
Vol. 1/2, June 2001 8

It is possible at a later time to download the archive
‘recommended.sit’ that contains the additional rec-
ommended packages not included in the base-only
package. As usual the other contributed packages
can be found in a separate folder.

The ‘bin/macosx’ folder contains a MacOS X spe-
cific build that will run on a X11 server and it is
based on the Darwin kernel, i.e., it is a Unix build
that runs on MacOS X. This is provided by Jan de
Leeuw (deleeuw@stat.ucla.edu). It comes in three
versions:

‘R-1.3.0-OSX-base.tar.gz’ has the R base distribution.
It has Tcl/Tk support, but no support for
GNOME.

‘R-1.3.0-OSX-recommended.tar.gz’ has the R base dis-
tribution plus the recommended packages.
It has Tcl/Tk support, but no support for
GNOME.

‘R-1.3.0-OSX-full.tar.gz’ has the R base distribution
plus 134 compiled packages. It is compiled
with both GNOME and Tcl/Tk support.

The ‘bin/macosx’ folder contains two folders, one
containing some additional dynamic libraries upon

on which this port is based upon, and another giving
replacements parts complied with the ATLAS opti-
mized BLAS.

‘ReadMe.txt’ files are provided for both versions.

Other changes

GNU a2ps is a fairly versatile any-text-to-postscript
processor, useful for typesetting source code from
a wide variety of programming languages. ‘s.ssh’,
‘rd.ssh’ and ‘st.ssh’ are a2ps style sheets for S code,
Rd documentation format, and S transscripts, respec-
tively. These will be included in the next a2ps re-
lease and are currently available from the “Other
Software” page on CRAN.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@ci.tuwien.ac.at

Date-Time Classes
by Brian D. Ripley and Kurt Hornik

Data in the form of date and/or times are common
in some fields, for example times of diagnosis and
death in survival analysis, trading days and times in
financial time series, and dates of files. We had been
considering for some time how best to handle such
data in R, and it was the last of these examples that
forced us to the decision to include classes for dates
and times in R version 1.2.0, as part of the base pack-
age.

We were adding the function file.info. Finding
information about files looks easy: Unix users take
for granted listings like the following (abbreviated to
fit the column width):

auk% ls -l

total 1189

... 948 Mar 20 14:12 AUTHORS

... 9737 Apr 24 06:44 BUGS

... 17992 Oct 7 1999 COPYING

... 26532 Feb 2 18:38 COPYING.LIB

... 4092 Feb 4 16:00 COPYRIGHTS

but there are a number of subtle issues that hopefully
the operating system has taken care of. (The example
was generated in the UK in April 2001 on a machine
set to the C locale.)

• The format. Two formats are used in the extract
above, one for files less than 6 months’ old and

one for older files. Date formats have an in-
ternational standard (ISO 8601), and this is not
it! In the ISO standard the first date is 2001-
03-20 14.12. However, the format is not even
that commonly used in the UK, which would
be 20 Mar 2001 14:12. The month names indi-
cate that this output was designed for an an-
glophone reader. In short, the format should
depend on the locale.

• Time zones. Hopefully the times are in the time
zone of the computer reading the files, and take
daylight saving time into account, so the first
time is in GMT and the second in BST. Some-
what more hopefully, this will be the case even
if the files have been mounted from a machine
on another continent.

Note that this can be an issue even if one is only
interested in survival times in days. Suppose a
patient is diagnosed in New Zealand and dies
during surgery in California?

We looked at existing solutions, the R packages
chron and date. These seem designed for dates of
the accuracy of a day (although chron allows partial
days), are US-centric and do not take account of time
zones. It was clear we had to look elsewhere for a
comprehensive solution.

R News ISSN 1609-3631

mailto:deleeuw@stat.ucla.edu
mailto:Kurt.Hornik@R-project.org
mailto:Friedrich.Leisch@ci.tuwien.ac.at

Vol. 1/2, June 2001 9

The most obvious solution was the operating sys-
tem itself: after all it knew enough about dates to
process the file dates in the example above. This was
the route we decided to take.

Another idea we had was to look at what the
database community uses. The SQL99 ISO stan-
dard (see Kline & Kline, 2001) has data types date,
time, time with time zone, timestamp, timestamp
with time zone and interval. The type timestamp
with time zone looks to be what we wanted. Un-
fortunately, what is implemented in the common
databases is quite different, and for example the
MySQL data type timestamp is for dates after 1970-
01-01 (according to Kline & Kline).

