Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors

Christian Röver¹, Renate Meyer¹, and Nelson Christensen²

¹The University of Auckland Auckland, New Zealand

> ²Carleton College Northfield, MN, U.S.A.

Overview:

- **1.** gravitational waves
- 2. measuring gravitational waves
- **3.** the binary inspiral signal
- 4. prior & model
- 5. MCMC details
- **6.** example application

Gravitational waves

- general relativity: space-time curved by masses
- implication: existence of **gravitational waves** (pointed out in 1916)
- existence proven in 1979
- measurement attempted since 1960s
- no *direct* measurement yet

Se C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Gravitational waves

- very weak effect
- emitted by **rapidly** moving, **heavy** objects
- event candidates:
 - supernovae
 - big bang
 - binary star systems
 - . . .

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

€ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

€ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Livingston, LA

Hannover, Germany

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Measuring gravitational waves

- laser interferometry
- output: a **time series**
- problems: signal detection, parameter estimation,

Binary inspiral events

- binary star system, orbiting around their barycentre
- energy is radiated in the form of gravitational waves
- orbits shrink, rotation accelerates
- → "chirping" GW signal (increasing frequency and amplitude)

The "chirp" signal

(3.5PN phase / 2.5PN amplitude approximation)

The 9 signal parameters

- masses: m_1 , m_2
- luminosity **distance**: d_L
- sky location: declination δ , right ascension α
- orientation: inclination ι , polarisation ψ , coalescence phase ϕ_0
- coalescence time: t_c

Prior information

- different locations / orientations equally likely
- masses: uniform across $[1 M_{\odot}, 10 M_{\odot}]$
- events spread uniformly across space: $P(d_L \le x) \propto x^3$
- but: certain SNR required for detection
- cheap **SNR substitute**: signal **amplitude** \mathcal{A}
- primarily dependent on masses, distance, inclination: $\mathcal{A}(m_1, m_2, d_L, \iota)$

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

• introduce sigmoid function linking **amplitude** to **detection probability**:

& C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Resulting (marginal) prior density

€ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Marginal prior density

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Marginal prior densities

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Prior

- prior 'considers' **Malmquist effect** (selection effect)
- more realistic settings once detection pipeline is set up ("selection" of signals done by the signal detection algorithm)

Model

- data from several interferometers
- **noise** assumed **gaussian**, **coloured**; interferometer-specific spectrum
- noise independent between interferometers
 ⇒ coherent network likelihood is product of individual ones
- likelihood computation based on Fourier transforms of data and signal

MCMC details

- Metropolis-algorithm
- Reparametrisation,

most importantly: chirp mass m_c , mass ratio η

• Parallel Tempering¹

several *tempered* MCMC chains running in parallel sampling from $p(\theta) p(\theta|y)^{\frac{1}{T_i}}$ for 'temperatures' $1 = T_1 \leq T_2 \leq \dots$

¹W.R. Gilks et al.: *Markov chain Monte Carlo in practice* (Chapman & Hall / CRC, 1996).

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Example application

• simulated data:

 $2\,M_\odot$ - $5\,M_\odot$ inspiral at 30 Mpc distance measurements from 3 interferometers:

SNR

LHO (Hanford)	8.4
LLO (Livingston)	10.9
Virgo (Pisa)	6.4
network	15.2

- data: 10 seconds (LHO/LLO), 20 seconds (Virgo) before coalescence, noise as expected at design sensitivities
- computation **speed**: 1–2 likelihoods / second

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

27

€ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

€ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

ℜ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Additional examples

- lower (total) signal-to-noise ratio (SNR)
- 'unbalanced' SNR:

	SNR
LHO (Hanford)	9.6
LLO (Livingston)	13.9
Virgo (Pisa)	0.2
network	16.9

Low total SNR

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Low SNR at one interferometer

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Parallel tempering MCMC

- several parallel MCMC chains
- tempering: sampling from *tempered* distributions

chain	temperature	sampling from
1	$T_1 = 1$	p(heta) p(y heta)
2	$T_2 = 2$	$p(heta) p(y heta)^{rac{1}{2}}$
3	$T_3 = 4$	$p(heta)p(y heta)^{rac{1}{4}}$
÷	:	:
		p(heta)

• additional swap proposals between chains

MCMC chain 1 -temperature = 1

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

MCMC chain 2 - temperature = 2

€ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

MCMC chain 3 -temperature = 4

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

MCMC chain 4 — temperature = 8

€ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

Six tempered chains over time

↔ C. Röver, R. Meyer and N. Christensen: Coherent Bayesian inference on compact binary inspirals...

C. Röver, R. Meyer, N. Christensen: *Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors.* Physical Review D, 75(6):062004, March 2007.