |       | Cluster |       |       |       |
|-------------------------------------------|-------|---------|-------|-------|-------|
| Variable                                  | Group | 1       | 2     | 3     | 4     |
| fraction of population of age 60–65       | i.    | 0.057   | 0.065 | 0.064 | 0.083 |
| moves to district per inhabitant          | ii.   | 0.075   | 0.054 | 0.035 | 0.025 |
| apartments per house                      | iv.   | 7.831   | 5.331 | 3.367 | 2.524 |
| people per apartment                      | iv.   | 1.877   | 1.676 | 2.216 | 2.029 |
| fraction of welfare recipients            | V.    | 0.129   | 0.031 | 0.066 | 0.023 |
| fraction of immigrants of employed people | vi.   | 0.274   | 0.073 | 0.086 | 0.032 |

minimum, maximum

13



#### Spatial distribution of the 4 clusters



- **cluster 1** (*center N*) is most different from **cluster 4** (*suburbs SE*): cluster 1 has
  - few old inhabitants
  - many immigrants
  - many welfare recipients
  - much migration
  - many apartments per house

while cluster 4 takes opposite extreme values

- **clusters 2** and **3** lie mostly between these extremes and differ by their housing situation: cluster 3 (*suburbs NW*) has
  - less apartments per house
  - most people per apartment

while cluster 2 (center S) has the least people per apartment.

#### Conclusions

- → variable selection problem was expressed as a minimization problem by introducing a quality measure and certain restrictions
- → an appropriate optimization algorithm was utilized to search for an optimal subset

- → automatical generation of restrictions proved to be impractical for Dortmund data
- → variable selection worked well, resulted in an interpretable variable set