S-PLUS 5.x and 6.x have S4 classes "timeDate"
and "timeSpan" for date-times and for time inter-
vals. These store the data in whole days (since some
origin for "timeDate") and whole milliseconds past
midnight, together with a timezone and a preferred
printing format.

POSIX standards

We were aware that portability would be a problem
with using OS facilities, but not aware how much
of a headache it was going to be. The 1989 ISO C
standard has some limited support for times, which
are extended and made more precise in the ISO C99
standard. But there are few (if any) C99-conformant
compilers. The one set of standards we did have a
chance with was the POSIX set. Documentation on
POSIX standards is hard to come by, Lewine (1991)
being very useful if now rather old. Vendors do tend
to comply with POSIX (at least superficially) as it is
mandated for government computer purchases.

The basic POSIX measure of time, calendar time, is
the number of seconds since the beginning of 1970, in
the UTC timezone (GMT as described by the French).
Even that needs a little more precision. There have
been 22 leap seconds inserted since 1970 (see the R ob-
ject .leap.seconds), and these should be discarded.
Most machines would store the number as a signed
32-bit integer, which allows times from the early
years of the 20th century up to 2037. We decided this
was restrictive, and stored the number of seconds as
a C double. In principle this allows the storage of
times to sub-second accuracy, but that was an oppor-
tunity we overlooked. Note that there is little point in
allowing a much wider range of times: timezones are
a 19th century introduction, and countries changed
to the Gregorian calendar at different dates (Britain
and its colonies in September 1752). The correspond-
ing R class we called POSIXct.

The raw measure of time is not easily digestible,
and POSIX also provides a ‘broken-down time’ in a
struct tm structure. This gives the year, month, day

of the month, hour, minute and second, all as inte-
gers. Those members completely define the clock
time once the time zone is known 1. The other mem-
bers, the day of the week, the day of the year (0–365)
and a DST flag, can in principle be calculated from
the first six. Note that year has a baseline of 1900,
so years before 1970 are clearly intended to be used.
The corresponding R class we called POSIXlt (where
the ‘lt’ stands for “local time”), which is a list with
components as integer vectors, and so can represent
a vector of broken-down times. We wanted to keep
track of timezones, so where known the timezone is
given by an attribute "tzone", the name of the time-
zone.

Conversions

A high-level language such as R should handle the
conversion between classes automatically. For times
within the range handled by the operating system
we can use the POSIX functions mktime to go from
broken-down time to calendar time, and localtime
and gmtime to go from calendar time to broken-down
time, in the local timezone and UTC respectively.
The only way to do the conversion in an arbitrary
timezone is to set the timezone pro tem2. That proved
difficult!

We also want to be able to print out and scan in
date-times. POSIX provides a function strftime to
print a date-time in a wide range of formats. The
reverse function, strptime, to convert a character
string to a broken-down time, is not in POSIX but
is widely implemented.

Let us look again at the file dates, now using R:

> file.info(dir())[, "mtime", drop=FALSE]

mtime

AUTHORS 2001-03-20 14:12:22

BUGS 2001-04-24 06:44:10

COPYING 1999-10-07 19:09:39

COPYING.LIB 2001-02-02 18:38:32

COPYRIGHTS 2001-02-04 16:00:49

...

This gives the dates in the default (ISO standard) for-
mat, and has taken proper account of the timezone
change. (Note that this has been applied to a column
of a data frame.) When printing just a date-time ob-
ject the timezone is given, if known. We can easily
use other formats as we like.

> zz <- file.info(dir())[1:5, "mtime"]

> zz

[1] "2001-03-20 14:12:22 GMT"

[2] "2001-04-24 06:44:10 BST"

[3] "1999-10-07 19:09:39 BST"

[4] "2001-02-02 18:38:32 GMT"

[5] "2001-02-04 16:00:49 GMT"

> format(zz, format="%x %X")

1ISO C99 adds members tm_zone and tm_leapseconds in struct tmx. It represents both the time zone and the DST by an offset in
minutes, information that is not readily available in some of the platforms we looked at.

2C99 has functions zonetime and mkxtime which would avoid this.

R News ISSN 1609-3631

Vol. 1/2, June 2001 10

locale specific: see also %c or %C.

