Identification of Musical Instruments by means of the Hough-Transformation

Christian Röver¹, Frank Klefenz² and Claus Weihs¹

¹Fachbereich Statistik Universität Dortmund 44221 Dortmund, Germany roever@statistik.uni-dortmund.de

 ² Fraunhofer-Institut f
ür Digitale Medientechnologie Langewiesener Straße 22
 98693 Ilmenau, Germany

March 9, 2004

Overview

- 1. the Hough-transform
- 2. application to sound data
- 3. resulting data format
- 4. classification approaches
- 5. results

The Hough-transform

- originally developed for image processing¹: detection of straight lines, later generalized to arbitrary functions/shapes²
- similar to **regression**
 - robust
 - simultaneous fitting of several lines possible

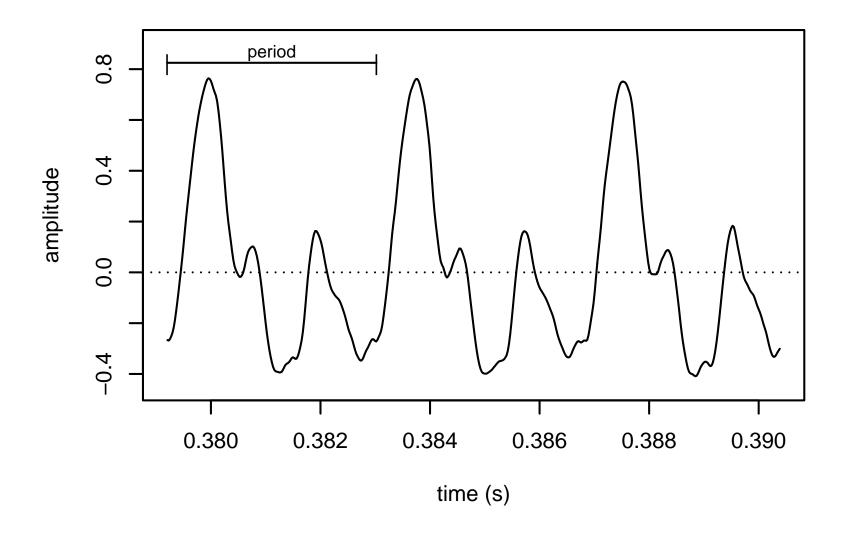
¹Hough, P.V.C. (1959): Machine analysis of bubble chamber pictures. In: *International conference on high-energy accelerators and instrumentation*. Genève, 554-556.

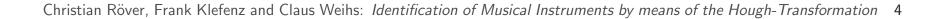
²Shapiro, S.D. (1978): Feature Space Transforms for Curve Detection. *Pattern Recognition, 10, 129–143*.

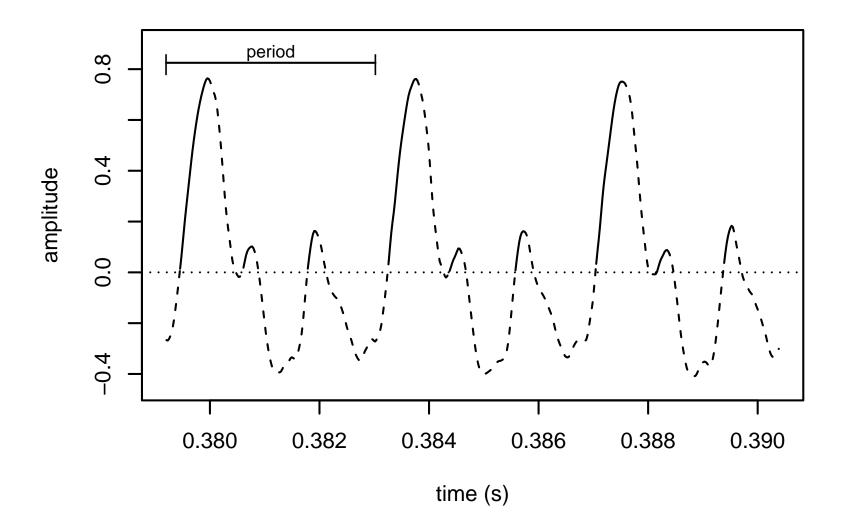
Audio data

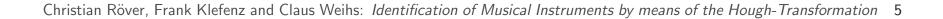
- apply to (digital) audio data
- motivation: characterize sounds by oscillation pattern

- → does that lead to useful sound characterization?
- → check by trying to recognize sounds







