
· Burst analysis
Far less data needs to be considered when analysing burst sig-
nals; only 2 seconds for each of 3 interferometers (0.1 MB) were
processed in the example below.
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Posterior densities for the burst parameters, and a 95% pos-
terior region for the sky location. True parameter values
are indicated in red.

Due to the burst posterior’s different characteristics, more paral-
lel chains need to be run in order to find the posterior’s global
mode; here 15 chains were used.

· Outlook
We are planning to extend our research to more complex sig-
nal waveforms, like e.g. inspirals involving greater masses (black
holes), or taking into account the effects of spins the two com-
panions may have.
Eventually, the developed methodology is supposed to be in-
stalled at the end of a ‘detection pipeline’ that monitors the in-
terferometer measurements and triggers the analysis when the
presence of a signal is detected.
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[4] C. Röver, R. Meyer, and N. Christensen. Bayesian inference on com-
pact binary inspiral gravitational radiation signals in interferometric data.
Submitted for publication; URL: http://arxiv.org/abs/gr-qc/0602067
(preprint), February 2006.

[5] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov chain Monte
Carlo in practice. Chapman & Hall / CRC, Boca Raton, 1996.

· Priors
The prior information about parameters is specified (in terms of
‘proper’ priors) assuming for example that different orientations
are equally likely, potential events are evenly spread across time
and space, neutron star masses comply with predicted frequen-
cies, and also taking into account the interferometers’ sensitivi-
ties [4].

· MCMCMC Posterior simulation
Integration of the posterior distribution is solved using MCMC
simulation. The posterior distribution exhibits many local modes
amongst which a ‘regular’ Metropolis-sampler would have trou-
ble converging towards the global optimum. A Metropolis-Cou-
pled MCMC (MCMCMC) scheme (also known as ‘parallel tem-
pering’) was implemented. This algorithm runs several chains
sampling from ‘tempered’ likelihoods p(z|ϑ)

1
T with increasing

temperatures T in parallel, so only the first chain (T = 1) sam-
ples from the actual likelihood. Additional steps then allow to
randomly switch between chains, improving sampling and con-
vergence [5].

· Chirp analysis
In the example below, data was generated to simulate a binary
neutron star inspiral event that is measured at three different in-
terferometers. The amount of data was 23, 23 and 44 seconds for
the different sites, downsampled to 4–5 kHz (1.6 MB in total).
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Posterior densities for some of the inspiral parameters, and
a 95% posterior region for the sky location. True parame-
ter values are indicated in red.

The parallel tempering algorithm ran 6 parallel chains, generat-
ing 80 draws per minute on a 3.2 GHz desktop PC.

The gravitational wave measurements are superimposed with in-
terferometer-specific coloured noise. Combining data from sev-
eral interferometers improves the signal-to-noise ratio, and also
makes the estimation of certain parameters (e.g. sky location)
possible.
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Noise spectra of two different interferometers.

· Parameters
The measured detector response depends on the signal waveform
as well as mutual orientations of detectors and source (sky loca-
tion (δ, α) and polarisation angle (ψ)).
A binary inspiral’s chirp waveform is determined by the masses
of involved objects (m1, m2), coalescence time (tc), distance
(dL), phase (φ0) and inclination (ι); not all of these are of pri-
mary concern, the latter two as well as the polarisation are rather
nuisance parameters.
Burst waveforms can have a range of parametrisations; the sine-
gaussian bursts we use are defined by their center (µ), width (σ),
amplitude (a), frequency (f ) and phase (φµ).

· The coherent likelihood
The individual likelihoods (for measurements from one interfer-
ometer I) are computed based on Fourier transforms of data (z̃)
and waveform (s̃(ϑ)), and the detector’s noise spectrum:

p(I)(z|ϑ) ∝ exp

(
− 2

δt

iU∑
i=iL

|
data︷ ︸︸ ︷

z̃(I)(i×∆f)−
waveform template︷ ︸︸ ︷
s̃(I)(i×∆f , ϑ) |2

S(I)
n (i×∆f)︸ ︷︷ ︸

noise spectrum

)

[3]. Waveform templates s(ϑ) are generated in the time domain,
and then (numerically) Fourier-transformed for each likelihood
evaluation.
Assuming that the noise is independent across different interfer-
ometers, the coherent network likelihood is the product of the
individual detector likelihoods:

p(z|ϑ) =
∏
I

p(I)(z|ϑ).

· Gravitational waves
General Relativity Theory predicts the existence of gravitation-
al radiation—distortions in space-time that propagate through
space at the speed of light. Around the world, laser interferom-
eters are being built and put into operation in order to measure
the effect of gravitational waves. Direct measurement of grav-
itational radiation would not only confirm the General Relativ-
ity Theory, but also complement ‘traditional’ observations in the
electromagnetic spectrum [1].
We propose a Bayesian framework to estimate event parameters
from gravitational wave measurements.

· Measuring chirps & bursts
Among the event candidates that are expected to be detected first
are binary inspirals and bursts. Inspiralling binary star systems
emit sustained ‘chirp’ signals of increasing frequency and ampli-
tude, whose evolution is predicted with great precision [2].
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sured at different interferometer sites as ‘chirps’.

Burst signals are short-duration signals that are expected from
different sources, e.g. from supernova events. Their waveforms
are not exactly known. For now we use simple (e.g. sine-gaussi-
an) waveforms.
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