[1] "03/20/01 14:12:22" "04/24/01 06:44:10"

[3] "10/07/99 19:09:39" "02/02/01 18:38:32"

[5] "02/04/01 16:00:49"

> Sys.setlocale(locale = "en_UK")

[1] "en_UK"

> format(zz, format="%x %X")

[1] "20/03/01 02:12:22 PM" "24/04/01 06:44:10 AM"

[3] "07/10/99 07:09:39 PM" "02/02/01 06:38:32 PM"

[5] "04/02/01 04:00:49 PM"

> format(zz, format="%b %d %Y")

[1] "Mar 20 2001" "Apr 24 2001" "Oct 07 1999"

[4] "Feb 02 2001" "Feb 04 2001"

> format(zz, format="%a %d %b %Y %H:%M")

[1] "Tue 20 Mar 2001 14:12"

[2] "Tue 24 Apr 2001 06:44"

[3] "Thu 07 Oct 1999 19:09"

[4] "Fri 02 Feb 2001 18:38"

[5] "Sun 04 Feb 2001 16:00"

It was easy to add conversions from the chron
and dates classes.

The implementation

The original implementation was written under So-
laris, and went very smoothly. It was the only OS for
which this was the case! Our idea was to use OS fa-
cilities where are these available, so we added simple
versions of mktime and gmtime to convert times far
into the past or the future ignoring timezones, and
then worked out the adjustment on the same day in
2000 in the current timezone.

One advantage of an Open Source project is the
ability to borrow from other projects, and we made
use of glibc’s version of strptime to provide one
for platforms which lacked it.

Coping with the vagaries of other platforms
proved to take far longer. According to POSIX,
mktime is supposed to return -1 (which is a valid
time) for out-of-range times, but on Windows it
crashed for times before 1970-01-01. Such times were
admittedly pre-Microsoft! Linux systems do not nor-
mally have a TZ environment variable set, and this
causes crashes in strftime when asked to print the
timezone, and also complications in temporarily set-
ting timezones (there is no way portably to unset an
environment variable from C). Some platforms were
confused if the DST flag was set to -1 (‘unknown’).
SGI’s strptime only works after 1970. And so on
. . . . The code became more and more complicated
as workarounds were added.

We provided a configure test of whether leap sec-
onds were ignored, and code to work around it if
they are not. We never found such a platform, but
we have since had a bug report which shows they do
exist and we did not get the code quite right first time
around.

Describing all the problems we found would
make a very long article. We did consider providing
all our own code based on glibc. In retrospect that

would have saved a lot of problems, but created oth-
ers. Managing a timezone database is really tedious,
and we would have had to find out for each OS how
to read the local timezone in terms that glibc would
understand.

Much later we found out that classic MacOS
does not really understand timezones, and so
workarounds had to be added for that port of R.

Extensions

The implementation we put in version 1.2.0 was not
fully complete. One issue which arose was the need
to form time differences (the SQL99 interval data
type). Subtraction of two POSIXct or two POSIXlt
times gave a number of seconds, but subtracting a
POSIXct time from a POSIXlt time failed.

Version 1.3.0 provides general facilities for han-
dling time differences, via a class "difftime" with
generator function difftime. This allows time units
of days or hours or minutes or seconds, and aims
to make a sensible choice automatically. To allow
subtraction to work within R’s method dispatch sys-
tem we needed to introduce a super-class "POSIXt",
and a method function -.POSIXt. Thus from
1.3.0, calendar-time objects have class c("POSIXt",
"POSIXct"), and broken-down-time objects have
class c("POSIXt", "POSIXlt"). Appending the new
class rather than prepending would not work, for
reasons we leave as an exercise for the reader.

Here is an example of the time intervals between
R releases:

> ISOdate(2001, 2, 26) - ISOdate(2001, 1, 15)

Time difference of 42 days

> ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

Time difference of 59 days

The result is of class "difftime" and so printed as a
number of days: it is stored as a number of seconds.

One has to be slightly careful: compare the sec-
ond example with

> as.POSIXct("2001-04-26") -

as.POSIXct("2001-02-26")

Time difference of 58.95833 days

> c(as.POSIXct("2001-04-26"),

as.POSIXct("2001-02-26"))

[1] "2001-04-26 BST" "2001-02-26 GMT"

> c(ISOdate(2001, 4, 26), ISOdate(2001, 2, 26))

[1] "2001-04-26 13:00:00 BST"

[2] "2001-02-26 12:00:00 GMT"

The difference is that ISOdate chooses midday GMT
as the unspecified time of day, and as.POSIXct is us-
ing midnight in the timezone. As the UK changed to
DST between the releases, had the releases occurred
at the same time of day the interval would not have
been an exact multiple of a 24-hour day. The round
method can be useful here.