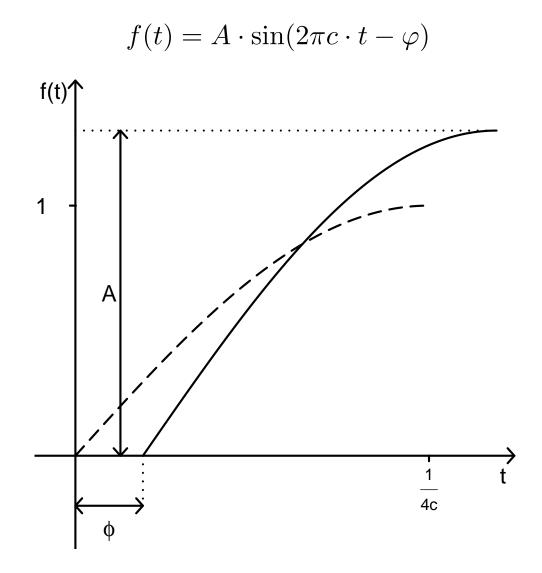


Transform parameter setting

- focus on **signal edges**
- fit a **sinusoidal function** to sound samples:

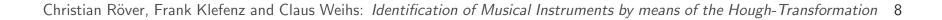
$$f(t) = A \cdot \sin(2\pi c \cdot t - \varphi) \qquad (\varphi \le t \le \varphi + \frac{1}{4c})$$

- $A \ge 1$: amplitude \longrightarrow slope
- $\varphi \geq 0$: phase difference \longrightarrow time
 - *c*: center frequency (fixed)



Christian Röver, Frank Klefenz and Claus Weihs: Identification of Musical Instruments by means of the Hough-Transformation 7

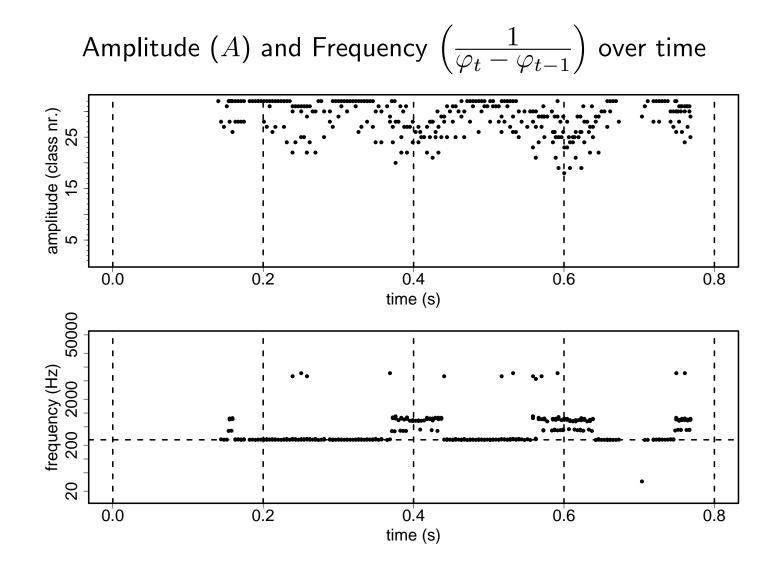




Resulting data

• transformed sound is another **time series**:

	phase difference $arphi$		amplitude A	
Nr.	sample	seconds	class-nr.	value
	E	:	÷	:
104	16731	0.3793881	28	1.163636
105	16838	0.3818141	31	1.049180
106	16894	0.3830841	22	1.488372
107	19896	0.3831291	25	1.306122
108	17004	0.3855781	30	1.084746
109	17065	0.3869611	27	1.207547
110	17173	0.3894101	31	1.049180
:	E	÷		÷



Christian Röver, Frank Klefenz and Claus Weihs: Identification of Musical Instruments by means of the Hough-Transformation 10



Christian Röver, Frank Klefenz and Claus Weihs: Identification of Musical Instruments by means of the Hough-Transformation 11

Classification

→ How can we use transformed data for classification?

• first approach:

do **frequencies** of the 32 possible **amplitude values** yield a sufficient ('spectrum-like') sound characterization?

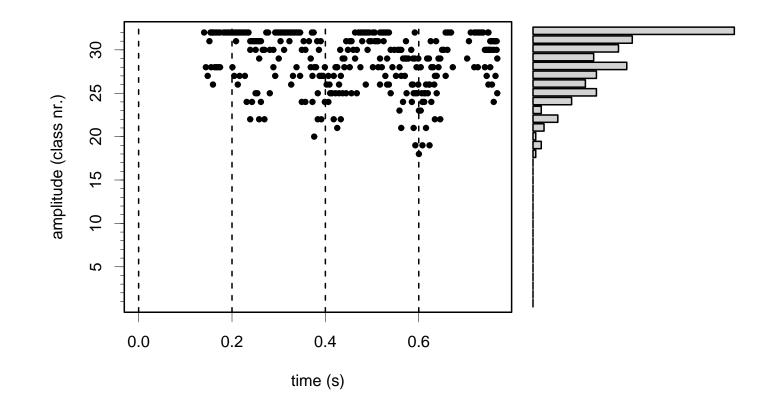
second approach:

derive characterizing variables

- characterize (marginal) distributions of amplitudes and frequencies
- characterize distribution over time: autocorrelation and trend

- . . .

First approach



→ 32 variables + pitch = **33 total**

Second approach

- transform **durations** between signal edges into **frequencies**
- mean amplitude, mean frequency
- amplitude **trend** over time
- autocorrelation of amplitudes
- . . .

→ 62 variables total

Data

- investigated data set³: 1987 digitized sounds (CD-quality — 44.1 kHz, 16 bit, mono) pitches are given
- 62 sequences of \approx 32 sounds
- sequences of sounds by same or similar instruments were grouped together (e.g. piano at different volumes or bassoon and contrabassoon)

→ 25 instrument classes

³Opolko, F., Wapnick, J.: McGill University Master Samples (*CD-Set*). 1987. See http://www.music.mcgill.ca/resources/mums/html/

Applied methods

- LDA: Linear Discriminant Analysis
- **QDA**: Quadratic Discriminant Analysis
- naive Bayes
- **RDA**: Regularized Discriminant Analysis
- Support Vector Machine
- Classification Tree
- **k-NN**: *k*-Nearest-Neighbour

Regularized Discriminant Analysis (RDA)⁴

- QDA-like; covariance matrix is **manipulated** using **two parameters**
- only **one** of them improved classification
- class k covariance matrix estimate reduces to:

$$\hat{\Sigma}_{k}^{\text{RDA}} = \lambda \hat{\Sigma}^{\text{LDA}} + (1 - \lambda) \hat{\Sigma}_{k}^{\text{QDA}} \qquad (0 \le \lambda \le 1)$$

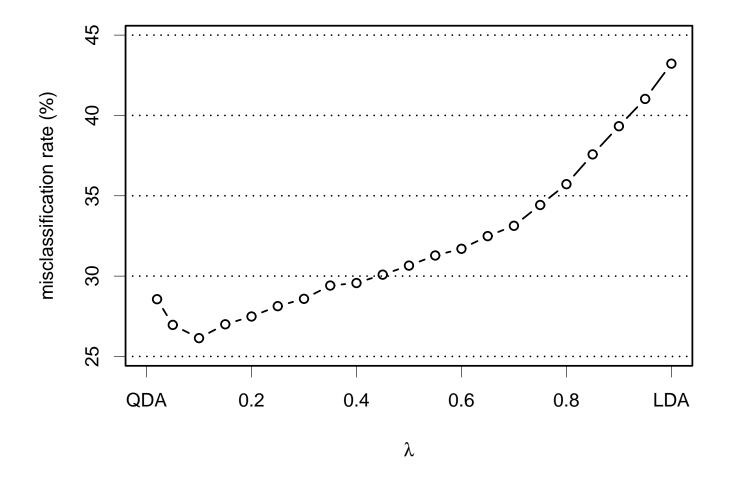
• $\lambda = 0 \rightarrow \mathbf{QDA}$ $\lambda = 1 \rightarrow \mathbf{LDA}$

⁴Friedman, J.H. (1989): Regularized Discriminant Analysis. *Journal of the American Statistical Association, 84, No. 405, 165–175*

Variable selection

- necessary for second approach (not appropriate in first approach)
- performed **iteratively** in a **stepwise** manner:
 - **start** with pitch only
 - in every step include variable that leads to greatest misclassification rate improvement
 - misclassification rate estimated by cross-validation

RDA-parameter tuning



Christian Röver, Frank Klefenz and Claus Weihs: Identification of Musical Instruments by means of the Hough-Transformation 19

Applied methods

- first approach (amplitude frequencies):
 best result: 66% error rate using k-Nearest-Neighbour
- second approach (characterizing variables): final result: 26.1% error rate using Regularized Discriminant Analysis (RDA) with 11 variables and $\lambda = 0.1$

Discriminating features

- pitch
- waiting time for first edge and sound duration
- signal edge rate (per second)
- mean, variance and shape of amplitude distribution
- **trend** of amplitudes
- mean and variance of frequency distribution
- correlation of amplitude and frequency

Comparing the results

- final misclassification rate: 26.1%
- misclassification rate by **guessing**: $\frac{24}{25} = 96\%$
- rates achieved by **humans**: $\approx 44\%$
- rates by **automatic recognition**⁵: $\approx 19 7.2\%$

⁵Bruderer, M.J. (2003): *Automatic recognition of musical instruments*, Masters Thesis, Ecole Polytechnique Federale de Lausanne.

Conclusions

- → Hough-transformation yields useful **characterization** of a sound
- → classification results achieved with RDA better than human, still worse than with other approaches (comparable?)
 - open questions: noise sensitivity? other transform parameter settings?
 - . . .