There are many more things one would like to do
with date-time objects. We want to know the cur-
rent time (Sys.time) and timezone (Sys.timezone).

R News ISSN 1609-3631

Vol. 1/2, June 2001 11

Methods for format provide very flexible ways to
convert them to character strings. We have an axis
method to use them to label graphs. Lots of meth-
ods are needed, for all.equal, as.character, c, cut,
mean, round, seq, str, And these need to check
for appropriateness, so for example sums of dates are
not well-defined, whereas means are.

We have also provided convenience functions
like weekdays, months and quarters, which either
extract information from the POSIXlt list or convert
using an appropriate format argument in a call to the
format method. The POSIXt method for the (new)
generic function julian converts to Julian dates (the
number of days since some origin, often 1970-01-01).

The future

We believe that the date-time classes in base R now
provide sufficient flexibility and facilities to cover al-
most all applications and hence that they should now
be used in preference to earlier and more limited sys-
tems. Perhaps most important is that these classes
be used in inter-system applications such as database

connectivity.

References

International Organization for Standardization
(1988, 1997, . . .) ISO 8601. Data elements and in-
terchange formats – Information interchange – Rep-
resentation of dates and times. The 1997 version is
available on-line at ftp://ftp.qsl.net/pub/g1smd/
8601v03.pdf.
Kline, K. and Kline, D. (2001) SQL in a Nutshell.
O’Reilly.
Lewine, D. (1991) POSIX Programmer’s Guide. Writing
Portable UNIX Programs. O’Reilly & Associates.

Brian D. Ripley
University of Oxford, UK
ripley@stats.ox.ac.uk

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Technische Universität Wien, Austria
Kurt.Hornik@R-project.org

Installing R under Windows
by Brian D. Ripley

Very few Windows users will have ever experienced
compiling a large system, as binary installations of
Windows software are universal. Further, users are
used to installing software by a point-and-click in-
terface with a minimum of reading of instructions,
most often none. The expectation is

Insert the CD.

If it doesn’t auto-run, double-click on a
file called Setup.exe in the top directory.

Go through a few ‘Wizard’ pages, then
watch a progress bar as files are installed,
then click on Finish.

Contrast this with ‘untar the sources, run
./configure, make then make install’. Each in its
own way is simple, but it is really horses for courses.

Every since Guido Masarotto put out a version of
R for Windows as a set of zip files we have been look-
ing for a way to install R in a style that experienced
Windows users will find natural. At last we believe
we have found one.

When I first looked at this a couple of years ago
most packages (even Open Source ones) used a com-
mercial installer such as InstallShield or Wise. Al-
though I had a copy of InstallShield, I was put off
by its size, complexity and the experiences I gleaned,

notably from Fabrice Popineau with his fptex instal-
lation.

Shortly afterwards, MicroSoft introduced their
own installer for their Office 2000 suite. This works
in almost the same way, except that one double-clicks
on a file with extension .msi. There is a development
kit for this installer and I had expected it to become
the installer of choice, but it seems rarely used. (The
Perl and now Tcl ports to Windows do use it.) That
makes one of its disadvantages serious: unless you
have a current version of Windows (ME or 2000) you
need to download the installer InstMsi.exe, which
is around 1.5Mb and whose installation needs privi-
leges an ordinary user may not have.

In May 1999 I decided to write a simple installer,
rwinst.exe, using the GraphApp toolkit that Guido
had used to write the R for Windows GUI, and this
has been in use since. But it was not ideal, for

• It did not use a completely standard ‘look-and-
feel’.

• It was hard to maintain, and mistakes in an in-
staller are ‘mission-critical’.

• Users found it hard to cope with needing sev-
eral files to do the installation.

The prospect of recommended packages at version
1.3.0 was going to require twice as many files, and
forced a re-think in early 2001. I had earlier looked at
Inno Setup by Jordan Russell (www.jrsoftware.org)

R News ISSN 1609-3631

ftp://ftp.qsl.net/pub/g1smd/8601v03.pdf
ftp://ftp.qsl.net/pub/g1smd/8601v03.pdf
mailto:ripley@stats.ox.ac.uk
mailto:Kurt.Hornik@R-project.org
www.jrsoftware.org

